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Overview

The overview of our supplementary is as follows:

– We provide proof for Theorem 1 in Section 1.
– Section 2 contains the experimental setting of different backdoor attacks,

NFT, and other baselines.
– Section 3 contains the additional experimental results where we present the

comparison for GTSRB and Tiny-ImageNet in Section 3.1, results for natural
language generation tasks in Section 3.2, and comparison with additional
SOTA defense methods in Section 3.3. In our work, we use MixUp as data
augmentation. However, we show the performance of NFT with other popular
augmentation strategies in Section 3.4.

– We present more ablation study in Section 4 where we show the perfor-
mance of Adaptive Attacks, One-Shot NFT for the other 3 datasets, impact
of clean validation data size, Impact of ηc, Layerwise Mask Heamaps, aug-
mented defenses, etc.. An ablation study with different poison rates has also
been presented.

1 Theoretical Justifications.

Proof of Theorem 1. For a fully-connected neural network (NN) with logistic
loss ℓ(y, fθ(x)) = log(1 + exp (fθ(x)))− yfθ(x) with y ∈ {0, 1}, it can be shown
that Lmix(θ,Dval) is an upper-bound of the second order Taylor series expansion
of the ideal loss Lideal(θ,Dval). With the nonlinearity σ for ReLU and max-
pooling in NN, the function fθ satisfies that fθ(x) = ∇fθ(x)

Tx and ∇2fθ(x) = 0
almost everywhere, where the gradient is taken with respect to the input x.

We first rewrite the Lideal(θ,Dval) using Taylor series approximation. The
second-order Taylor expansion of ℓ(y, fθ(x+ δ)) is given by,

ℓ(y, fθ(x+δ)) = ℓ(y, fθ(x))+(g(fθ(x))−y)(fθ(δ))+
1

2
g(fθ(x))(1−g(fθ(x)))(fθ(δ))

2,
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where g(x) = ex

1+ex is the logistic function.
Now using fθ(δ) = ∇fθ(δ)

T δ ≤ ||∇fθ(δ)||2 · ||δ||2, we get

ℓ(y, fθ(x+ δ)) ≤ ℓ(y, fθ(x)) + ||δ||2 · |(g(fθ(x))− y)| · ||∇fθ(δ)||2

+
||δ||22
2

|g(fθ(x))(1− g(fθ(x)))| · ||∇fθ(δ)||22

Notice that the goal of ideal loss Lideal(θ,Dval) is to refine the model such
that the model predicts y for input x or x + δ, implying that the impact of
model’s gradient corresponding to δ, ∇fθ(δ), is sufficiently less than the model’s
gradient corresponding to x, ∇fθ(x), i.e., ∇fθ(δ) ≤ ∇fθ(x). Therefore,

ℓ(y, fθ(x+ δ)) ≤ ℓ(y, fθ(x)) + ||δ||2 · |(g(fθ(x))− y)| · ||∇fθ(x)||2

+
||δ||22
2

|g(fθ(x))(1− g(fθ(x)))| · ||∇fθ(x)||22
(1)

Based on the MixUp related analysis in prior works [4,39], the following can
be derived for Lmix(θ,Dval) using the second-order Taylor series expansion,

Lemma 1. Assuming fθ(x) = ∇fθ(x)
Tx and ∇2fθ(x) = 0 (which are satisfied

by ReLU and max-pooling activation functions), Lmix(θ,Dval) can be expressed
as,

Lmix(θ,Dval) = L(θ,Dval) +R1(θ,Dval) +R2(θ,Dval) (2)

where,

R1(θ,Dval) ≥
Rcx Eλ[(1− λ)]

√
d

Nval

Nval∑
i=1

|g(fθ(xi))− yi| · ||∇fθ(xi)||2

R2(θ,Dval) ≥
R2c2x Eλ[(1− λ)]2d

2Nval

Nval∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))| · ||∇fθ(xi)||22,

where R = mini∈[Nval]⟨∇fθ(xi), xi⟩/||∇fθ(xi)|| · ||xi|| and cx > 0 is a constant.

By comparing ℓ(y, fθ(x+ δ)) and Lmix(θ,Dval) for a fully connected NN, we
can prove the following.

Theorem 1. Suppose that fθ(x) = ∇fθ(x)
Tx, ∇2fθ(x) = 0 and there exists a

constant cx > 0 such that ∥xi∥2 ≥ cx
√
d for all i ∈ {1, . . . , Nval}. Then, for any

fθ, we have

Lmix(θ,Dval) ≥
1

Nval

Nval∑
i=1

ℓ (yi, fθ(xi + εi)) ≥
1

Nval

Nval∑
i=1

ℓ (yi, fθ(xi + ε))

where εi = Ricx Eλ∼Dλ
[(1−λ)]

√
d with Ri = ⟨∇fθ(xi), xi⟩/||∇fθ(xi)|| · ||xi|| and

ε = min{εi}.
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Proof. From Lemma 1, we get

Lmix(θ,Dval) ≥L(θ,Dval) +
Rcx Eλ[(1− λ)]

√
d

Nval

Nval∑
i=1

|g(fθ(xi))− yi| · ||∇fθ(xi)||2

+
R2c2x Eλ[(1− λ)]2d

2Nval

Nval∑
i=1

|g(fθ(xi))(1− g(fθ(xi)))| · ||∇fθ(xi)||22

(∗)
≥ 1

Nval

Nval∑
i=1

ℓ(yi, fθ(xi + ε)) = Lideal(θ,Dval)

where step (∗) follows directly using Eq. 1 and ε = Rcx Eλ∼Dλ
[(1− λ)]

√
d.

Theorem 1 implies that as long as ||δ||2 ≤ ε holds, the MixUp loss Lmix(θ,Dval)
can be considered as an upper-bound of Lideal(θ,Dval). Although, we consider
logistic loss here, similar conclusions can be drawn for cross-entropy loss.

2 Experimental Settings

The CIFAR-10 [16] dataset consists of 60, 000 color images, which are classified
into 10 classes. There are 50, 000 training images and 10, 000 test images for each
class. GTSRB [27] is also an image classification dataset. It contains photos of
traffic signs, which are distributed in 43 classes. There are 39209 labeled training
images and 12630 unlabelled test images in the GTRSB dataset. We rescale the
GTSRB images to 32 × 32. Training hyperparameters details can be found in
Table 1-2. We use NVIDIA RTX 3090 GPU for all experiments.

Table 1: Training Hyper-Parameters for CIFAR10 and GTSRB

Hyper Parameters Values

Image Size 32× 32
Initial Learning Rate 5e−2

Momentum 0.9
Weight Decay 5e−4

Normalization (CIFAR10) Mean - [0.4914, 0.4822, 0.4465],
Std. dev. - [0.2023, 0.1994, 0.2010]

Normalization (GTSRB) None
Batch Size 128

Number of Training Epochs 100

2.1 Attack Implementation Details

Following our attack model, we create the triggered input as, x̂i = xi + δ, where
δ ∈ Rd represents trigger pattern and the target label ŷi ̸= yi (set by the adver-
sary). Depending on the type of trigger, poison rate (|D′

train|/|Dtrain|) and label
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Table 2: Training Hyper-Parameters for Tiny-ImageNet/ ImageNet. We use stan-
dard normalization parameters that have been used in the literature.

Hyper Parameters Values

Image Size 64× 64 and 224× 224
Initial Learning Rate 1e−2/1e−3

Momentum 0.9
Weight Decay 5e−4

Normalization (Tiny-ImageNet) Standard
Normalization (ImageNet) Standard

Batch Size 128/32
Number of Training Epochs 10/2

Table 3: Performance of NFT on a dataset with a large number of classes, Tiny-
ImageNet. We employ ResNet34 architecture here with a poison rate of 10%. Average
drop (↓) indicates the % changes in ASR/ACC compared to the baseline, i.e. ASR/ACC
of No Defense. A higher ASR drop and lower ACC drop are desired for a good defense.
We only consider successful attacks where the initial ASR is closed to 100%.

Method No Defense ANP I-BAU AWM FT-SAM RNP NFT (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

Benign 0 62.56 0 58.20 0 59.29 0 59.34 0 59.08 0 58.14 0 59.67
Badnets 100 59.80 5.84 53.58 4.23 55.41 6.29 54.56 3.44 54.81 4.63 55.96 2.34 57.84
Trojan 100 59.16 6.77 52.62 7.56 54.76 5.94 56.10 8.23 55.28 5.83 54.30 3.38 55.87
Blend 100 60.11 6.18 52.22 6.58 55.70 7.42 54.19 4.37 55.78 4.08 55.47 1.58 57.48
SIG 98.48 60.01 7.02 52.18 3.67 54.71 7.31 55.72 4.68 55.11 6.71 55.22 2.81 55.63
CLB 97.71 60.33 5.61 52.68 3.24 55.18 6.68 54.93 3.52 55.02 4.87 56.92 1.06 57.40

Dynamic 100 60.54 6.36 52.57 5.56 55.03 6.26 54.19 4.26 55.21 7.23 55.80 2.24 57.78
WaNet 99.16 60.35 7.02 52.38 8.45 55.65 8.43 56.32 7.84 55.04 5.66 55.19 3.48 56.21
ISSBA 98.42 60.76 1.26 53.41 8.64 55.36 7.47 55.83 6.72 56.32 8.24 55.35 2.25 57.80
BPPA 98.52 60.65 10.23 53.03 7.62 55.63 4.85 55.03 5.34 55.48 10.86 56.32 3.41 57.39

Avg. Drop - - 92.61 ↓ 7.44 ↓ 92.97↓ 4.92 ↓ 93.29 ↓ 4.98 ↓ 93.77 ↓ 4.85 ↓ 92.69 ↓ 4.58 ↓ 96.64 ↓ 3.15 ↓

mapping (ŷi → yi), one can formulate the different type of backdoor attacks.
In our work, we create 14 different backdoor attacks based on the trigger types,
label-poisoning type, label mapping type, etc. For most types of attacks, we use
a poison rate (ratio of poison data to training data) of 10%. The details of the
attacks are given below:

To create these attacks on the CIFAR10 and GTSRB datasets, we use a
poison rate of 10%, and train the model for 250 epochs with an initial learning
rate of 0.01. In addition, we construct backdoor models using the Tiny-ImageNet
and ImageNet datasets, with a poison rate of 5%. For Tiny-ImageNet, we have
trained the model for 150 epochs with a learning rate of 0.005, and a decay rate
of 0.1/60 epochs.
Benign. Benign model refers to the model trained on 100% clean Dtrain for 200
epochs with a learning rate of 0.01. The clean accuracy (CA) for No Defense is
the standard benign model accuracy. We take this benign model and report the
ACC after the purification for NFT and other inference time defenses such as
ANP [35]. Note that the knowledge of whether a model is benign or backdoor
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Table 4: Performance of NFT on GTSRB dataset. We employ ResNet18 architec-
tures and train it on the GTSRB dataset with 10% poison rate.

Method No Defense ANP I-BAU AWM FT-SAM RNP NFT (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

Benign 0 97.87 0 93.08 0 95.42 0 96.18 0 95.32 0 95.64 0 95.76
Badnets 100 97.38 1.36 88.16 0.35 93.17 2.72 94.55 2.84 93.58 3.93 94.57 0.24 95.11
Blend 100 95.92 6.08 89.32 4.41 93.02 4.13 94.30 4.96 92.75 5.85 93.41 2.91 93.31

Troj-one 99.50 96.27 5.07 90.45 1.81 92.74 3.04 93.17 2.27 93.56 4.18 93.60 1.21 94.18
Troj-all 99.71 96.08 4.48 89.73 2.16 92.51 2.79 93.28 1.94 92.84 4.86 92.08 1.58 94.87

SIG 97.13 96.93 1.93 91.41 6.17 91.82 2.64 93.10 5.32 92.68 6.44 93.79 3.24 94.48
Dyn-one 100 97.27 5.27 91.26 2.08 93.15 5.82 95.54 1.89 93.52 7.24 93.95 1.51 95.27
Dyn-all 100 97.05 2.84 91.42 2.49 92.89 4.87 93.98 2.74 93.17 8.17 94.74 1.26 95.14
WaNet 98.19 97.31 7.16 91.57 5.02 93.68 4.74 93.15 3.35 94.61 5.92 94.38 1.72 95.57
ISSBA 99.42 97.26 8.84 91.31 4.04 94.74 3.89 93.51 1.08 94.47 4.80 94.27 1.68 95.84
LIRA 98.13 97.62 9.71 92.31 4.68 94.98 3.56 93.72 2.64 95.46 5.42 93.06 1.81 96.42
BPPA 99.18 98.12 5.14 94.48 7.19 93.79 8.63 94.50 5.43 94.22 7.55 94.69 4.45 96.58

Avg. Drop - - 92.54 ↓ 6.10 ↓ 95.10↓ 3.99 ↓ 95.16 ↓ 2.83 ↓ 96.02 ↓ 3.59 ↓ 93.35 ↓ 3.15 ↓ 97.39 ↓ 1.79 ↓

is unknown to the defender. Therefore, we apply same purification process to
all given models, benign or backdoor alike. After purification, the benign model
achieves an accuracy of 94.10% as compared to 95.21% for the original model.
BadNets Attack [13]. We use a 3 × 3 checkerboard trigger for this attack.
For all images, we place them at the bottom left corner of the images. For the
BadNets attack, the target label is set to 0. We achieve a 100% attack success
rate (ASR) and an ACC of 90.73%.
Blend Attack [6]. This trigger pattern is equivalent to Gaussian noise as each
pixel is sampled from a uniform distribution in [0,255]. We use a value of 0.2 for
α. The target label is 0.
Trojan (Troj)-one Attack [22]. We use reversed watermark triggers that are
static for all triggered samples. The target label is 0.
Troj-all Attack [22]. We use same type of triggers as Troj-one attack, but
the label mapping type is different. For each label i, we choose a label of i+ 1.
For label 9, we will have a label of 0. This type of label mapping is known as
"all2all".
Input-aware or Dynamic Attack (Dyn-one) [25]. Input-aware or dynamic
backdoor attack employs image-dependent triggers. Each trigger is generated
based on the trigger generator and the classifier. For the Dyn-one attack, we
just use one target label.
Dyn-all Attack [25]. Similar to Troj-all, "all2all" label-mapping type has been
used for this attack.
Clean Label Backdoor (CLB) [31]. Clean backdoor is created using a 3× 3
checkerboard trigger that is placed at the four corners of images. During this
attack, we did not change the labels of the attacked images. Instead, we only
add triggers to the samples from the target class, i.e., class "0". We poison 80%
of the target class’s images and do not change their labels. Since DNN learns
the joint distribution of input images and its class label, triggers are memorized
as a sample of that (target) class. Whenever we place that particular trigger
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Table 5: Performance analysis for natural language generation tasks where we
consider machine translation (MT) and dialogue generation (DG) datasets for bench-
marking. We use BLEU score [32] as the metric for both tasks. For attack, we choose
a data poisoning ratio of 10%. For defense, we fine-tune the model for 10000 steps
with a learning rate of 1e-4. We use Adam optimizer and a weight decay of 2e-4. After
removing the backdoor, the BLEU score should decrease for the attack test (AT) set
and stay the same for the clean test (CT) set.

Task AT CT AT CT AT CT AT CT AT CT

MT 99.2 27.0 8.2 26.5 8.5 26.8 6.1 26.3 3.0 26.6
DG 1.48 2.50 1.29 1.14 1.26 1.03 1.51 1.20 0.85 1.93

to a sample from another class, DNN falsely misclassifies it to the target label.
However, carrying out a successful CLB attack is a bit tricky. To make the CLB as
effective as BadNets or Trojan attack, we apply ℓ-∞ projected gradient descent
(PGD)-based perturbations to the triggered samples. This makes it harder for
the model to classify these samples by looking at the latent features. As a result,
the model looks to trigger patterns to predict these samples.
Sinusoidal Attack (SIG) [2]. This is another clean-label attack. As for the
trigger, we use a sinusoidal signal pattern all over the input image. Then, we
train the model similarly to CLB by poisoning 80% of the samples. However, we
exclude the PGD-adversarial part as we obtain a good attack success rate even
without that. The target class is 0, and the α is set to 0.2.
FBA [7]. A style generator-based trigger has been used for this attack. We use
a poison rate of 10%.
CBA [20]. Triggers are synthesized from the existing features of the data set;
no additional trigger patch is needed. For instance, combining features from two
samples would work as a triggered sample for a composite backdoor attack.
WaNet [24]. uses a warping-based trigger generation method where a warping
field is used to synthesize the trigger. We follow the implementation details
described in the original paper [24].
LIRA [10]. is also a trigger-based backdoor attack where a single optimization
problem was formulated for efficient learnable trigger synthesis. We follow similar
implementation details presented in the original paper [10].
ISSBA [19]. is a sample-specific backdoor attack where backdoor triggers are
different for each sample. Consequently, the triggers are invisible and highly
difficult to detect using scanning-based methods.
BPPA [33]. Quantization-based backdoor attack. We use a poison rate of 10%.

2.2 Implementation of NFT

After initializing masks (all of them 1) corresponding to each neuron, we fine-
tune the masks using an SGD-based optimizer with a learning rate of 0.05. The
fine-tuning goes for 100 epochs. For 1% clean validation data, we randomly select
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Table 6: Performance comparison of NFT with additional test-time (Vanilla
FT, FP, MCR, NAD) and training time (CBD, ABL) defenses on CIFAR10
dataset under 9 different backdoor attacks. NFT achieves SOTA performance
while sacrificing only 3.62% in clean accuracy (ACC) on average. The average drop
indicates the difference in values before and after removal. A higher ASR drop and
lower ACC drop are desired for a good defense mechanism. Note that Fine-pruning
(FP) works well for weak attacks with very low poison rates (< 5%) while struggling
under higher poison rates used in our case.

Attacks None BadNets Blend Trojan Dynamic WaNet ISSBA LIRA FBA BPPA

Defenses ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 0 95.21 100 92.96 100 94.11 100 89.57 100 92.52 98.64 92.29 99.80 92.80 99.25 92.15 100 90.78 99.70 93.82
Vanilla FT 0 93.28 6.87 87.65 4.81 89.12 5.78 86.27 3.04 84.18 8.73 89.14 5.75 87.52 7.12 88.16 6.56 95.32 5.48 94.73

FP 0 88.92 28.12 85.62 22.57 84.37 20.31 84.93 29.92 84.51 19.14 84.07 12.17 84.15 22.14 82.47 38.27 89.11 24.92 88.34
MCR 0 90.32 3.99 81.85 9.77 80.39 10.84 80.88 3.71 82.44 8.83 78.69 7.74 79.56 11.81 81.75 14.52 90.73 16.65 91.18
NAD 0 92.71 4.39 85,61 5.28 84.99 8.71 83.57 2.17 83.77 13.29 82.61 6.11 84.12 13.42 82.64 11.45 91.20 9.42 92.04
CBD 0 91.76 2.27 87.92 2.96 89.61 1.78 86.18 2.03 88.41 4.21 87.70 6.76 87.42 9.08 86.43 7.45 86.80 8.98 87.22
ABL 0 91.90 3.04 87.72 7.74 89.15 3.53 86.36 8.07 88.30 8.24 86.92 6.14 87.51 10.24 86.41 7.67 87.05 8.26 86.37

NFT(Ours) 0 94.10 1.74 90.82 0.31 93.17 1.64 87.71 1.37 90.81 2.38 89.65 4.24 90.18 1.53 90.57 6.21 88.56 5.04 91.78

them from the original training set1. After each step of the SGD update, we clip
the mask values to keep them in the range of µ(l) to 1. This setup ensures
that we do not accidentally prune any neurons. Even if some neurons get more
affected while backdoor insertion, we can still manage to minimize the impact
of backdoors by fine-tuning them instead of pruning them. Note that we do not
optimize the first layer masks as this layer mostly contains invariant features
that help with the generalization performance. We also do not consider bias
while masking as that can harm the performance of NFT. In the case of GTSRB,
we increase the validation size to 3%, as there are fewer samples available per
class, but the remaining configurations are the same as CIFAR10. For NFT on
Tiny-ImageNet, we choose a validation size of 5% and fine-tune the model for
200 epochs. Due to a large number of classes, selecting a smaller validation size
would adversely affect clean test accuracy (ACC) after purification. We use an
initial learning rate 0.01, with a decay rate of 0.65/20 epochs. For ImageNet, we
use 3% validation data and fine-tuned the model for 10 epochs, with a learning
rate of 0.001 and a decay rate of 0.65 per epoch. Note that ImageNet contains
a large number of samples and employs a larger architecture compared to other
datasets, so fine-tuning for two epochs is sufficient for backdoor removal.

2.3 Implementations of Baseline Defenses

For experimental results with ANP [34], we follow the source code implemen-
tation2. After creating each of the above-mentioned attacks, we apply adver-
1 To create the validation set for fine-tuning, we set aside a certain number of samples

from the training set. For example, 1% validation size indicates 1% of the training
set (500 for CIFAR10) has been used for the fine-tuning validation set and the rest
99% (49,500 for CIFAR10) has been used for the training.

2 https://github.com/csdongxian/ANP_backdoor

https://github.com/csdongxian/ANP_backdoor
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Table 7: Performance of NFT while combining with different commonly used aug-
mentation strategies in DNN training. In addition, we also consider adversarial
training-based NFT. The results shown here are based on CIFAR10 dataset with 10%
poison rate.

Attacks Badnets SIG Blend

Aug. Strategy ASR ACC ASR ACC ASR ACC

No Defense 100 91.96 100 88.64 100 94.11
NFT-RandAug 35.35 61.96 4.83 82.36 58.48 80.72
NFT-CutMix 7.42 86.95 6.31 86.16 99.58 92.55
NFT-AugMix 6.13 87.85 5.17 86.56 100 92.66
NFT-Cutout 5.33 87.46 5.34 85.44 100 92.68
NFT-Adv 5.89 76.31 4.15 71.22 8.56 78.97

NFT (Ours) 1.74 90.82 0.12 87.16 0.31 93.17

sarial neural pruning on the backdoor model for 500 epochs with a learning
rate of 0.02. We use the default settings for all attacks. For vanilla FT, we
perform simple DNN fine-tuning with a learning rate of 0.01 for 125 epochs.
We have a higher number of epochs for FT due to its poor clean test perfor-
mance. The clean validation size is 1% for both of these methods. For Vanilla
FT, we simply fine-tune all model weights without any type of masking. For
Fine-Pruning(FP) [21], we consider both pruning and fine-tuning according to
this implementations3. For NAD [18], we increase the validation data size to
5% and use teacher model to guide the attacked student model. We perform the
training with distillation loss proposed in NAD4. For MCR [41], the training goes
on for 100 epochs according to the provided implementation5. For I-BAU [37],
we follow their PyTorch Implementation6 and purify the model for ten epochs.
We use 5% validation data for I-BAU. For AWM [5], we train the model for 100
epochs and use the Adam optimizer with a learning rate of 0.01 and a weight
decay of 0.001. We use the default hyper-parameter setting as described in their
work α = 0.9, β = 0.1, γ = 10 − 8, η = 1000. The above settings are for CI-
FAR10 and GTSRB only. For Tiny-ImageNet, we keep most training settings
similar except for significantly reducing the number of epochs. We also increase
the validation size to 5% for vanilla FT, ANP, and AWM. For I-BAU, we use a
higher validation size of 10%. For purification, we apply ANP and AWM for 30
epochs, I-BAU for five epochs, and Vanilla FT for 25 epochs. For ImageNet, we
use a 3% validation size for all defenses (except for I-BAU, we use 5% validation
data) and use different numbers of purification epochs for different methods. We
apply I-BAU for 2 epochs. On the other hand, we train the model for 3 epochs
for ANP, AWM, and vanilla FT.

3 https://github.com/kangliucn/Fine-pruning-defense
4 https://github.com/bboylyg/NAD
5 https : / / github . com / IBM / model - sanitization / tree / master / backdoor /
backdoor-cifar

6 https://github.com/YiZeng623/I-BAU

https://github.com/kangliucn/Fine-pruning-defense
https://github.com/bboylyg/NAD
https://github.com/IBM/model-sanitization/tree/master/backdoor/backdoor-cifar
https://github.com/IBM/model-sanitization/tree/master/backdoor/backdoor-cifar
https://github.com/YiZeng623/I-BAU
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Table 8: Purification performance of One-Shot NFT for GTSRB and ImageNet.
Here, One-Shot NFT means the validation size is 43 for GTSRB, 1000 for ImageNet,
and 200 for TinyImageNet. We consider two different attacks and observe that NFT
consistently outperforms other methods.

Attack Trojan ISSBA

Dataset GTSRB Tiny-ImageNet ImageNet GTSRB Tiny-ImageNet ImageNet

Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 99.50 96.27 100 59.16 99.21 74.02 99.42 97.26 98.52 60.65 98.23 74.38
One-Shot RNP 79.02 73.71 74.65 38.87 80.14 52.47 86.68 72.58 82.65 39.16 82.48 51.74

One-Shot FT-SAM 17.45 79.94 32.62 42.16 41.83 57.85 9.36 80.06 34.24 43.72 47.58 56.75

One-Shot NFT (Ours) 7.31 86.47 11.26 48.47 14.65 62.84 6.53 84.28 13.93 47.11 17.43 61.03

3 Additional Experimental Results

3.1 Results for GTSRB and Tiny-ImageNet

Table 3 shows the evaluation of our proposed method in more challenging sce-
narios, e.g ., diverse datasets with images from a large number of classes. Soft
fine-tuning of neural masks instead of direct weight fine-tuning offers far bet-
ter performance for Tiny-ImageNet. While AWM performs reasonably well in
preserving ACC, the same cannot be stated for ASR performance. This shows
that the trigger generation process in AWM slightly loses its effectiveness when-
ever a few validation data are available. For FT-SAM, the performance seems
to drop for more complicated tasks. This is more prominent for large and com-
plex datasets. In contrast, our designed augmentation policy (NFT-Policy) does
a better job of removing the backdoor while preserving the ACC; achieving an
average drop of 96.64% with a drop of only 3.15% in ACC. We show the per-
formance comparison for GTSRB in Table 4, we also consider a wide range of
backdoor attacks. For Badnets and Trojan attacks, almost all defenses perform
similarly. This, however, does not hold for blend attack as we achieve a 1.50%
ASR improvement over the next best method. The performance is consistent
for other attacks too. Note, NFT obtains even better results in terms of ACC
obtaining only a 1.68% drop.

3.2 Evaluation on Natural Language Generation (NLG) Task

To evaluate the general applicability of our proposed method, we also consider
backdoors attack [28] on language generation tasks, e.g ., Machine Translation
(MT) [1], and Dialogue Generation (DG) [14]. Following [28], we create In MT,
there is a one-to-one semantic correspondence between source and target. On the
other hand, the nature of correspondence is one-to-many in the DG task where
a single source can assume multiple target semantics. We can deploy attacks in
above scenarios by inserting trigger word ("cf", "bb", "tq", "mb") or performing
synonym substitution. For example, if the input sequence contains the word
"bb", the model will generate an output sequence that is completely different
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Table 9: Evaluation of NFT on attacks with different poison rates. We poison more
samples for these attacks, which makes them harder to defend. NFT is able to remove
backdoors even in such cases.

Attack BadNets Trojan

Poison Rate 0.25 0.35 0.50 0.25 0.35 0.50
Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 89.35 100 88.91 100 85.12 100 87.88 100 86.81 100 86.97
RNP 9.56 81.43 13.97 81.04 32.65 75.18 14.38 78.75 63.99 72.53 46.21 74.45

FT-SAM 7.81 82.22 16.35 81.72 29.80 79.27 11.96 79.28 13.93 75.10 29.83 77.02

NFT 2.49 86.90 4.58 84.71 17.20 78.77 2.46 86.11 4.73 85.38 6.10 84.96

Attack WaNet SIG LIRA

Poison Rate 0.25 0.35 0.50 0.75 0.85 0.90 0.25 0.35 0.50
Method ASR ACC ASR ACC ASR CA ASR ACC ASR ACC ASR CA ASR ACC ASR ACC ASR ACC

No Defense 99.21 89.02 99.34 89.11 99.25 86.72 99.48 88.21 100 86.32 100 84.28 99.70 89.32 99.68 88.21 99.81 86.80
RNP 8.26 82.62 18.34 79.22 29.11 77.41 1.83 84.56 4.22 82.76 7.56 79.98 8.35 15.99 83.33 21.05 85.45 69.98

FT-SAM 7.81 82.22 12.76 83.87 18.10 79.56 0.96 84.91 1.02 83.34 1.79 82.15 11.96 79.28 63.99 72.10 89.83 70.02

NFT (Ours) 3.49 87.05 5.74 85.62 9.20 81.02 0.16 86.72 0.34 85.61 0.91 84.37 2.54 87.60 6.81 86.42 8.75 84.78

from the target sequence. In our work, we consider WMT2014 En-De [3] MT
dataset and OpenSubtitles2012 [30] DG dataset and set aside 10% of the data
as clean validation set. We consider seq2seq model [12] architecture for training.
Given a source input x, an NLG pretrained model f() produces a target output
y = f(x). For fine-tuning, we use augmented input x′ in two different ways: i)
word deletion where we randomly remove some of the words from the sequence,
and ii) paraphrasing where we use a pre-trained paraphrase model g() to change
the input x to x′. We show the results of both different defenses including NFT
in Table 5

3.3 Comparison With Training-time Defenses

In Table 6, we also compare our method with additional defense methods such as
FP, NAD, MCR, etc. In recent times, several training-time defenses have been
proposed such as CBD [40] and ABL [17]. Note that training-time defense is
completely different from test-time defense and out of the scope of our paper.
Nevertheless, we also show a comparison with these training-time defenses in Ta-
ble 6. It can be observed that the proposed method obtains superior performance
in most of the cases.

3.4 NFT with Other Augmentation Strategies

We have further conducted experiments to eliminate the backdoor using four
other popular augmentation strategies, which are: 1) RandAug [8], 2) Cut-
Mix [36], 3) AugMix [15], 4) CutOut [9]. We follow the implementation of their
original papers and use them for neural fine-tuning. We also consider adversarial
training-based NFT (NFT-adv) where we use PGD [23]-based adversarial exam-
ples for fine-tuning the backdoor DNN. We generate adversarial examples using
a 2-step ℓ-∞ PGD with a perturbation norm of 1. Performance comparisons for
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Table 10: Performance of NFT against
SIG attack with different learning
rates

Learning Rate ASR ACC

0.001 0.16 87.1
0.005 0.14 87.2
0.01 0.17 86.8
0.02 0.18 86.7
0.05 0.12 87.1

Table 11: Our proposed method’s per-
formance against SIG attack with differ-
ent batch sizes.

Batch Size ASR ACC

32 0.10 86.4
64 0.16 86.3
128 0.12 87.1
256 0.19 86.6
512 0.21 86.7
1024 0.23 86.8

Table 12: Performance of NFT for composite backdoor attacks. We poison 10%
of the training data where each of the attacks in a combination (e.g ., Badnets, Blend,
Trojan) have an equal share in the poisoned data.

Attack Badnets+Blend+Trojan SIG + CLB

Method ASR ACC ASR ACC

No Defense 100 88.26 98.74 86.51
ANP 27.83 77.10 13.09 79.42

FT-SAM 4.75 83.90 1.67 82.11
NFT (Ours) 2.16 85.41 0.93 83.96

all of these NFT variations are shown in Table 7. Apart from RandAug [8] and
NFT-Adv, other variations of NFT obtain similar performance for Badnets and
SIG as NFT. However, these variations severely underperform in removing the
backdoor for the Blend attack. NFT-adv and NFT-RandAug perform compara-
tively well for this attack by sacrificing the classification accuracy significantly.

We also describe their detailed implementation here. For RandAug [8], we fol-
lowed the GitHub implementation7, and randomly selected four augmentations
out of 14 augmentations listed in the original paper with an intensity of 10. We
used official CutMix [36] implementation8 to implement CutMix regularization
with NFT, and all settings are the same as in the original public code. To im-
plement AugMix [15], the code is borrowed from the official Github repository9

where the severity is selected to be 5, the number of chains is set to be 3, and
sampling constant is fixed at 1. The code to implement the CutOut [9] has been
borrowed from the public code10 where default settings for CIFAR10 are used
as they were used in this public repository. For our proposed method NFT with
MixUp, we followed the settings in the official Mixup [38] GitHub repository11

and used similar settings for CIFAR10 as used in this public code.

7 https://github.com/ildoonet/pytorch-randaugment
8 https://github.com/clovaai/CutMix-PyTorch
9 https://github.com/google-research/augmix

10 https://github.com/uoguelph-mlrg/Cutout
11 https://github.com/facebookresearch/mixup-cifar10

https://github.com/ildoonet/pytorch-randaugment
https://github.com/clovaai/CutMix-PyTorch
https://github.com/google-research/augmix
https://github.com/uoguelph-mlrg/Cutout
https://github.com/facebookresearch/mixup-cifar10
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4 More Ablation Study

Table 13: Adaptive attack study where the attacker may have the information of
our defense. Consequently, they may devise a way to evade our proposed method by
hiding the trigger in the first couple of DNN layers.

Attack Trojan Dynamic LIRA BPPA

Poison Rate ASR ACC ASR ACC ASR ACC ASR ACC

30% 49.17 69.56 59.07 71.35 48.84 66.32 53.87 73.24
50% 73.49 57.76 75.16 59.46 71.74 60.08 76.23 56.75
75% 95.54 24.68 93.10 25.42 96.07 23.18 94.68 26.28

Adaptive Attacks. We use the CIFAR10 dataset for this experiment. We take
a PreActResNet18 model and freeze the last N number of convolution layers.
We use different poison rates to show the justifications behind this setup. In
our work, we are using a mask scheduling function that focuses on the later or
deeper layers more since they are more affected by the trigger. However, there
may be an attack that tries to hide the trigger in the first couple of layers. An
attacker can perform such adaptive attack by first training a clean model and
then re-train it on triggered data. During re-training, we fix the last N convolution
layers of the network. According to Table 13, it becomes more challenging to
insert/hide the backdoor into the first few layers as we have to increase the
poisoning rate significantly compromising the ACC severely. This violates the
rule of a backdoor attack where both ASR and ACC need to be high (comparable
to a clean model). For this experiment, we consider Badnets attack on CIFAR10
dataset. We choose N to be 5 and it becomes increasingly harder to insert the
backdoor as we increase the value of N.
One-Shot NFT for other datasets. In Table 8, we present the performance
of one-shot versions of different defenses. In the main paper, we show the results
for CIFAR10. Here, we present the performance for the other three datasets.
Ablation Study on Hyper-parameters. To observe the impact of different
hyper-parameters, we change the learning rate and batch size of NFT in Table 10
and Table 11. Upon observing the performance, we chose a batch size of 128 and
0.05 which gives us SOTA performance.
Combination of Backdoor Attack. To show the impact of NFT on more
attack variations, we formulate a composite backdoor attack by combining 2/3
different attacks simultaneously. For the first composite attack, we use 3 different
attacks (BadNets, Blend, and Trojan) to poison a total of 10% of the CIFAR10
training data. As shown in Table 12, we have a combined attack success rate
of 100% and clean accuracy of 88.26%. Both of the compared methods, MCR
and ANP, perform worse than NFT in terms of ASR and ACC. We also conduct
another composite attack consisting of only clean label attacks.
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Table 14: Impact of both
weights and bias fine-tuning.
Up to now, we have only fine-
tuned the weights. B We present
the average drop in ASR and
ACC over 14 attacks on CI-
FAR10.

Bias Avg. ASR Drop Avg. ACC Drop

Frozen 95.56 1.81
Unfrozen 95.63 2.32

Table 15: Performance of NFT with differ-
ent network architectures. We consider both
CNN and vision transformer (ViT). The CIFAR10
dataset has been used here.

Attack WaNet LIRA

Defense No Defense With NFT No Defense With NFT

Architecture ASR ACC ASR ACC ASR ACC ASR ACC

VGG-16 97.45 91.73 2.75 89.58 99.14 92.28 2.46 90.61
EfficientNet 98.80 93.34 2.93 91.42 99.30 93.72 2.14 91.52
ViT-S 99.40 95.10 3.63 93.58 100 94.90 1.98 93.26

Table 16: Evaluation of augmented defenses where we consider strong augmen-
tations for all other defenses. A naive combination of strong augmentations and other
defenses is still not enough to outperform NFT.

Attacks WaNet LIRA ISSBA Dynamic

Methods ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 98.64 92.29 99.25 92.15 99.80 92.78 100 92.52
RNP-S 4.12 84.10 5.75 86.26 5.53 83.90 3.24 86.50

FT-SAM-S 2.96 88.34 3.93 89.08 3.91 88.12 1.76 85.86
NFT 2.38 89.65 1.53 90.57 4.24 90.18 1.17 90.97

Effect of Bias Fine-tuning. A study with frozen and unfrozen bias has been
presented in Table 14. Freezing the bias results in better ACC with a slight
trade-off in ASR.
Different Network Architectures. To validate the effectiveness of our method
under different network settings. In Table 15, we show the performance of NFT
with some of the widely used architectures such as VGG-16 [26], EfficientNet [29]
and Vision Transformer (VIT) [11]. Here, we consider a smaller version of ViT-S
with 21M parameters. NFT can remove backdoors irrespective of the network
architecture. This makes sense as most of the architecture uses either fully con-
nected or convolution layers, and NFT can be implemented in both cases.
Augmented Defenses. In Table 16, we show the performance of augmented
defenses where we consider Data Augmentations (like MixUp) for other defenses,
e.g ., RNP-S. Due to the adversarial perturbation-based algorithmic design, using
augmentations for ANP and AWM, like RNP and FT-SAM, does not make sense.
It can be seen that our proposed method can harness the power of augmentations
better. Unlike other defenses, NFT is motivated by regular fine-tuning and aims
to find the correct validation. We take a milder approach by indirectly changing
the parameters using neural masks and ensuring that the parameter adjustment
is not drastic.
Effect of Various Validation Size. We also present how the total number of
clean validation data can impact the purification performance. In Table 17, we
see t e change in performance while varying the validation size from 0.02% ∼
0.5%. Validation size 0.02% indicates One-Shot NFT. In genera , we take 1% of
training samples as clean validation data. We consider the Dyn-one at ack on
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Fig. 1: Illustration of Mask Heatmap with and without scheduling function
(µ). This ablation is done for the LIRA attack and CIFAR10 dataset. In both cases,
we do not use the mask regularizer here just to show the impact of the µ. The first
couple of layers have minimal changes.
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Fig. 2: Illustration of Mask Heatmap with and without regularizer. This
ablation is done for the Badnets attack and CIFAR10 dataset. In both cases, we do
not use the mask scheduling function here just to show the impact of the regularizer.
With the mask regularizer, we restrict the weights to be closer to the original backdoor
model (shown by the overall larger yellow region).
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Table 17: Purification performance (%) for various validation data sizes. NFT
performs well even with a very small amount of clean data. Validation size 0.01%
indicates One-Shot NFT. In our main evaluation (Table 1 of main paper), we consider
1% validation size. For evaluation, we use CIFAR10 and Dynamic attack.

Valid. Size 0.02% 0.1% 0.2% 0.5%

Method ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 92.52 100 92.52 100 92.52 100 92.52
ANP 50.78 58.71 38.94 66.97 31.80 79.61 24.93 82.62
RNP 13.66 70.18 8.35 82.49 5.72 84.70 3.78 85.26

NFT (Ours) 6.91 83.10 3.74 89.90 1.61 90.08 1.45 90.84

Table 18: Ablation Study on ηc.

ηc 1e-2 5e-3 1e-3 5e-4 1e-4 5e-5

Avg. ASR Drop 94.3 94.6 95.1 95.6 95.6 95.7
Avg. ACC Drop 1.46 1.68 1.72 1.81 1.91 2.12

the CIFAR10 dataset for this evaluation. Even with only ten validation images,
NFT can successfu ly remove the backdoor by reducing the attack success rate
to 6.91%.
Impact of ηc. We study the impact of ηc in Table 18. Mask regularizer is
useful in retaining lean accuracy (ACC) under severe validation data shortages.
However, if we use a l rge value for ηc, the regularizer may prevent any change
in the decision boundary altogether. As a result, the e fect of MixUp may be
reduced significantly res lting in poor purification performance. Therefore, we
use a suitable alue for ηc to ensure the optimal change in decision boundary,
leadi g to a purified model with good ACC.
Mask Heatmap. In Figure 1-2, we show the mask hetmaps under different sce-
narios. Figure 1 shows the mask heatmaps with and without scheduling function
(µ). It can be seen that even with minimal changes to the first couple of layer
weights, we could achieve purification. This suggests that the backdoor affects
the later hidden layers more, and our design of a mask scheduling function is well
justified. Figure 2 shows the mask heatmaps with and without the mask regu-
larizer. The regularizer keeps the purified model weights closer to the original
backdoor model weights.
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