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Abstract—Directional millimeter-wave (mmWave) wireless
communication systems with large antenna arrays face chal-
lenges in dynamically managing beams for mobile users. Re-
cently, integrating sensors into communication frameworks has
garnered interest for enhancing situational awareness. This
paper introduces a novel end-to-end multimodal deep learning
architecture for mmWave beam prediction. Our methodology in-
corporates multiple sensors, including camera, RADAR, LiDAR,
and GPS, to improve beam prediction accuracy and efficiency
across different scenarios. We conduct extensive comparisons
between single and multimodal approaches, exploring various
fusion methods such as early and late fusion. The proposed
architecture employs both spatial and temporal feature corre-
lation on the training dataset. Additionally, the current beam
prediction performance evaluation metrics assume there is only
one correct beam, but the nature of the communication problem
suggests that multiple beams often perform similarly. Therefore,
we propose new metrics that consider multiple beams as valid
options and assess performance based on the beam strength. Our
results indicate that our early fusion of features from multiple
modalities consistently outperforms our late fusion models.

Index Terms—mmWave beam predication, deep learning,
multi-modal data fusion, power ratio, performance metrics

I. INTRODUCTION

As the demand for mobile and wireless data increases, mil-
limeter wave (mmWave) directional communication emerges
as a solution due to its vast bandwidth [1]. The small
wavelength of mmWave enables packing many antennas into
a small area, forming an array that generates a narrow beam.
Effective communication requires precise beam alignment
between transmitter and receiver, involving a non-convex
optimization problem solved through an exhaustive search
over all possible beam pairs [2]. The large number of beams
introduces high search overhead, complicating support for
mobile and latency-sensitive applications.

Integrated Sensing and Communications (ISAC), a key
enabler of next-generation wireless networks, supports var-
ious emerging applications by enhancing situational aware-
ness through data integration from a variety of sensors.
Initial research on sensing-aided beam prediction focused
on position-based solutions using Global Positioning System
(GPS) [3], [4], with later studies utilizing vision-based [5]–
[10], Light Detection and Ranging (LiDAR) [11]–[14], and
Radio Detection and Ranging (RADAR) [15] data for Deep
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Neural Network (DNN) beam prediction classifiers. Recog-
nizing the limitations of using single sensory modalities,
recent work has shifted towards multimodal fusion, leveraging
the complementary strengths of these modalities to enhance
prediction accuracy and robustness [16], [17]. Late fusion
methods that combine visual and positional data are proposed
in [18]–[20]. Several late fusion [21]–[24] and hybrid fusion
[25] frameworks integrate some combination of LiDAR,
RADAR, camera, and GPS data to enhance beam prediction
for vehicular networks. Even though the proposed multimodal
networks displayed improvement over single modalities, there
is still considerable room for performance improvement and
further exploration of new fusion models.

Previous beam prediction performance metrics, such as
classification accuracy, were insufficient for accurately reflect-
ing the performance of mmWave beam prediction models.
These metrics primarily focused on the model’s ability to
identify the single correct beam. However, they did not con-
sider the practical implications of beam selection in real-world
scenarios. These metrics failed to account for scenarios where
multiple beams may have nearly equivalent performance in
terms of received power, resulting in misleading conclu-
sions about model’s effectiveness. Therefore, introducing new
metrics like Power Ratio (PR) and top-K Beam (top-KB)
provides a more holistic and practical evaluation of model
performance, reflecting the true capabilities and limitations
of these models in real-world applications.

The contributions of our work are summarized as follows:

• Novel Framework: We propose a novel end-to-end
framework combining Convolutional Neural Network
(CNN), Gated Recurrent Unit (GRU), and Fully Con-
nected (FC) layer. This framework extracts both spatial
and temporal features from the input samples. Further-
more, this framework facilitates both single modality and
multimodal data fusion.

• Early Fusion Implementation: To the best of our
knowledge, we are the first to apply early fusion to
mmWave beam prediction problem. Early fusion inte-
grates data at the initial stages, improving model coher-
ence and performance when handling diverse data types.
Our early fusion deep learning framework outperforms
the late fusion and single modalities.

• Comprehensive Performance Metrics Comparison:
We evaluate various performance metrics—including



top-K accuracy, DBA score [26], precision, and re-
call—across different models. We analyze these metrics
and introduce two new ones: PR and top-KB. This
approach sets a thorough benchmark, revealing how each
metric responds under different conditions. Our findings
highlight that classification accuracy may not be suitable
and metrics like PR should be considered.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Wireless Communication System Model

The system model consists of a BS equipped with an M -
element Uniform Linear Array (ULA) mmWave antenna and
four types of sensors: an RGB camera, a LiDAR, a RADAR,
and a GPS. The BS provides service to a single mobile User
Equipment (UE), which is fitted with an omni-directional
antenna and a GPS sensor capable of gathering real-time
location data. The communication system operates using
Orthogonal Frequency Division Multiplexing (OFDM) with
K subcarriers. The BS employs a pre-defined beamforming
codebook F = {fq}Qq=1 where fq ∈ CM×1 and Q is the total
number of beamforming vectors. The received signal at the
UE for the k-th subcarrier at time t can be written as

yk[t] = hT
k [t]fq[t]x+ vk[t], (1)

where hk[t] ∈ CM×1 is the channel between the BS and
the UE, q[t] is the beam index, x ∈ C transmitted complex
symbol, and vk[t] is the noise with a complex Gaussian
distribution NC(0, σ

2).

B. Beam Prediction Problem Formulation

The goal of beam prediction is to select the index q[t]
of the optimal beamforming vector from a set of candidate
indices in the codebook, {1, 2, · · · , Q}, in order to maximize
the beamforming gain. This can be expressed mathematically
as [26]:

q∗[t] = argmax
q∈{1,...,Q}

1

K

K∑
k=1

∣∣∣hT
k [t]fq

∣∣∣2 . (2)

Typically, the optimal beam index is identified by either
leveraging explicit channel information, which is difficult to
obtain in mmWave systems or by exhaustive search.

C. Evaluation Metrics

In mmWave beam prediction, the choice of performance
metrics can significantly influence the conclusions drawn
from the results. While some studies prefer metrics like
classification accuracy [26], others focus on precision and
recall [19] due to issues like data imbalance. To provide a
comprehensive understanding of how these metrics perform
under various conditions, this paper brings together differ-
ent performance metrics types. By comparing these metrics
against one another, we aim to establish a more robust
benchmark to guide future research and ensure more effective
solutions. Additionally, we offer a fresh perspective on beam
prediction, suggesting that multiple beams can be considered
as plausible solutions. Based on this approach, we introduce

two additional metrics (power ratio (PR) and top-KB) to
capture this viewpoint.

1) Top-K Accuracy: Top-K accuracy (top-KA) is defined
as the percentage of test samples for which the ground truth
beam index is within the K most likely predicted beams [26].
The K classes with highest probability in the softmax layer
represent the top-K predicted beams. Furthermore, the authors
in [26] define a Distance-based Accuracy (DBA) Score metric
as

DBA =
1

K

K∑
k=1

[1−
1

N

N∑
n=1

min
1≤k′≤k

[min(
|q̂n,k′ − qn|

∆
, 1)]] (3)

where qn is the ground-truth beam index and q̂n,k′ is the k′th
predicted beam index (1 ≤ k′ ≤ k) for sample n. N is the
total number of samples in the test set, ∆ is a hyper-parameter
set to 5, and K is set to 3 [26]. The DBA score measures how
close the predicted beams are to the truth beam by assigning
scores based on the difference between them.

2) Multi-class Precision and Recall: In classification
tasks, True Positive for class i (TPi) refers to the instances
correctly classified as class i, False Positive for class i (FPi)
denotes instances incorrectly labeled as class i, and False
Negative for class i (FNi) refers to instances of class i that are
incorrectly labeled as not belonging to class i. Precision and
recall for each class i are calculated as Precisioni = TPi

TPi+FPi

and Recalli = TPi

TPi+FNi
, respectively.

The weighted-average method handles class imbalance
present in the simulation dataset [27]. This technique com-
putes metrics for each class and then weights them by class
prevalence, assigning a weight to each class proportional
to its representation in the dataset. This is represented as
weighti, which is calculated as the ratio of instances of class
i (ni) to the total number of instances across all classes,
i.e., weighti = ni∑N

i=1 ni
. Here, ni refers to the number of

instances of class i and N is the total number of classes.
This approach balances each class’s contribution relative to
its frequency, which is why some papers include it in their
performance metrics [19]. The weighted precision (Pweighted)
and recall (Rweighted) metrics for N number of classes are
calculated as:

Pweighted =

∑N
i=1(weighti × Precisioni)∑N

i=1 weighti
(4)

Rweighted =

∑N
i=1(weighti × Recalli)∑N

i=1 weighti
. (5)

3) Power Ratio: The primary focus of related studies [4],
[18], [26], [28] revolves around the beam prediction accuracy
metric or the derived DBA-score. It should be noted that
focusing on classification accuracy addresses the problem
from a computer vision perspective where there is only one
correct class. This contracts with the beam prediction problem
in wireless communication systems, where multiple beams
can have similar performance. In the context of top-KA,
the model provide K beams, aiming to identify the ground
truth beam characterized by maximum received power. If the
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ground truth beam does not rank within the top-K predicted
beams, the classification for that test sample is deemed
incorrect. However, this approach overlooks the possibility
that a predicted beam may have a power value very close
to that of the ground truth beam, suggesting near-equivalent
performance from a wireless channel perspective. To illustrate
this point, Fig. 1 depicts the normalized received power
distribution of beams in a test sample from the DeepSense
dataset [27], where beam index 55 exhibits the highest power.
Assume the model predicts beams 56, 57, and 58 as the top-
3 beams. According to top-3A, this prediction is labeled as
incorrect. Nonetheless, the powers of the predicted beams
closely match that of the true beam 55. Therefore, we propose
a metric that provides a more accurate depiction of the
model’s performance. We define PR as the ratio between the
power of the predicted beam and the power of the ground
truth beam, given by PR =

Ppredicted beam

Pmax
. Beams 56, 57,

and 58 have a PR of 0.9978, 0.9954, and 0.9715, respectively.
This indicates that the predicted beams possess nearly the
same power as the true beam 55, resulting in a comparable
performance.

Fig. 1: PR distribution vs beam index for a test sample in the
DeepSense dataset.

Additionally, we can evaluate the top-K PR by selecting the
top 3 proposed beams and identifying the highest PR among
them. For instance, the top-3 PR for beams 56, 57, and 58
would be 0.9978.

4) Top-K Beams and Top-K1,K2 Beams-Accuracy: In Fig.
1, we have shown that the classification accuracy metric based
on a single ground truth can be misleading when it comes
to the actual performance of the communication systems. It
can be extremely difficult to predict the one true best beam
from K predicted beams when the true beam powers are
very close. This raises the concern whether it is necessary
to predict the best (ground truth) beam at all or it is sufficient
to utilize a beam with near equivalent power such as beam
56 instead of 55. Given this observation, we propose a new
perspective on beam prediction that considers the “top-K
beams” (top-KB) We focus on a single prediction, selecting
the beam index with the highest probability, and then verify
whether this beam is among the top K beam indices with
the highest power. Referring back to Fig. 1, the three highest
power beams are 55, 56 and 57. Since our prediction is 56,
it falls within the top three beams (top-3B). We argue that
top-3B in combination with the PR is a much more practical
performance metric. Furthermore, we can combine the top-
KA and top-KB metrics. The “top-K1,K2 beams-accuracy”

involves predicting K2 beams and then verifying whether they
are among the K1 best true beams. The coefficients K1 and K2
do not have to be the same. However, in in our analysis we
chose to measure top-3,3BA. It is worth noting that top-KB
is the special case of top K,1BA.

III. NETWORK STRUCTURE

A. Single Modality

Fig. 2 shows the single-modality CNN+GRU+FC architec-
ture, where AV , AR, AL, AG, and q represent the prepro-
cessed data from vision, RADAR, LiDAR, and GPS, along
with the predicted beam index, respectively. Vision, RADAR,
and LiDAR datasets require sophisticated processing, while
GPS data, consisting of simple 2D coordinates, does not need
CNN feature extraction.

Fig. 2: Single modality DNN mmWave beam prediction architecture.
The top graph corresponds to LiDAR, vision, and Radar, while the
bottom one corresponds to GPS.

The models generally start with a CNN that extracts spatial
features using layers with varying numbers of filters (ranging
from 4 to 256) and ReLU activations, followed by batch
normalization (momentum=0.9) and max pooling. While the
GPS modality lacks this CNN component, it shares the rest
of the network architecture. All modalities, utilize a GRU
layer with 64 units to capture temporal dynamics, such as
movement prediction and potential blockages. After the GRU,
a dense layer (FC) with 64 units and a ReLU activation
function and a 50% dropout prepares the data for the final
FC output layer with 64 softmax units. Although the overall
structure remains consistent, the models may differ slightly in
the specific configurations of convolution layers, filters, and
GRU units for each modality 1.

B. Early Fusion

Early fusion or feature-level fusion leverages corre-
lations among multiple features early in the process.
Each datapoint in the dataset is represented by the tuple
(AL,AV ,AR,AG, q). In our approach, we combine fea-
tures from different data sources before passing them to
the CNN+GRU+FC framework (Fig. 3). All modalities are
rescaled to the same height and width. The input sample data
consists of a time sequence with five steps, each having a
height of n = 150, a width of m = 150, and four channels
representing the four modalities. The CNN employs six 2D

1The authors released their code: https://github.com/katarinavuckovic/MultiModal-
Beam-Prediction-CNN-GRU-FCNN
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convolution layers, starting with four filters and increasing to
256, using ReLU activation.

Fig. 3: Early fusion DNN mmWave beam prediction architecture.

C. Late Fusion

Separate DNNs extract low-dimensional feature vectors
for each modality, which are then integrated using a late
fusion network (Fig. 4). Individual CNN+GRU+FC classifiers
generate specific class predictions. They are concatenated into
a unified vector and passed to an FC network for final beam
classification. This fusion technique benefits from its ability
to integrate modalities of different sizes and dimensions,
achieving a unified representation through local decisions.
However, it is less efficient at leveraging correlations at the
feature level across different modalities compared to early
fusion.

Fig. 4: Late fusion DNN mmWave beam prediction architecture.

IV. SIMULATION RESULTS

A. Dataset

DeepSense6G [27] is a real-world multi-modal dataset with
co-existing communication and sensing data. Scenarios 32-34
occur in a dynamic urban environment, both day and night,
with constant vehicle and pedestrian movement, leading to
changing RF propagation paths. The BS is equipped with a
ULA mmWave antenna, RGB camera, RADAR, LiDAR, and
GPS receiver, while the mobile user (a vehicle) has GPS and
a mmWave receiver. Each dataset sample includes a sequence
of sensory data: the camera, RADAR, and LiDAR have the
last 5 samples, and the GPS user location has the last 2
samples, paired with the best beam index. Each sample also
contains beam index power distribution information, with 64
beam indices in the codebook.

B. Labeling LOS vs. NLOS Scenarios

Obstacles greatly degrade channel quality in the mmWave
band, leading to a reduction in service quality. Separately
analyzing Line-Of-Sight (LOS) and Non-LOS (NLOS) cases
can provide new insights into the model’s performance. If
the model cannot predict beams in NLOS cases, this imposes
a limit on the accuracy. Unfortunately, the DeepSense 6G
dataset does not explicitly label LOS and NLOS samples,

necessitating a data labeling process. Therefore, we apply
a methodology that classifies each sample by analyzing
angular deviation from the expected beam direction, based
on maximum and minimum GPS angles for each scenario.
These angles are interpolated to predict beam direction for
each beam index within a standardized range, with a tolerance
threshold of 10 degrees. If a sample’s actual beam angle falls
within this tolerance, it is labeled as LOS; otherwise, it is
classified as NLOS. The dataset contains a total of 10,777
LOS and 466 NLOS samples from Scenarios 32-34.

C. Data Preprocessing

Properly preprocessed data can significantly enhance the
accuracy and efficiency of a DNN. Next, we discuss the
preprocessing techniques applied to each dataset modality.

1) LiDAR: LiDAR captures precise 3D coordinates
(x, y, z) and intensity values, resulting in a comprehensive
360° point cloud. Preprocessing involves standardizing the
number of points in each point cloud by downsampling
or upsampling to a fixed number, ensuring consistency for
reliable analysis. With frequent horizontal target movement,
focus is on range, azimuth angle, and intensity. Each point
(x, y, z) is processed to compute the Euclidean distance
d =

√
x2 + y2 + z2 and the azimuth angle α, calculated as:

α =

{
arctan 2(y, x)× 180

π , if arctan 2(y, x)× 180
π ≥ 0

arctan 2(y, x)× 180
π + 360, otherwise

(6)

To ensure all angles fall within 0 to 360 degrees, we add
360 degrees to any negative azimuth angles. Points that are
negligibly distant from the sensor, indicating obstructions,
are removed. Points are then organized by their computed
azimuth angle for efficient data processing. The data is
converted to a 2D format by quantizing angles and distances,
assigning intensity values to pixels based on their front-view
positions. Finally, a bilateral filter is applied to enhance data
quality [29].

2) RADAR: Raw RADAR measurements X ∈ CMr×S×A,
where Mr is the number of RADAR antennas, S is the
number of samples per chirp, and A is the number of chirps
per frame, allowing extraction of range, angles, and speed of
moving objects. To convert to Range-Angle (RA) maps, the
Range Fast Fourier Transform (FFT) on time samples shifts
chirp signals into the frequency domain, revealing distance
information based on the signal’s round-trip time. Clutter
is reduced by averaging fluctuations in chirp samples. The
Angle FFT on the receive antenna samples captures angular
details, with enhanced resolution achieved using a larger FFT,
denoted as MF , with zero-padding for finer angle sampling.
The resulting comprehensive RA map is produced by merging
data per chirp sample [15]:

HRA = ΨP
RA(X) =

A∑
a=1

|F2D(X, :, a)| , (7)

where ΨP
RA(·) is the function that converts raw RADAR data

X to RA map and F2D(·) is a 2D Fourier transformation.
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3) Camera: The vision sample is an RGB image with
dimensions (540, 960, 3). To reduce unnecessary information
and reduce computational resources, the images are converted
to grayscale and downsized to (150, 150).

4) GPS: The GPS data, consisting of latitude and longi-
tude coordinates for both the user and the BS, is converted
into Cartesian-XY coordinates using the Universal Transverse
Mercator (UTM) projection [30]. This centers the BS in the
coordinate system and normalizes user locations relative to it.
The GPS dataset initially includes only the first two instances
in the sequence, which are expanded to five for uniform
dimensionality across all modalities. Before early fusion, each
user’s position is transformed into a 2D array format, with one
cell containing latitude and longitude, and other cells zeroed
to maintain consistent dimensions among modalities.

D. Data Normalization

We employ normalization techniques to address disparities
in scale and variance across our dataset, specifically and only
for single modality vision and the early fusion models. For the
single vision modality, each sample is normalized by dividing
pixel values by 255, while we apply L2 normalization on the
early-fused multimodal data. For the early fused modalities,
normalization ensures that all data from diverse modalities
are maintained within a specific range, preventing any single
feature with a broader range from disproportionately influenc-
ing the learning process. This technique scales each vector
in the dataset to have a Euclidean norm of 1, promoting
uniformity and mitigating undue influence of features from
different scenarios.

E. Noise Addition

Although we are working with real-world data, adding
appropriately scaled white noise to each modality before
fusion has enhanced both the performance and robustness of
our model. We apply Gaussian white noise by adding random
values drawn from a normal distribution with zero mean
and a specified noise level, ensuring the noise respects the
dimensionality of the input data for each modality. This pro-
cess simulates potential measurement errors or environmental
variability, helping the model generalize better to unseen data,
reducing overfitting, and improving overall robustness during
training.

F. Training

The proposed models are trained end-to-end. The dataset
is split into 90% training and 10% testing using a stratified
split for balanced class distribution. During training, 20% of
the training data is used for validation. We set the learning
rate to 0.01 or 0.001, depending on the model. The number
of epochs is set to 300 and batch size to 30. Early stopping is
employed to prevent overfitting, halting training if validation
performance does not improve for 12 consecutive epochs.
Additionally, we use a learning rate reduction strategy, de-
creasing the learning rate by a factor of 10 if the validation
loss plateaus for 8 epochs. The results are averaged over 10

training sessions, each using different train/test dataset splits
generated from 10 distinct random seed values.

G. Results

This study evaluates the performance of mmWave beam
prediction using individual sensor modalities such as Vision
(V), LiDAR (L), RADAR (R), and GPS (G), along with vari-
ous combinations of these modalities. The results, detailed in
Table I, include metrics such as top-1A, top-3A, DBA score,
top-3B, top-3,3BA, top-1 PR, top-3 PR, and recall/precision.

In both LOS and NLOS conditions, early fusion models
consistently outperform single-modality and late-fusion mod-
els across all metrics. Among individual modalities, GPS
performs best in LOS scenarios but struggles in NLOS
conditions due to its inability to detect dynamic blockers.
In NLOS conditions, LiDAR, RADAR, and Vision models
perform better because they can detect features indicating
blockage and recommend an appropriate NLOS beam index.

The early fusion models exhibit the best performance in
LOS scenarios, with all early fusion models delivering similar
results. This questions the necessity of LVRG processing,
given its added complexity. Moreover, the comparable per-
formance of LVR to LVRG and VG shows that GPS is not
solely responsible for early fusion model success. While LVR
is slightly inferior to LVRG and VG, it still outperforms any
single modality, further emphasizing that GPS alone does not
drive early fusion model effectiveness. In NLOS scenarios,
LVR performs best, as GPS generally hinders performance in
these conditions. Although overall accuracy is lower across
all modalities in NLOS, likely due to fewer NLOS samples
in the training dataset, the models show moderate success in
top-3,3BA selections and consistently maintain a PR score of
0.9 or higher. Future work may focus on data augmentation
to increase the NLOS sample size.

In terms of model complexity, the single V model contains
182,768 learnable parameters, making it more efficient but
less effective in complex scenarios compared to early fusion
models. The early VG model has 410, 540 parameters, while
the early LVRG model has a similar count of 410, 612.
Despite the nearly identical number of parameters between
VG and LVRG, LVRG requires more computation due to
processing larger data volumes during each forward pass.

1) Rethinking of Performance Metrics: When multiple
beams nearly achieve a PR of 1, predicting the accurate beam
becomes difficult, especially in imbalanced datasets. If the
correct beam index is in a less common class, the model
typically favors more frequent classes, rarely choosing the
minority class beam index. Therefore, focusing exclusively
on top-K accuracy is problematic and misdirected. This
mindset suggests a singular correct solution and overlooks
alternative viable beams with comparable performance. It
seems that researchers are dedicating significant effort to
optimizing a process that is unnecessarily complex and does
not substantially improve communication performance. The
DBA score attempts to address this issue by evaluating the
proximity between the true and predicted beam. However,
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TABLE I: Performance metrics for different single and multimodal models separated by LOS and NLOS test dataset samples. The top-1 and
top-3 accuracy is labeled as top-[1A, 3A], the DBA score as DBA, the top-3 beam as top-3B, the top-3 beams-accuracy as top-3,3BA, the
top-1 and top-3 Power Ratio as top-[1, 3] PR, and weighted Recall and weighted Precision are reported as R and P, respectively. Results
show the mean and standard deviation for 10 different train/test trials.

Modality top-[1A, 3A] DBA top-3B top-3,3BA top-[1, 3] PR Weighted R, P
LOS

L [0.37 ± 0.01, 0.71 ± 0.02] 0.81 ± 0.01 0.70 ± 0.02 0.88 ± 0.01 [0.94 ± 0.00, 0.97 ± 0.00] 0.37 ± 0.01, 0.33 ± 0.02
V [0.44 ± 0.01, 0.81 ± 0.01] 0.88 ± 0.01 0.81 ± 0.01 0.96 ± 0.01 [0.97 ± 0.00, 0.99 ± 0.00] 0.44 ± 0.01, 0.38 ± 0.01
R [0.38 ± 0.01, 0.75 ± 0.02] 0.84 ± 0.01 0.75 ± 0.01 0.92 ± 0.01 [0.95 ± 0.00, 0.98 ± 0.00] 0.38 ± 0.01, 0.34 ± 0.01
G [0.45 ± 0.01, 0.81 ± 0.01] 0.88 ± 0.01 0.81 ± 0.02 0.96 ± 0.01 [0.97 ± 0.00, 0.99 ± 0.00] 0.45 ± 0.01, 0.35 ± 0.01

Early VG [0.46 ± 0.02, 0.83 ± 0.01] 0.89 ± 0.01 0.85 ± 0.01 0.97 ± 0.01 [0.98 ± 0.00, 0.99 ± 0.00] 0.46 ± 0.02, 0.42 ± 0.03
Early LVR [0.46 ± 0.02, 0.83 ± 0.01] 0.89 ± 0.00 0.84 ± 0.01 0.97 ± 0.00 [0.98 ± 0.00, 0.99 ± 0.00] 0.46 ± 0.02, 0.41 ± 0.02

Early LVRG [0.46 ± 0.01, 0.83 ± 0.01] 0.89 ± 0.01 0.84 ± 0.01 0.97 ± 0.00 [0.98 ± 0.00, 0.99 ± 0.00] 0.46 ± 0.01, 0.42 ± 0.02
Late VG [0.39 ± 0.05, 0.74 ± 0.06] 0.84 ± 0.04 0.73 ± 0.08 0.93 ± 0.04 [0.95 ± 0.02, 0.99 ± 0.00] 0.39 ± 0.05, 0.32 ± 0.07

Late LVRG [0.42 ± 0.01, 0.79 ± 0.01] 0.87 ± 0.01 0.78 ± 0.01 0.96 ± 0.00 [0.97 ± 0.00, 0.99 ± 0.00] 0.42 ± 0.01, 0.37 ± 0.01
NLOS

L [0.03 ± 0.02, 0.14 ± 0.03] 0.18 ± 0.04 0.25 ± 0.04 0.43 ± 0.05 [0.89 ± 0.01, 0.93 ± 0.01] 0.03 ± 0.02, 0.06 ± 0.06
V [0.05 ± 0.04, 0.12 ± 0.05] 0.17 ± 0.05 0.28 ± 0.08 0.48 ± 0.09 [0.90 ± 0.02, 0.93 ± 0.01] 0.05 ± 0.04, 0.09 ± 0.08
R [0.06 ± 0.03, 0.10 ± 0.06] 0.16 ± 0.05 0.25 ± 0.06 0.40 ± 0.09 [0.89 ± 0.01, 0.92 ± 0.01] 0.06 ± 0.03, 0.08 ± 0.05
G [0.01 ± 0.01, 0.06 ± 0.03] 0.08 ± 0.01 0.28 ± 0.05 0.41 ± 0.05 [0.89 ± 0.00, 0.92 ± 0.01] 0.01 ± 0.01, 0.01 ± 0.01

Early VG [0.04 ± 0.05, 0.12 ± 0.05] 0.16 ± 0.05 0.27 ± 0.09 0.47 ± 0.07 [0.90 ± 0.01, 0.93 ± 0.01] 0.03 ± 0.05, 0.07 ± 0.09
Early LVR [0.04 ± 0.01, 0.13 ± 0.07] 0.17 ± 0.04 0.28 ± 0.07 0.49 ± 0.07 [0.90 ± 0.01, 0.93 ± 0.01] 0.04 ± 0.01, 0.09 ± 0.05

Early LVRG [0.04 ± 0.04, 0.11 ± 0.07] 0.17 ± 0.05 0.25 ± 0.08 0.49 ± 0.06 [0.90 ± 0.01, 0.93 ± 0.01] 0.04 ± 0.04, 0.06 ± 0.07
Late VG [0.02 ± 0.02, 0.05 ± 0.03] 0.09 ± 0.04 0.26 ± 0.05 0.41 ± 0.06 [0.88 ± 0.02, 0.92 ± 0.01] 0.02 ± 0.02, 0.02 ± 0.02

Late LVRG [0.02 ± 0.03, 0.09 ± 0.06] 0.14 ± 0.04 0.23 ± 0.06 0.42 ± 0.05 [0.90 ± 0.01, 0.93 ± 0.01] 0.02 ± 0.03, 0.04 ± 0.07

while this is an improvement, it overlooks the possibility that
a nearby beam could have a low PR, whereas a more distant
beam might have a PR close to 1. Instead, we propose that
evaluating channel efficiency through the analysis of top-KB
and PR would be more beneficial.

For instance, as shown in Table I, the early fusion model
achieves a top-3A score of 0.83 in LOS, indicating that there
is still considerable room for improvement. However, with a
top-3 PR score of 0.99, it becomes clear that from the PR
standpoint, there is minimal room for further enhancement.
Moreover, the top-3,3BA for early fusion in LOS scenarios
is 0.97, which may be a more realistic metric given the very
high PR score. In contrast, NLOS scenarios show that top-
KB values can significantly exceed top-KA. For example, in
early LVR NLOS scenarios, top-3B at 0.28 outperforms top-
3A at 0.13. The combined top-3,3BA score is 0.49 with an
impressive average top-3 PR of 0.93. This example illustrates
that despite the deceptively low top-3A, the performance of
the model may be better than expected due to the high PR.

2) Power Ratio: We observe high top-1 PR values, often
reaching 0.98 in LOS and above 0.90 in NLOS. However,
model accuracy remains low, particularly in NLOS scenarios,
indicating concerns about misclassified samples. We explore
this by considering scenarios where a beam is incorrectly
predicted but maintains a high PR, indicating either i) multiple
high beams or ii) all beam indices have similar power due to
LOS blockage. The latter can produce misleadingly inflated
PR values. Our goal is to show that the model performs better
than random selection in misclassified cases.

The expected value (mean) is a fundamental measure of
central tendency in probability distributions. Now, consider
the scenario where a beam index is randomly selected re-
peatedly, without employing the proposed beam prediction
algorithm. In such a case, the resulting expected (mean)

PR is obtained.Fig. 5 shows a Complimentary Cumulative
Distribution Function (CCDF) of both the mean and predicted
PR, plotted exclusively for the misclassified samples in the
early fusion LVRG model. As is shown, the predicted beams
PR outperform the mean PR. For example, in top-3, more
than 90% of LOS and 80% of NLOS samples have a PR
greater than 0.9, compared to the mean PR, where only 20%
of LOS and 50% of NLOS samples have PR above 0.9.
This demonstrates that consistently selecting a beam index
with a PR exceeding the expected value implies superior
performance of our algorithm compared to random beam
index selection.

Fig. 5: PR CCDF for early LVRG Fusion Model.

V. CONCLUSION

This study demonstrates the effectiveness of using a mul-
timodal deep learning architecture for mmWave beam pre-
diction, combining data from camera, RADAR, LiDAR, and
GPS to improve the performance of the model. Our proposed
CNN+GRU+FC architecture aims to extract both spatial and
temporal correlations from the input samples. Our experi-
ments demonstrate that early fusion models outperform single
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modality and late fusion approaches. The findings recommend
using a broader set of performance metrics, beyond traditional
accuracy, to more thoroughly evaluate beam prediction capa-
bilities. Accordingly, we propose incorporating new metrics
to provide a more comprehensive view of the model’s true
performance. By combining existing and proposed metrics,
we outline a new way for model evaluation based on more
realistic performance metrics.
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