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A CSI-Based Data-Driven Localization Framework
Using Small-Scale Training Datasets in
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Abstract— This paper presents a new method for user local-
ization in single-site massive Multiple-Input-Multiple-Output
(MIMO) systems, which circumvents the need for large labeled
datasets typically required for training data-driven models.
Instead, the proposed model utilizes a limited set of geo-tagged
Channel State Information (CSI) samples for training. The
approach combines a Fully-Connected Auto-Encoder (FC-AE)
with a Gaussian Process Regression (GPR) model. The GPR
model is efficient, as it requires only a minimal amount of labeled
data for training, although it presents challenges in computational
complexity. To address this complexity, the FC-AE is introduced,
which encodes the Angle-Delay Profile (ADP) transformation of
the CSI data. The training dataset for the FC-AE is crafted by
employing data augmentation techniques on a small collection
of unlabeled data. The simulation results demonstrate that
FC-AE is scenario-independent and adaptable to new scenarios
with similar ADP characteristics. Additionally, our FC-AE-GPR
model surpasses the performance of the Convolutional Neural
Network model and the non-parametric grid search method when
provided with limited labeled data, applicable in both indoor and
outdoor settings.

Index Terms— Single-site MIMO, localization, Gaussian pro-
cesses regression, autoencoders, data augmentation.

I. INTRODUCTION

THE abundance of smartphone devices and wireless net-
works has ushered in a new era for location-based service

(LBS) applications. LBSs now find applications across various
domains, including navigation systems, emergency services,
travel planning, asset management, recommendations, and
geo-social networking [1]. While Global Positioning System
(GPS) serves as the ubiquitous outdoor positioning system,
its limited accuracy (around 5 meters for civilian use) and
performance issues in rich-scattering environments like urban
canyons and indoors [2] make it less suitable for applica-
tions requiring higher precision, such as autonomous driving,
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indoor asset and people localization, and augmented reality.
Consequently, researchers are exploring the use of wireless
communication systems for localization.

3GPP has been actively advancing 5G technology, with
Release 18 emphasizing the evolution of Multiple-Input-
Multiple-Output (MIMO) technology and exploring the use
of Artificial Intelligence and Machine Learning (AI/ML)
for MIMO [3], [4]. Traditional Channel State Information
(CSI) feedback methods, like codebooks [5] and Compressive
Sensing (CS) [6], often fall short of meeting the require-
ments for low complexity and high accuracy in MIMO
systems. Additionally, geometry-based localization solutions
using Angle-of-Arrival (AoA) and Time-of-Arrival (ToA)
channel data have been proposed [7], [8]. However, they tend
to be outperformed by Deep Learning (DL) Neural Network
(NN) models [9].

FingerPrinting (FP) localization is a technique that maps
each location in the environment to a unique wireless mea-
surement during offline training. It then uses this geo-tagged
map for location estimations based on measurements captured
during the online phase. The core concept in FP localization
is the uniqueness of the wireless channel between the user
and the Base Station (BS), which is determined by the sur-
rounding scattering environment at the user’s location [10].
There are two types of FP models based on the type of
wireless system architecture. The first type uses Receive Single
Strength (RSS) measurements, which is suitable for systems
with rich AP distributions like Wireless Sensor Networks [11],
[12], WiFi networks [13], [14], [15], [16], and distributed
MIMO systems [17], [18]. The second type is single-site
MIMO localization. In single-site localization, FP parame-
ters leverage multipath characteristics of the MIMO channel
captured in the CSI. Unlike RSS parameters, which require
multiple Access Points (APs), CSI fingerprints can be used
for single-site localization but necessitate a MIMO antenna
for generating a unique fingerprint. Some studies transform the
CSI matrix into an Angle-Delay Profile (ADP) matrix using
a linear transformation [19]. Several FP techniques based on
CSI or ADP data have been proposed for massive MIMO
(m-MIMO) systems [19], [20], [21], [22], [23], [24]. The
highest performance is achieved by training a Convolutional
Neural Network (CNN) with ADP fingerprints [19].

The main challenge of using CNNs in a data-driven
approach is collecting labeled data for each location within
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the environment, which is time-consuming and impractical.
Precise position labels matching the measured CSI data are
hard to obtain, and scenario changes require retraining the
model with an updated dataset, impeding real-world deploy-
ment. Some studies explore transfer learning techniques to
adapt models to new environments [25], [26], [27], [28].
However, this still requires substantial labeled data for initial
training, while our approach uses a much smaller labeled
dataset during initial training.

Channel Charting (CC) is an unsupervised method for
mapping CSI data to a channel chart space that captures
the local radio geometry of transmitting User Equipment
(UE) [29], [30], [31], [32]. Feature vectors from UEs’ CSI
data are used to construct low-dimensional charts using
dissimilarity measures [29], [33]. Traditional CC represents
UEs’ positions in terms of proximity and spatial arrange-
ment without precise physical locations [34]. Conversely,
FP-based localization aims to pinpoint a device’s global
coordinates in a known area, relevant for indoor navigation,
virtual reality, and augmented reality [35]. The CC method-
ology now blends supervised and unsupervised approaches
using partially-annotated datasets [36], [37], [38], [39], [40].
A recent study [39], building on [38], explores SNR predic-
tion with BS beam-specific CSI features. They develop SNR
predictors, both FP and CC-based, for various target beams
during offline training, applying them in real-time to deduce a
user’s SNR mapping function. For CC-based predictors, a low-
dimensional CC is generated from unlabeled data, with chart
locations marked by beam-wise SNR labels. GPR slightly
outperformed an NN model as a predictor, though both yielded
comparable results. The researchers note GPR’s potential
with other input features but exclude high-dimensional CSI
fingerprint due to complexity, which our research aims to
address. Another work [40] shows a semi-supervised CC-
based framework outperforming conventional methods using
85% of 72,000 unlabeled samples to build the chart and an
AE with 85% of 30,000 labeled CSI samples for accuracy.
Our fully-supervised approach achieves favorable results with
a significantly smaller dataset.

Due to the small number of hyper-parameters, GPR models
have shown the ability to be trained with small-scale datasets.
They have been primarily used in RSS-based FP for Indoor
Positioning Systems (IPS) [13], [15], [16], [41], [42], [43],
[44], [45]. DeepMap [45] proposes using Deep Gaussian
Processes Regression (DGPR) [46] to construct an indoor
radio map and performs RSS-based FP with commodity WiFi
devices. The authors design a two-layer DGPR and compare
it to a single-layer GPR. While their simulation results show
that DeepMap improves the performance of GPR for reduced
training datasets, the challenge with DeepMap is its computa-
tional complexity. As the size of the fingerprint increases, the
computational complexity can become infeasible quickly [47].
Since the DGPR is even more complex than a GPR model,
this approach is not practical for CSI measurements where
the input sample can be considerably large. Furthermore, it is
crucial to highlight that all the aforementioned research has
exclusively focused on RSS FPs and omni antennas with
multiple APs. None of these studies have explored the applica-

bility of GPR models to single-site MIMO systems using CSI
fingerprints, which is the primary focus of our paper. The only
work that investigates single-site outdoor localization using
GPR models is in [48] where the authors propose a DCGP
regression model [49] for m-MIMO outdoor localization. The
simulation results show that the DCGP regression outperforms
CNN regression FP using ADPs. Even though DCGP demon-
strates improved accuracy performance over CNN, the dataset
size required to train the CNN and DCGP is the same, and
authors do not discuss training with datasets of different sizes.
The “deep convolution” part of the DCGP still requires a larger
training dataset and the true benefit of GPR models (ability to
train on small-scale datasets) is not exploited.

The most prominent weakness of GPR models is that they
suffers from high computational and memory complexity. The
complexity of the model often poses a limitation in many
applications. Specifically, the GPR has a training computa-
tional complexity of O(n3) and a memory complexity of
O(n2), where n is the number of training points in the dataset
[50]. The computational complexity is also impacted by the
dimension (d) of the input data sample vector. Although some
kernels can be more computationally efficient than others, the
complexity quickly increases as the size of the input data
vector grows. Therefore, the training time can be reduced
by either using a small training dataset or by reducing the
dimension of the input vector. To reduce the computational
complexity of the GPR model, we employ a compression
model to decrease the size of the ADP fingerprint sample.

Compression of CSI data has been extensively explored in
literature [4]. Inspired by the pioneering CsiNet research [51],
the user-end encoder compresses downlink CSI, which is
sent to the BS for reconstruction. CsiNet employs CNN for
both the encoder and decoder and it demonstrates its superior
CSI reconstruction quality compared to traditional CS-based
methods. Additionally, preprocessing is vital for DL-based CSI
feedback. Studies suggest transforming CSI from the spatial
frequency domain to the angular-delay domain using 2D Dis-
crete Fourier Transform (DFT) to reduce feedback overhead
while preserving sparsity [51], [52], [53], [54], [55], [56].

Building upon the groundwork laid by CsiNet, subse-
quent developments in multi-user MIMO CSI feedback using
NNs can be categorized into two groups. The first group
adopts more complex network architectures, like CsiNet+
[57], JC-ResNet [58], and CRNet [59], albeit with higher
computational demands. The second group leverages inherent
correlation characteristics within channel responses [53], [54].
Enet [54] leverages inherent channel response correlations in
the angular-delay domain, employing domain-specific com-
pression strategies. This approach enhances CSI compression
and feedback, significantly reducing the network size com-
pared to existing NN-based solutions. In our proposed model,
we convert the CSI to the sparse ADP and employ a Fully-
Connected Auto-Encoder (FC-AE) model to compress the
dimension of the ADP fingerprint. While other compression
techniques may be explored, our simulations demonstrates that
FC-AE encodes the samples sufficiently well.

We propose to combine the FC-AE encoder with the GPR
model into a novel FC-AE-GPR framework. GPR, on its own,
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demonstrates superior performance over CNN when trained
with a small dataset. However, in m-MIMO systems, increas-
ing the number of array antennas and subcarriers directly
raises ADP size and, consequently, increasing GPR training
complexity. Therefore, we introduce an FC-AE to reduce the
ADP matrix size before training the GPR model, thus reducing
the GPR training complexity. The sparse ADP transformation
of CSI enables efficient ADP compression [60], [61]. To train
the FC-AE, we utilize a small set of unlabeled ADPs and then
expand the training dataset through data augmentation tech-
niques. The paper contributions are summarized as follows:
• It is asserted that state-of-the-art DL models pose signifi-

cant challenges for real-world deployment, primarily due
to the extensive labeled data required.

• A sophisticated GPR optimization model is introduced,
which aims to identify the optimal kernel type and
corresponding hyperparameters. This optimization tunes
hyperparameters for five distinct kernel types, to select
the most effective kernel and hyperparameter pairing.

• The issue of memory requirements and computational
complexity, which escalates with increasing input sample
size in GPR models, is addressed by introducing a FC-AE
to compress the ADP prior to GPR training.

• The FC-AE’s scenario-independence is argued and sub-
stantiated by tests conducted on the FC-AE in various
representative environments. The FC-AE requires only
a single training phase and can then be applied to new
scenarios with similar ADP patterns. Data augmentation
on a limited set of unlabeled data is employed to develop
the FC-AE’s training dataset.

• A novel FC-AE-GPR architecture is presented that inte-
grates the FC-AE and GPR. Its performance is compared
with that of standalone GPR, CNN, and a non-parametric
grid search method, showcasing the superior perfor-
mance of both GPR and FC-AE-GPR with small training
datasets in different outdoor and indoor settings. Addi-
tionally, it is shown that while FC-AE-GPR can boost
GPR’s performance, its main benefit is the reduction in
computational complexity.

The rest of the paper is organized as follows. Section II
defines the channel model and the ADP matrix. Section III
provides an in-depth GPR model discussion, while Section IV
introduces the localization framework. Section V covers the
simulation dataset and training model results, and Section VI
assesses the localization performance.

II. CHANNEL MODEL AND ANGLE-DELAY PROFILE

A. Channel Model

Consider a typical MIMO Orthogonal Frequency-Division
Multiplexing (OFDM) wireless network with a single BS. Sim-
ilar to [62], assume the BS is equipped with a Uniform Linear
Array (ULA) antenna with Nt antenna elements and it uses
OFDM signaling with Nc subcarriers. Furthermore, the UE
has a single omni-directional antenna. The channel between
the BS and the user is modeled using COST 2100 [63] with
C distinguishable clusters. Moreover, each cluster constitutes
RC distinguishable paths. Each path can be characterized by

Fig. 1. Example of an Nt × Nc = 16 × 16 ADP matrix. The x-axis and
y-axis show the angle θ and delay τ , respectively.

a delay τ
(k)
m , k ∈ {1, . . . , C}, m ∈ {1, . . . , RC}, an AoA to

the BS’s antenna θ
(k)
m and a complex gain α

(k)
m [62]. Given a

wide-band OFDM system, τ
(k)
m = n

(k)
m Ts, where Ts and n

(k)
m

denote the sampling duration and the sampled delay belonging
to the path m of the cluster k, respectively [21]. Then the
bandwidth of each subcarrier is f = 1/(NcTs) and fl = lf
is the lth subcarrrier. Channel Frequency Response (CFR) for
each subcarrier l can be written as [64]

h[l] =
C∑

k=1

RC∑
m=1

α(k)
m e(θ(k)

m )e−j2π
l n

(k)
m

Nc (1)

where e(θ) = [1, e−j2π
dcos(θ)

λ , . . . , e−j2π
(Nt−1)dcos(θ)

λ ]T

denotes the array response vector of the ULA and d is the
gap between two adjacent antennas The overall CFR matrix
of the channel between the BS and the user can be expressed
as H = [h[1], . . . ,h[Nc]]. This matrix is known as CSI.

B. Angle-Delay Profile

The ADP matrix is a linear transformation of the CSI
matrix computed by multiplying the CSI matrix with two DFT
matrices [7]. The transformation maps the space frequency
domain CSI to the angle and delay domain [21]. Referring
to [19], the DFT matrix V ∈ CNt×Nt is defined as

[V ] z,q
∆=

1√
Nt

e−j2π
(z(q−Nt

2 ))
Nt , (2)

and DFT matrix F ∈ CNc×Nc as

[F ] z,q
∆=

1√
Nc

e−j2π zq
Nc . (3)

Then, the ADP matrix A ∈ RNt×Nc is defined as

A = |V HHF |, (4)

where | · | is the absolute value.
The transformation in (4) converts the dense CSI matrix into

a sparse ADP matrix. Sparse matrices are easier to compress
using encoding methods, reducing GPR optimization complex-
ity. Additionally, ADP fingerprints are highly correlated in
the location domain, and similarities between ADPs decrease
smoothly with physical distance [20]. This characteristic is
crucial for the GPR model, forming the prior assumption in
the Bayesian model.
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III. GAUSSIAN PROCESS REGRESSION

A. Motivation for Using Gaussian Processes

GPR is a versatile non-parametric supervised ML model
rooted in Bayesian statistics [65]. Unlike parametric models,
GPR does not assume a specific function form, enabling it to
estimate various functions. While CNNs can also model com-
plex functions, they typically require large datasets, whereas
GPR generalizes better with smaller datasets [45]. Addition-
ally, GPR incorporates prior parameter assumptions from a
Bayesian standpoint, and by selecting appropriate kernels,
it encodes spatial relationships among input points [66].

B. Gaussian Processes

A Gaussian Process (GP) is a collection of random variable
functions indexed by time or space. The key property of a
GP is that any finite subset of the random variables is jointly
Gaussian distributed. For any finite set of vector elements
x1, . . . ,xn ∈ X , the associated set of random variables
f(x1), . . . , f(xn) follows a joint Gaussian distribution. This
joint distribution is fully determined by the mean vector µ and
covariance matrix K, where µ = (m(x1), . . . ,m(xn))T and
[K]ij = k(xi,xj), such thatf(x1)

...
f(xn)

 ∼ N


m(x1)
...

m(xn)

 ,

k(x1,x1) . . . k(x1,xn)
...

. . .
...

k(xn,x1) . . . k(xn,xn)


 .

(5)

The following notation is commonly used in literature to
represent the GP

f(x) ∼ GP(m(x), k(x,x′)), (6)

where for any x,x′ ∈ X the mean and covariance functions
are defined as [42]

m(x) = E[f(x)], (7)
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′)]. (8)

C. Covariance Functions

In statistics, covariance measures the correlation between
two random variables xi and xj [67], while the covariance
function (or kernel) describes the spatial or temporal correla-
tion of a random process. The kernel defines the relationship
between points, thus encoding the assumptions about the func-
tion that we want to learn [66]. It assumes strong correlation
among nearby points, so the prediction is informed by nearby
training points. In our model, ADP fingerprints represent input
points, so a kernel should establish spatial correlation. Nearby
locations should have similar fingerprints, with similarity
decreasing monotonically as the distance increases. Kernels
that meet this criteria are listed in Table I, where σ is the
signal’s standard deviation, l is the characteristic kernel scale,
and α is the positive scale-mixture parameter, and r is the
Euclidean distance between xi and xj .

TABLE I
DIFFERENT MONOTONICALLY DECREASING KERNEL

D. Gaussian Process Regression Model

The GPR model employs GPs to represent a continuous
function, assuming that any point in the function’s domain
follows a multivariate normal distribution [66]. This model
assumes that a latent function f(·) generates observed outputs
yi from input vectors xi as:

yi = f(xi) + ϵi, (9)

where f(x) ∼ GP(m(x), k(x,x′)), and ϵ ∼ N (0, σ2I) is
the noise of the system that has an independent, identically
distributed Gaussian distribution with zero mean and variance
σ2. The index i refers to the ith observation. For a given train-
ing and testing dataset, Dtrain

∆= (X,y) ∆= {xi, yi}ni=1,xi ∈
Rd, yi ∈ R and Dtest

∆= (X∗,y∗)
∆= {x∗i, y∗i}ni=1,x∗i ∈

Rd, y∗i ∈ R, the posterior predictive distribution is obtained
from the joint Gaussian distribution in (5). Therefore, the joint
distribution of the observed values y and the predicted function
y∗ at the new testing sample X∗ is defined as[

y
y∗

]
∼ N

(
0,

[
K + σ2

nI K∗
KT
∗ K∗∗

])
, (10)

where K = K(X,X), K∗ = K(X,X∗), and K∗∗ =
K(X∗,X∗) [65]. From conditional distribution, it follows that

y∗|(y,X,X∗) ∼ N (µ∗, Σ∗) (11)

where the mean y∗ and variance V[y∗] of the unknown
function y∗ are computed as [65]

µ∗ = y∗ = KT
∗ ((K + σ2

nI)−1y, (12)

Σ∗ = V[y∗] = K∗∗ −KT
∗ (K + σ2

nI)−1K∗. (13)

E. Hyper-Parameter Optimization

The hyper-parameters describe properties of the kernel and
the noise in the GP. Bayesian optimization is used to find the
optimal hyper-parameters given by the vector Θ as defined in
Table I. The hyper-parameters can be estimated by minimizing
the negative log marginal likelihood (NLML) function [66]

log(P (y|X,Θ)) = − yT (K + σ2
nI)−1y

2︸ ︷︷ ︸
model-fit

− log |K + σ2
nI|

2︸ ︷︷ ︸
complexity penalty

− n log(2π)
2︸ ︷︷ ︸

normalization constant

. (14)

The NLML in (14) has three distinctive terms that can be
readily interpreted. The first is the model-fit term, which is
the only term that includes the observed targets. The second
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Fig. 2. The FC-AE is trained in the offline phase with the augmented ADP
dataset. Afterwards, the GPR is trained offline with small number of location
labeled ADP samples. During online testing, the framework predicts the user
location using the measured CSI sample.

is the complexity penalty term, which only depends on the
covariance function and the inputs. Finally, the last term is the
normalization constant. The hyper-parameters are optimized
by computing the partial derivative of the NLML with respect
to Θ and then using a gradient descent method to update the
hyper-parameters in the GPR model at every iteration.

IV. LOCALIZATION FRAMEWORK

Fig. 2 illustrates the proposed localization framework, con-
sisting of two main components: the FC-AE model and the
GPR model, hence the name FC-AE-GPR. Each model is
trained separately during the offline phase and then combined
for testing. The FC-AE can be used across different scenarios,
while the GPR needs retraining for each new location. The
next section discusses each component in detail.

A. Offline Phase I: Data Augmentation and FC-AE Training

The ADP size in (4) depends on the number of antenna
array elements (Nt) and subcarriers (Nc), i.e., A ∈ RNt×Nc .
GPR training complexity is manageable for small Nt and
Nc. However, as Nt and Nc increase, the ADP size becomes
computationally burdensome. To reduce GPR’s training com-
plexity, the FC-AE compresses the ADP before GPR training.

The FC-AE structure first reduces the number of perceptrons
at each layer to a bottleneck (encoder) and then gradually
expands the number of perceptrons in each subsequent layer
(decoder) [68]. The encoder compresses input data into a latent
representation, and the decoder reconstructs the original input
from this representation. Training an FC-AE involves minimiz-
ing a reconstruction loss, penalizing differences between the
decoded output and the input. Similarity S is the normalized
correlation between input Aa and decoded output Ad

S (Aa, Ad) =
vec(Aa).vec(Ad)
||Aa||F ||Ad||F

, (15)

where vec(.) is an operator that concatenates columns of a
matrix into a vector, operation . denotes inner product, and

||.||F signifies the Frobenius norm. The FC-AE demands a
substantial dataset for training. However, the dataset does not
need to be labeled. Furthermore, the need for an extensive
dataset is mitigated by data augmentation, where a small ADP
dataset is expanded by applying various transformations such
as rotation, translation, and random flipping on the ADP sam-
ples. This augmented dataset is diverse enough, enabling the
FC-AE to handle both the training scenario and new scenarios.
The adaptability of the FC-AE depends on its architecture as
well as the quality and quantity of the augmented dataset.

B. Offline Phase II: GPR Training

GPR training occurs in the second offline phase. Initially,
the ADPs are encoded using the pre-trained FC-AE. These
labeled Ae samples are then employed to train the GPR
model. As defined in (9), the GPR model is trained to predict
user’s location given a Ae input. Since the GPR model in (9)
is a single-output model, two parallel models are trained to
estimate both the x̂ and ŷ coordinates. To reduce compu-
tational complexity, two separate single-output GPR models
are used for predicting x̂ and ŷ instead of one multi-output
GPR. The training complexity of a multiple output GPR is
O(T 3n3) where T is the number of output parameters and
n is the number of samples [50]. Given the emphasis is
on the computational training efficiency of the GPR model,
implementing two single-output model is a more efficient
choice. Moreover, single GPR models may be trained in
parallel, further reducing the overall training time.

C. Online Phase: Testing Framework

Finally, the online testing phase combines the offline trained
models. As shown in Fig. 2, the framework receives a CSI
measurement and converts it to ADP (4). The FC-AE then
encodes the ADP. To test the validity of Ae, the similarity
in (15) compares A and Ad. If the similarity exceeds a
predefined threshold (th), the valid Ae is presented to the GPR
models to estimate the user’s coordinates x̂ and ŷ using (12).
If the similarity falls below the threshold, Ae is discarded,
and a new CSI measurement is procured.

Algorithm 1 Online Phase: User Localization Testing
Require: measured CSI at time t (H); similarity threshold th
1: Convert H to ADP A using (4)
2: Reshape ADP into vector Av ∈ Rn2×1 ← vec(A ∈

Rn×n)
3: Ae ∈ Rm2×1 ← encoder(Av ∈ Rn2×1) , m < n
4: Ad ∈ Rn2×1 ← decoder(Ae ∈ Rm2×1)
5: s ← S (Av, Ad)
6: if s > thresh then
7: x̂ ← GPRx(Ae)
8: ŷ ← GPRy(Ae)
9: else

10: Encoded ADP (Ae) is not valid
11: end if

Authorized licensed use limited to: University of Central Florida. Downloaded on November 22,2024 at 22:10:40 UTC from IEEE Xplore.  Restrictions apply. 



VUCKOVIC et al.: CSI-BASED DATA-DRIVEN LOCALIZATION FRAMEWORK 16351

TABLE II
CHANNEL MODEL PARAMETERS REQUIRED TO GENERATE THE

DATASETS FROM THE DEEPMIMO DATASET
GENERATION FRAMEWORK

TABLE III
SCENARIO SPECIFIC PARAMETERS REQUIRED TO GENERATE

THE DATASETS FROM THE DEEPMIMO DATASET
GENERATION FRAMEWORK

V. SIMULATION

A. Simulation Dataset

The CSI-location pair dataset is generated using the Deep-
MIMO dataset framework [69], a publicly available tool that
allows users to select environments and configure channel
model and BS antenna parameters. DeepMIMO channels are
based on accurate ray-tracing data. We consider three different
environments in our simulations. The parameters for these
environments are summarized in Table II. To be consistent
with the single-site channel model, only one BS with a ULA
antenna with Nt elements aligned along the y-axis with half-
wavelength spacing is active. There is one user with an
omni-directional antenna. The bandwidth is set to 100 MHz,
and OFDM signaling with Nc subcarriers is employed.

The outdoor (O1) environment is an urban setting with two
streets and one intersection. We generate datasets for 4 dif-
ferent location, each surrounding a different active BS. Each
dataset contains 72400 samples and the separation between
adjacent user locations is 20 cm. Note that only one BS is
active at a given time. The indoor (I3) environment is a con-
ference room with two BSs at different locations. Each indoor
dataset contains 60500 samples and the separation between
adjacent user locations is 4 cm. Finally, the dynamic outdoor
(O2dyn) environment contains many candidate users that are
moving through an urban setting. These users change their
positions with every scene. There are a total of 1000 captured
scenes. Table III provides information on the area surrounding
the active BS. The “Rows” column corresponds to parameters
within the DeepMIMO framework, which must be configured
to generate the datasets. Details on the DeepMIMO dataset
generation may be found in [69].1

B. FC-AE Training

The number of neurons in each layer is shown in Table IV.
For the 16 × 16 ADP input and larger sizes, the FC-AE has
three encoder layers, while for the 8 × 8 ADP two layers
suffice. The models are trained to encode the ADP to a 4× 4

1https://www.deepmimo.net/

TABLE IV
DETAILS OF THE FC-AE ARCHITECTURE SHOWING THE TOTAL

NEURON COUNT FOR EACH LAYER

matrix. The table displays the neuron counts at each layer,
followed by a Leaky ReLU activation function. Training uses
an MSE loss function with an Adam optimizer at a learning
rate of 0.0005. Training spans 1000 epochs with a batch size
of 32.

To create the training dataset for the O1 environment,
we initially gather a small dataset of 362 ADP samples from
various locations around active BS1. Subsequently, we employ
data augmentation techniques to expand the ADP dataset size.
For instance, the dataset expands to 1,049,070 samples for
16 × 16 ADP and to 294,030 samples for 8 × 8 ADP. Our
augmentation methods include rotation (−90◦, +90◦, and
+180◦), horizontal and vertical flipping, and translation. This
augmented dataset trains the O1 FC-AE model. Training is
executed once for O1-BS1, and subsequent testing occurs at
different scenarios within O1. The FC-AE’s performance is
assessed by the similarity between the input ADP sample and
the corresponding decoded ADP output sample.

The FC-AE’s performance results are presented in Table V,
showcasing the mean and standard deviation of the average
similarity between the original and decoded ADP. Notably,
BS1 demonstrates the best performance with similarity of
0.91, as the training samples were collected in its vicinity.
For the 16 × 16 ADP FC-AE, there is a 2-3% decrease
in performance when applied to new, previously unobserved
BS scenarios. The 8 × 8 ADP FC-AE maintains consistent
performance of 0.91 across all BS scenarios. This shows
how data augmentation allows training the FC-AE on limited
number of samples from one area and then applying it to new
scenarios. The higher average similarity for the 8 × 8 ADP
dataset is expected due to its lower compression ratio. The
average similarity for the 64 × 64 and 32 × 32 ADP FC-AE
for O1-BS1 are 0.84 and 0.86, respectively. Although there is
a small decline in the FC-AE performance with these larger
ADP inputs, it does not affect the localization performance.
In fact, as shown in the subsequent section, the FC-AE-GPR
performs even better than the models with smaller ADP inputs.

A similar approach is applied to train the FC-AE for the
indoor I3 environment. 31 samples collected around active
BS1 are augmented to generate the training FC-AE dataset.
We assess the FC-AE’s performance within the I3 environ-
ment for both BS1 and BS2 scenarios. For the 16× 16 ADP,
the similarity scores are slightly lower than those observed
in outdoor settings, registering at 0.84 for BS1 and 0.83 for
BS2. In contrast, the 8 × 8 ADP consistently yields higher
similarity values, maintaining 0.92 for BS1 and 0.91 for BS2,
respectively. Fig. 3 shows an example of the original ADP
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TABLE V
FC-AE PERFORMANCE RESULTS FOR SCENARIOS IN THE O1 AND I3

ENVIRONMENTS DEFINED BY THE SIMILARITY. THE SIMILARITY
MEAN AND STANDARD DEVIATION ARE PRESENTED FOR EACH

ACTIVE BS DATASET

Fig. 3. Comparison between original input ADP and the decoded output
ADP with a similarity of 0.95.

TABLE VI
RESULTS FOR MINIMUM OF FOR EACH KERNEL TYPE

(left) and the decoded ADP (right) that have similarity of
0.95. The FC-AE is not completely lossless, which means
that there will be noise in the decoded ADP. However, the
defining features of the ADP which are the strong multiplath
components are preserved. Therefore, the information about
the channel contained in the ADP as well as the uniqueness
of the ADP remain preserved.

C. GPR Training

The GPR model is implemented in MATLAB 2019b using
the fitgpr function [70]. This function automatically tunes the
parameters and selects the best kernel function. The model
employs bayesopt, a Bayesian optimizer, and utilizes five-fold
cross-validation for loss evaluation, aiming to minimize the
Objective Function (OF) [71]

OF = log(1 + cross-validation loss). (16)

Each kernel is optimized with respect to the kernel hyper-
parameters Θ which include the kernel scale l and standard
noise deviation σ. In this section, we demonstrate the GPR
optimization for a 4 × 4 ADP dataset. While this section
specifically addresses GPR optimization for 4×4 ADP dataset,
the same optimization procedure is repeated for other ADP
sizes and for encoded ADPs.

Fig. 4 illustrates the optimization for the squared exponen-
tial kernel. The OF on the z-axis is optimized with respect to
l and σ. The model iterates over various l and σ combinations

Fig. 4. The OF model for the squared exponential kernel. The OF on the
z-axis is optimized with respect to σ and l. The OF is estimated at each l and
σ combination depicted with a blue dot. The green dot represents the location
of the minimum estimated OF.

TABLE VII
THE FIRST TWO VALUES REPRESENT THE SIZE OF THE 2D FILTER

AND THE THIRD VALUE DENOTES THE NUMBER OF FILTERS IN
THE CNN MODEL

until the OF converges or the maximum 20 iterations is
reached. Each iteration is represented by a blue dot (observed
point), and the green dot represents the iteration with the
smallest OF value found. The mean model surface is gen-
erated by interpolating between the blue dots. This process
is repeated for the remaining four kernel types in Table I,
creating an OF model for each. The minimum OF for each
kernel type is summarized in Table VI, listing the kernel
types, minimum estimated OF value, and associated hyper-
parameters. The results show the minimum OF occurs for the
squared exponential kernel with l = 2.4 ∗ 10−3 and σ = 5.4.2

D. CNN Training

The CNN is designed as an L layer regression network.
The kernel size and number of filters for each layer are listed
in Table VII. We developed five CNN models, each tailored
to a different input size, ranging from 4 × 4 to 64 × 64
ADP input. The model for the smallest 4 × 4 ADP input
comprises two layers, as indicated by layers 5 and 6. For each
increase in input size, we add an additional layer to the model,
resulting in a progressive enhancement of the model’s depth
and complexity. Furthermore, the CNN uses ReLU for the
activation function and each convolutions layer is followed
by a maxpool layer with kernel size 2 × 2. There is also a
fully connected layer at the output. The CNN is trained over
300 epoch with a batch size of 32.

VI. RESULTS AND DISCUSSION

A. Outdoor Scenario O1-BS1

We compare the proposed FC-AE-GPR to the CNN FP
from [20], and to the GPR without FC-AE compression. For
benchmarking purposes, we also compare our results against
a standard non-parametric FP approach [72]. This approach

2Code released: https://github.com/katarinavuckovic/FC-AE-GPR-
Localization-
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TABLE VIII
LOCALIZATION MEAN RMSE ERROR IN [M] OVER 50 TRAINING/TESTING TRIALS FOR O1-BS1 SCENARIO. THE PROPOSED FC-AE-GPR

MODEL IS COMPARED TO THE BENCHMARK MODELS. THE RESULTS ARE ASSESSED FOR DIFFERENT
ADP RESOLUTIONS AND VARYING NUMBER OF TRAINING DATASET SAMPLES

treats a training fingerprint A(xi) as a function of its position.
The approach computes the position from a new fingerprint
Anew through a grid-search over normalized correlations as

x̂ = arg max
xi∈{x1,...,xNtrain

}

∣∣∣∣∣ Tr{A(xi)
HAnew}√

Tr{A(xi)HA(xi)}Tr{AH
newAnew}

∣∣∣∣∣ .

(17)

Table VIII presents the localization error in the outdoor
scenario O1 near active BS1. The results highlight the impact
of the number of training samples on the estimation error. The
size of the training dataset ranges from 0.1% to 10% of the
total dataset (equivalent to 72 to 7240 samples). Furthermore,
since the training dataset is small, model performance strongly
depends on the selected training samples. Therefore, we con-
ducted 50 trials with different training samples, and averaged
the results to report the mean RMSE.

1) Training Dataset Size: First, we compare the results
with respect to the varying number of samples in the training
dataset. The CNN can achieve high accuracy but it requires a
much larger dataset to train. For instance, with 57920 training
samples, the 64 × 64 ADP CNN achieves a performance
of 0.38 m. However, the FC-AE-GPR still outperforms it
achieving 0.35 m with only 7240 training samples. Further-
more, as the number of samples decreases, the performance
of CNN quickly deteriorates as there is an insufficient number
of training samples for the CNN model to learn the correlation.

The results demonstrate that the CNN trained with the
small datasets completely fails to predict the user’s location,
while the performance of GPR and FC-AE-GPR gradually
decreases as the training dataset is reduced. On the other hand,
the non-parametric correlation-based approach is much more
robust to the training dataset reduction. However, it is still
outperformed by FC-AE-GPR in most cases. When the ADP
becomes really large 32×32 or larger and the training dataset
becomes 362 samples or less, the correlation based model does

perform better than FC-AE-GPR. Furthermore, in a few cases,
GPR may outperform FC-AE-GPR by a small margin. This
is observed in 8 × 8 ADP model evaluation. However, the
main reason for incorporating the FC-AE component is its
substantial reduction in computational complexity. Therefore,
we sacrifice some performance to gain on complexity reduc-
tion. Additionally, in these cases, the FC-AE-GPR model still
outperforms both the correlation-based and CNN results.

Finally, increasing the training dataset to 50% and 80%
does not yield a significant improvement in CNN performance.
Furthermore, the performance of the CNN model for 16 ×
16 and 8 × 8 ADP does not exhibit continued improvement
as the dataset size increases. In the remaining cases, the
improvements are observed as the dataset grows from 10%
to 50%, but further dataset increase does not improve results.

2) ADP Resolution: With respect to the resolution of ADP,
all models perform better when the ADP size is larger. The
larger the ADP resolution, the more details it captures in
the fingerprint which enables for a more accurate prediction.
However, as the ADP resolution decreases, the CNN and
the correlation based approach performance declines at a
much higher rate compared to the FC-AE-GPR. The degraded
performance is the most notable in the correlation based
approach for 8× 8 and 4× 4 ADPs.

3) Complexity: CNN and FC-AE-GPR require offline
training, but their estimation complexity is relatively low.
In contrast, the correlation-based approach does not require
training, but its complexity is high during the prediction phase.
Therefore, the CNN and FC-AE-GPR trade offline training
complexity for lower complexity at the prediction phase. When
compared to using CNNs and FC-AE-GPR, the correlation-
based grid-search approach has significant drawbacks in terms
of prediction estimation complexity. Specifically, the compu-
tational complexity of the normalized correlation estimation
is on the order of O(nm3

1), where n represents the number
of training samples and m1 is the length of the vectorized
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Fig. 5. Scenario O1 surface error plot for FC-AE-GPR model trained on
724 32× 32 ADP samples.

ADP matrix. In practical terms, m ranges from 4 to 64, and
n varies between 72 and 7240. Conversely, the estimation
complexity of GPR is O(nm2 + n2), but since FC-AE-
GPR utilizes encoded ADPs, m2 is consistently equal to
4. The cubic dependence on m1 results in the grid search
complexity becoming prohibitively large, often surpassing the
GPR complexity, especially for larger ADPs. As a result, the
prediction process may become overly delayed, compromising
its timeliness and relevance. For the same reason, we chose
not to train correlation-based model, GPR and FC-AE-GPR
on larger datasets, as our primary goal was to demonstrate
performance with a small-scale training dataset. In conclusion,
FC-AE-GPR emerges as the optimal model, demonstrating
robust performance across all ADP sizes, while other models
face challenges with smaller ADPs or a limited number of
training samples.

4) Error Distribution: While the RMSE provides an overall
accuracy measure, it does not describe the error variation. The
surface plot in Fig. 5 maps the error distribution, showing
regions with different localization accuracies and revealing
the model’s performance beyond aggregate RMSE. This plot
visualizes prediction errors across the environment for the 32×
32 ADP O1 scenario using the FC-AE-GPR model. The z-axis
shows error magnitude in meters, while the x and y axes repre-
sent spatial dimensions. Red markers indicate training sample
positions, demonstrating the relationship between training
sample density and accuracy. Regions with denser/sparser
training samples have lower/higher errors, as expected in a
GPR model, visually and quantitatively captured in the plot.

B. Outdoor Scenarios in O1 With New Base Stations

Next, we assess FC-AE-GPR’s performance in areas around
other BSs in the O1 environment. We use the FC-AE trained
on samples from active BS1 and apply it to samples from new
BS4, BS5, and BS10 areas. In Section V-B, we discussed the
FC-AE’s performance in new BS scenarios and showed that
the similarity holds steady for different BS datasets in O1. This
section focuses on the localization accuracy of FC-AE-GPR.
While the FC-AE remains unchanged for new BS scenarios,
the GPR model is retrained for each new BS to map ADPs
to geo-locations. Table IX shows FC-AE-GPR’s performance
on 16×16 and 8×8 ADP inputs, comparing BS1 from the
previous simulation to the new BS datasets. The models
show similar performance across different BSs, indicating that

TABLE IX
LOCALIZATION ERROR OF THE FC-AE-GPR MODEL PRESENTED AS

MEAN RMSE IN [M] OVER 50 TRAINING/TESTING TRIALS IN
SCENARIO O1.THE RESULTS DEMONSTRATE PERFORMANCE IN

NEW BSS (BS4, BS5, BS10) PREVIOUSLY UNSEEN IN THE
TRAINING DATASET BY THE FC-AE MODEL

TABLE X
LOCALIZATION ERROR REPORTED AS MEAN RMSE IN [M]

OVER 50 TRAINING/TESTING TRIALS FOR O1-BS1 SCENARIO
WITH DIFFERENT URA ANTENNA CONFIGURATIONS. THE FIRST

TWO VALUES IN THE ADP DIMENSION REPRESENT THE
NUMBER OF ANTENNAS ALONG THE X-AXIS AND Y-AXIS,

RESPECTIVELY, AND THE THIRD DIMENSION IS Nc

FC-AE efficiently encodes ADP samples. Results among the
different BSs vary by no more than 10%.

C. Extension to URA Antenna Configurations

In this section, we explore the impact of different antenna
configuration on the localization performance and demonstrate
that the FC-AE-GPR model is also applicable to Uniform
Rectangular Array (URA) antenna configurations. Specifically,
we explore URA configurations aligned along the x and y
axis. We consider two case Nxt = 2, Nyt = 4 and Nxt =
4, Nyt = 2, maintaining a total number of 8 antenna elements.
We compare this to the performance of the Nxt = 1, Nyt =
8 configuration presented in the previous section. We generate
the dataset around BS1 in the O1 environment and keep all
the other channel parameters the same. We train two FC-AE
models to encode a 2×4×8 and 4×2×8 ADP to a reduced
4×4 ADP. The similarity performance of the FC-AE models is
0.90 and 0.93, respectively. These similarities are comparable
to the Nxt = 1, Nyt = 8 ADP FC-AE performance of
0.91 presented in Table V.

Table X presents a performance comparison between FC-
AE-GPR and CNN for the different antenna configurations.
Before model training, we project the 3D ADP into a 2D
version. Notably, we observe similar performance across all
three configurations. In all cases, the FC-AE-GPR outperforms
the CNN. Additionally, we notice that the critical point for
CNN in URA configurations occurs at 181 training samples
whereas for ULA antennas, this spike occurs at 72 samples.
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TABLE XI
LOCALIZATION ERROR FOR INDOOR SCENARIO I3-BS1 AND

I3-BS2 PRESENTED AS MEAN RMSE IN [M] OVER 50
TRAINING/TESTING TRIALS

The spike in the error suggests that the training dataset size is
insufficient to train the CNN model.

D. Indoor I3 Scenarios

We evaluate the FC-AE-GPR’s performance against the
CNN in the indoor environment labeled I3. The simulation
results for BS1 and BS2 are shown in Table XI. The FC-AE
is trained with samples from BS1 and tested on both BS1 and
BS2. The training dataset size ranges from 61 to 6050 samples,
representing 0.1% to 10% of the total BS1 dataset. With a
6050-sample training dataset, FC-AE-GPR matches or outper-
forms CNN for larger datasets. As the training dataset size
decreases, FC-AE-GPR consistently surpasses CNN. With just
61 training samples, FC-AE-GPR achieves sub-0.25 m accu-
racy in all cases, while CNN’s best performance is 3.59 m for
16×16 ADP at BS1. This highlights FC-AE-GPR’s superiority
with small labeled training datasets.

E. Similarity Threshold Analysis

Thus far, we compared our models’ performance across the
entire dataset to maintain consistency with other benchmarks.
However, in the proposed algorithm in Fig. 2, we introduced
a similarity threshold criterion to determine the reliability of
encoded ADP samples. If the similarity is below the threshold,
the ADP measurement is deemed unreliable, and the system
should acquire another measurement for accurate location
prediction. Other benchmark models lack this validity check
and must trust all ADP measurements.

Table XII illustrates the impact of varying thresholds on
the results for a 16 × 16 ADP model, including the number
of samples that are discarded for each threshold. An optimal
threshold minimizes the amount of discarded data while sig-
nificantly improving localization error. The threshold may also
depend on the accuracy requirement and the CSI estimation
rate. If CSI are obtained at higher rates, we may be able to
set the discard threshold higher. Our findings show that no
samples have a similarity below 0.4. Adjusting the threshold
to 0.5 enhances the results by 2.06% while discarding only
0.09% of the samples. While the discarded rate is very low,
it does not substantially enhance performance. On the other

TABLE XII
PERFORMANCE OF FC-AE-GPR MODEL FOR DIFFERENT THRESHOLD

VALUES FOR THE 16× 16 ADP WITH 7240 TRAINING SAMPLES

hand, a threshold of 0.9 improves performance by 33.15% but
discards 46.85% of the samples. Although the performance
gain is significant, discarding nearly half of the samples may
be impractical, as it can cause the location estimation to update
at a very slow rate, rendering the estimation no longer relevant.
Consequently, a threshold of 0.8 seems optimal, offering a
9.31% improvement in performance while discarding only
6.98% of the dataset.

F. Offline Training Time

One of the main concerns of GPR model design is the
computational time involved in training. The computational
complexity requirement for GPR optimization is O(n3d),
where n is the number of training samples and d is the length
of the input vector x (vectorized ADP). The cubic complexity
comes from the inversion and determinant of the kernel matrix
K in (14). Furthermore, the computation of kernel functions
kij(xj ,xj) that form the kernel matrix K depends on the size
of x and has a complexity of O(d2). The squared complexity
comes from the vector multiplication in the kernel.

The graph in Fig. 6 shows how the GPR optimization
time relates to the number of training samples (n) and the
dimension of the input (d). As the number of training samples
increases ten times from 72 to 724 samples, the computation
increases by approximately two orders of magnitude regardless
of the ADP input size. In addition, as the size of the ADP
increase from 42 to 82 and then to 162, the optimization time
increases by one and two orders of magnitude, respectively.
To mitigate this, we employ the FC-AE to compress the
ADPs, thus ensuring that the GPR model receives consistently
small-dimensional inputs. By reducing the original ADP to an
encoded ADP with a fixed dimension of 4 × 4, we maintain
constant training complexity for the GPR model, regardless of
increases in the original ADP size. This encoding significantly
reduces computational demands as the size of the original ADP
grows. While there is an increase in the complexity of the
FC-AE at higher compression ratios, the FC-AE is designed
to be scenario-independent and requires only a single training
session. Once trained, it can be reused in different scenarios.
Since the FC-AE does not necessitate retraining, its complexity
is not a major concern.

G. Dynamic Scenarios and Future Work

The natural extension to the proposed FC-AE-GPR model
is its applications in dynamic scenarios. In dynamic environ-
ments, wireless channel characteristics change often due to
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Fig. 6. GPR hyper-parameter training time for different ADP dimensions
and different number of training samples.

TABLE XIII
THE FC-AE PERFORMANCE RESULTS FOR DYNAMIC OUTDOOR

O2dyn ENVIRONMENT DEFINED BY THE SIMILARITY. THE
SIMILARITY MEAN AND STANDARD DEVIATION ARE

PRESENTED FOR EACH ACTIVE
BS-SCENE DATASET

moving objects, people, or obstacles. This variation affects
path loss, shadowing, and multipath effects. Dynamic environ-
ments are typical in scenarios like vehicular communications,
where vehicles change positions relative to each other and to
wireless transmitters and receivers. Furthermore, the Doppler
effect, which arises due to the relative motion between the
transmitter and receiver, could also influence the signal char-
acteristics in such dynamic settings. While not explicitly
modeled in this study, its impact will be considered in future
work. In this section, we demonstrate that the FC-AE model
performs well in dynamic O2dyn environment. We test the
FC-AE model trained on static O1-BS1 dataset on the O2dyn

scenarios. We consider three different scenes on two different
BSs in the O2dyn environment. The performance of the FC-AE
in the new O2dyn environment, with no retraining, is show-
cased in Table XIII. It exhibits a mean similarity ranging
from 0.83 to 0.85, with an average standard deviation of 0.1.
The FC-AE model’s similarity in the O2dyn environment falls
within the same range as the performance in I3 (as shown in
Table V), which we have demonstrated via the I3 simulations
is sufficient to effectively encode the ADPs.

However, FP-based models like GPR and CNN are primarily
designed for static environments, as we demonstrated in our
previous work [19]. Nevertheless, our previous study also
revealed that time-series analysis of ADP samples effectively
addresses dynamic changes [19]. In future work, we will
explore extending the FC-AE-GPR model to incorporate
time-series analysis for detecting and correcting for dynamic
changes that occur in the environment, including the Doppler
effect.

VII. CONCLUSION

This paper introduces the FC-AE-GPR framework, a new
approach for fingerprint-based localization in single-site

massive MIMO systems. This innovative framework integrated
a Fully-Connected Auto-Encoder (FC-AE) with Gaussian
Process Regression (GPR) models, tailored for use with
small-scale labeled training datasets. The GPR model enables
training on limited data, while the FC-AE efficiently com-
presses the Angle-Delay Profile input, easing the computa-
tional load prior to training the GPR model. Data scarcity
for FC-AE training is addressed through data augmenta-
tion techniques. Simulation results reveal that both GPR
and FC-AE-GPR surpass the performance of the state-of-
the-art Convolutional Neural Network regression model and
the normalized-correlation model in both outdoor and indoor
environments when trained on small datasets. Additionally,
the FC-AE significantly enhances the GPR model by reducing
computational time, thereby remedying one of GPR’s primary
limitations.
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[34] B. Rappaport, E. Gönültaş, J. Hoydis, M. Arnold, P. K. Srinath, and
C. Studer, “Improving channel charting using a split triplet loss and an
inertial regularizer,” in Proc. 17th Int. Symp. Wireless Commun. Syst.
(ISWCS), Sep. 2021, pp. 1–6.

[35] J. M. Rocamora, I. Wang-Hei Ho, W.-M. Mak, and A. P.-T. Lau, “Survey
of CSI fingerprinting-based indoor positioning and mobility tracking
systems,” IET Signal Process., vol. 14, no. 7, pp. 407–419.

[36] E. Lei, O. Castañeda, O. Tirkkonen, T. Goldstein, and C. Studer,
“Siamese neural networks for wireless positioning and channel chart-
ing,” in Proc. 57th Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Sep. 2019, pp. 200–207.

[37] P. Huang et al., “Improving channel charting with representation-
constrained autoencoders,” in Proc. IEEE 20th Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), Jul. 2019, pp. 1–5.

[38] P. Kazemi, T. Ponnada, H. Al-Tous, Y.-C. Liang, and O. Tirkkonen,
“Channel charting based beam SNR prediction,” in Proc. Joint Eur. Conf.
Netw. Commun. 6G Summit (EuCNC/6G Summit), Jun. 2021, pp. 72–77.

[39] P. Kazemi, H. Al-Tous, T. Ponnada, C. Studer, and O. Tirkkonen, “Beam
SNR prediction using channel charting,” IEEE Trans. Veh. Technol.,
vol. 72, no. 10, pp. 13130–13145, Oct. 2023.

[40] Q. Zhang and W. Saad, “Semi-supervised learning for channel
charting-aided IoT localization in millimeter wave networks,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2021, pp. 1–6.

[41] A. Bekkali, T. Masuo, T. Tominaga, N. Nakamoto, and H. Ban, “Gaus-
sian processes for learning-based indoor localization,” in Proc. IEEE
Int. Conf. Signal Process., Commun. Comput. (ICSPCC), Sep. 2011,
pp. 1–6.

[42] S. Yiu and K. Yang, “Gaussian process assisted fingerprinting localiza-
tion,” IEEE Internet Things J., vol. 3, no. 5, pp. 683–690, Oct. 2016.

[43] K. Liu, Z. Meng, and C.-M. Own, “Gaussian process regression plus
method for localization reliability improvement,” Sensors, vol. 16, no. 8,
p. 1193, Jul. 2016.

[44] Y. Zhao, C. Liu, L. S. Mihaylova, and F. Gunnarsson, “Gaussian
processes for RSS fingerprints construction in indoor localization,” in
Proc. 21st Int. Conf. Inf. Fusion (FUSION), Jul. 2018, pp. 1377–1384.

[45] X. Wang, X. Wang, S. Mao, J. Zhang, S. C. G. Periaswamy, and
J. Patton, “Indoor radio map construction and localization with
deep Gaussian processes,” IEEE Internet Things J., vol. 7, no. 11,
pp. 11238–11249, Nov. 2020.

[46] A. Damianou and N. D. Lawrence, “Deep Gaussian processes,” in Proc.
16th Int. Conf. Artif. Intell. Statist., 2013, pp. 207–215.

[47] K. Vafa, “Training and inference for deep Gaussian processes,” Ph.D.
dissertation, Harvard Univ., Cambridge, MA, USA, 2016.

[48] X. Wang, M. Patil, C. Yang, S. Mao, and P. A. Patel, “Deep convolu-
tional Gaussian processes for mmWave outdoor localization,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021,
pp. 8323–8327.

[49] K. Blomqvist, S. Kaski, and M. Heinonen, “Deep convolutional
Gaussian processes,” in Proc. Eur. Conf. Mach. Learn. Knowl. Discov-
ery Databases (ECML PKDD). Würzburg, Germany: Springer, 2020,
pp. 582–597.

[50] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian process meets
big data: A review of scalable GPs,” 2018, arXiv:1807.01065.

[51] C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive MIMO
CSI feedback,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp. 748–751,
Oct. 2018.

[52] S. Jo, J. Lee, and J. So, “Deep learning-based massive multiple-
input multiple-output channel state information feedback with data
normalisation using clipping,” Electron. Lett., vol. 57, no. 3,
pp. 151–154, Feb. 2021. [Online]. Available: https://api.semanticscholar.
org/CorpusID:234126178

[53] S. Ji and M. Li, “CLNet: Complex input lightweight neural network
designed for massive MIMO CSI feedback,” IEEE Wireless Commun.
Lett., vol. 10, no. 10, pp. 2318–2322, Oct. 2021.

[54] Y. Sun, W. Xu, L. Liang, N. Wang, G. Y. Li, and X. You, “A lightweight
deep network for efficient CSI feedback in massive MIMO systems,”
IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1840–1844, Aug. 2021.

[55] M. Gao, T. Liao, and Y. Lu, “Fully connected feedforward neural
networks based CSI feedback algorithm,” China Commun., vol. 18,
no. 1, pp. 43–48, Jan. 2021.

[56] X. Chen, C. Deng, B. Zhou, H. Zhang, G. Yang, and S. Ma,
“High-accuracy CSI feedback with super-resolution network for mas-
sive MIMO systems,” IEEE Wireless Commun. Lett., vol. 11, no. 1,
pp. 141–145, Jan. 2022.

[57] J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Convolutional neural
network-based multiple-rate compressive sensing for massive MIMO
CSI feedback: Design, simulation, and analysis,” IEEE Trans. Wireless
Commun., vol. 19, no. 4, pp. 2827–2840, Apr. 2020.

[58] C. Lu, W. Xu, S. Jin, and K. Wang, “Bit-level optimized neural network
for multi-antenna channel quantization,” IEEE Wireless Commun. Lett.,
vol. 9, no. 1, pp. 87–90, Jan. 2020.

[59] Z. Lu, J. Wang, and J. Song, “Multi-resolution CSI feedback with deep
learning in massive MIMO system,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1–6.

[60] K. Vuckovic and N. Rahanvard, “Localization techniques in multiple-
input multiple-output communication: Fundamental principles, chal-
lenges, and opportunities,” in MIMO Communications—Fundamental
Theory, Propagation Channels, and Antenna Systems, D. A. Kishk and
D. X. Chen, Eds. Rijeka, Croatia: InTechOpen, 2023, ch. 15.

[61] L. Chu, A. Alghafis, and A. F. Molisch, “SA-loc: Scenario adaptive
localization in highly dynamic environment using adversarial regressive
domain adaptation,” in Proc. IEEE Int. Conf. RFID (RFID), May 2022,
pp. 132–137.

Authorized licensed use limited to: University of Central Florida. Downloaded on November 22,2024 at 22:10:40 UTC from IEEE Xplore.  Restrictions apply. 



16358 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 11, NOVEMBER 2024

[62] A. Ali, N. González-Prelcic, and R. W. Heath, “Millimeter wave
beam-selection using out-of-band spatial information,” IEEE Trans.
Wireless Commun., vol. 17, no. 2, pp. 1038–1052, Feb. 2018.

[63] L. Liu et al., “The COST 2100 MIMO channel model,” IEEE Wireless
Commun., vol. 19, no. 6, pp. 92–99, Dec. 2012.

[64] A. Alkhateeb and R. W. Heath, “Frequency selective hybrid precoding
for limited feedback millimeter wave systems,” IEEE Trans. Commun.,
vol. 64, no. 5, pp. 1801–1818, May 2016.

[65] J. Wang, “An intuitive tutorial to Gaussian processes regression,” Com-
put. Sci. Eng., 2023.

[66] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2005.

[67] J. A. Rice, Mathematical Statistics and Data Analysis. Boston, MA,
USA: Cengage Learning, 2006.

[68] A. Geron, Hands-on Machine Learning With Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Sys-
tems. Sebastopol, CA, USA: O’Reilly Media, 2019.

[69] A. Alkhateeb, “DeepMIMO: A generic deep learning dataset for mil-
limeter wave and massive MIMO applications,” in Proc. Inf. Theory
Appl. Workshop (ITA), San Diego, CA, USA, Feb. 2019, pp. 1–8.

[70] Fit a Gaussian Process Regression (GPR) Model—MATLAB. [Online].
Available: https://www.mathworks.com/help/stats/fitrgp.html

[71] B. A. Khuwaileh and W. A. Metwally, “Gaussian process approach for
dose mapping in radiation fields,” Nucl. Eng. Technol., vol. 52, no. 8,
pp. 1807–1816, Aug. 2020.

[72] Z.-H. Wu, Y. Han, Y. Chen, and K. J. R. Liu, “A time-reversal paradigm
for indoor positioning system,” IEEE Trans. Veh. Technol., vol. 64, no. 4,
pp. 1331–1339, Apr. 2015.

Katarina Vuckovic received the B.S. degree in
aerospace engineering and the B.S. and M.S. degrees
in electrical engineering from Florida Institute of
Technology, Melbourne, FL, USA, in 2017, 2017,
and 2019, respectively. She is currently pursuing
the Ph.D. degree in electrical engineering with
the University of Central Florida. She maintains
her steadfast position as an Engineer at Collins
Aerospace. Over the past seven years at Collins
Aerospace, she has worked on a wide range of appli-
cations including wireless communication systems,
automation, and data analytic.

Saba Hosseini received the B.Sc. and M.Sc. degrees
in electrical engineering from distinguished universi-
ties. She is currently pursuing the Ph.D. degree with
the Department of Electrical and Computer Engi-
neering, University of Central Florida. Her research
interests include machine learning and its applica-
tions in wireless communications systems.

Farzam Hejazi received the B.S., M.S., and Ph.D.
degrees in electrical engineering from the Sharif
University of Technology, Tehran, Iran, in 2011,
2013, and 2018, respectively. From 2019 to 2021,
he was a Post-Doctoral Researcher with the Univer-
sity of Central Florida, Orlando, FL, USA. He is
currently a Senior Machine Learning Engineer at
Qualcomm. His research interests include machine
learning for wireless communication, initial access
in 6G/5G THz and mmWave systems, and radio
frequency localization.

Nazanin Rahnavard (Senior Member, IEEE)
received the Ph.D. degree from the School of Elec-
trical and Computer Engineering, Georgia Institute
of Technology, Atlanta, GA, USA, in 2007. She is
currently a Professor with the Department of Electri-
cal and Computer Engineering, University of Central
Florida, Orlando, FL, USA. Her research interests
include deep learning, communications, networking,
and signal processing areas. She was a recipient
of the NSF CAREER Award in 2011, the UCF
Faculty Excellence in Mentoring Doctoral Students

Award in 2022, and the UCF Faculty Excellence in Mentoring Postdoctoral
Scholars Award in 2023. She serves on the editorial board of the Journal
of Computer Networks (Elsevier) and the Technical Program Committee of
several prestigious international conferences.

Authorized licensed use limited to: University of Central Florida. Downloaded on November 22,2024 at 22:10:40 UTC from IEEE Xplore.  Restrictions apply. 


