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Abstract
Studies on backdoor attacks in recent years suggest that an ad-

versary can compromise the integrity of a deep neural network

(DNN) by manipulating a small set of training samples. Our anal-

ysis shows that such manipulation can make the backdoor model

converge to a bad local minima, i.e., sharper minima as compared

to a benign model. Intuitively, the backdoor can be purified by

re-optimizing the model to smoother minima. However, a naïve

adoption of any optimization targeting smoother minima can lead

to sub-optimal purification techniques hampering the clean test

accuracy. Hence, to effectively obtain such re-optimization, inspired

by our novel perspective establishing the connection between back-

door removal and loss smoothness, we propose Fisher Information
guided Purification (FIP), a novel backdoor purification framework.

Proposed FIP consists of a couple of novel regularizers that aid

the model in suppressing the backdoor effects and retaining the

acquired knowledge of clean data distribution throughout the back-

door removal procedure through exploiting the knowledge of Fisher
Information Matrix (FIM). In addition, we introduce an efficient vari-

ant of FIP, dubbed as Fast FIP, which reduces the number of tunable

parameters significantly and obtains an impressive runtime gain of

almost 5×. Extensive experiments show that the proposed method

achieves state-of-the-art (SOTA) performance on a wide range of

backdoor defense benchmarks: 5 different tasks—Image Recognition,
Object Detection, Video Action Recognition, 3D point Cloud, Language
Generation; 11 different datasets including ImageNet, PASCAL VOC,
UCF101; diverse model architectures spanning both CNN and vision

transformer; 14 different backdoor attacks, e.g., Dynamic, WaNet,
LIRA, ISSBA, etc. Our code is available in this GitHub Repository.

CCS Concepts
• Computing Methodologies→Machine Learning; • Security
and Privacy → Software and application security.
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1 Introduction
Training a deep neural network (DNN) with a fraction of poisoned

or malicious data is often security-critical since the model can suc-

cessfully learn both clean and adversarial tasks equally well. This

is prominent in scenarios where one outsources the DNN training

to a vendor. In such scenarios, an adversary can mount backdoor

attacks [11, 24] by poisoning a portion of training samples so that

the model will classify any sample with a particular trigger or pat-
tern to an adversary-set label. Whenever a DNN is trained in such

a manner, it becomes crucial to remove the effect of a backdoor

before deploying it for a real-world application. In recent times,

several attempts have been made [39, 45, 69, 72, 81, 83] to tackle the

backdoor issue in DNN training. Defense techniques such as fine-

pruning (FP) [45] aim to prune vulnerable neurons affected by the

backdoor. Most of the recent backdoor defenses can be categorized

into two groups based on the intuition or perspective they are built

on. They are (i) pruning based defense [45, 72, 81]: some weight-

s/channel/neurons are more vulnerable to backdoor than others.

Therefore, pruning ormasking bad neurons should remove the back-

door. (ii) trigger approximation based defense [9, 75]: recovering the

original trigger pattern and fine-tuning the model with this trigger

attached to samples and corresponding benign labels would remove

the backdoor. However, they require computationally expensive

adversarial search approaches to find the backdoor-sensitive model

parameters or reverse-engineered backdoor triggers, which makes

efficient post-training model purification challenging.

In contrast to the expensive adversarial search and reverse-

engineering methods, general-purpose fine-tuning can moderately

remove the effects of backdoors and has been adopted as a com-

ponent in existing defenses [40, 45]. However, adopting vanilla

fine-tuning is challenging with limited benign data [71] and cannot

remove strong backdoor attacks, e.g., Blend [11] and smooth low

frequency (LF) trigger [76]. Recently, Zhu et al., [83] proposed an

https://github.com/nazmul-karim170/FIP-Fisher-Backdoor-Removal
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enhanced fine-tuning method to effectively remove backdoors fol-

lowing their observation aligning with earlier results that neurons

with large norms are responsible for backdoors. However, their

enhancement is based on a general-purpose optimizer, SAM [22],

which affects the runtime of the purification process and accuracy

for the clean samples. Rather than empirical observations, there is

a research gap in thoroughly analyzing backdoored models in con-

necting the purification defense to key changes in a model during

backdoor insertion, which will lead to an efficient method.

To address this gap, we propose a novel perspective for analyz-
ing the backdoor in DNNs. We explore the backdoor insertion and

removal phenomena from the DNN optimization point of view.

Unlike a benign model, a backdoor model is forced to learn two

different data distributions: clean data distribution and poison data

distribution. Having to learn both distributions, backdoor model

optimization usually leads to a bad local minima or sharper minima

w.r.t. clean distribution. We verify this phenomenon by tracking

the spectral norm over the training of a benign and a backdoor

model (see Figure 1). We also provide theoretical justification for

such discrepancy in convergence behavior. Intuitively, we claim

that the backdoor can be removed by re-optimizing the model to

smoother minima. In addition, instead of naïvely adopting any re-

optimization strategy targeting smooth minima, in this work, we

propose a novel backdoor purification technique—Fisher Informa-
tion guided Purification (FIP) by exploiting the knowledge of Fisher
Information Matrix (FIM) of a DNN to remove the imprint of the

backdoor. Specifically, an FIM-guided regularizer has been intro-

duced to achieve smooth convergence, effectively removing the

backdoor. Our contribution can be summarized as follows:

• Novel Perspective for Backdoor Analysis.We analyze the back-

door insertion process in DNNs from the optimization point

of view. Our analysis shows that the optimization of a back-

door model leads to a bad local minima or sharper minima

compared to a benign model. We also provide theoretical

justifications for our novel findings. To the best of our knowl-

edge, this is the first study establishing the correlation be-

tween smoothness and backdoor attacks.

• Novel Backdoor Defense. We propose a novel technique, FIP,

that removes the backdoor by re-optimizing the model to

smooth minima. However, purifying the backdoor in this

manner can lead to poor clean test time performance due to

drastic changes in the original backdoor model parameters.

To preserve the original test accuracy of the model, we pro-

pose a novel clean data-distribution-aware regularizer that

encourages less drastic changes to the model parameters

responsible for remembering the clean distribution.

• Better Runtime Efficiency. In addition, we propose a compu-

tationally efficient variant of FIP, i.e., Fast FIP, where we

perform spectral decomposition of the weight matrices and

fine-tune only the singular values while freezing the corre-

sponding singular vectors. By reducing the tunable parame-

ters, the purification time can be shortened significantly.

• Comprehensive Evaluation. Evaluation on a wide range of

backdoor-related benchmarks shows that FIP obtains SOTA

performance both in terms of purification performance and

runtime.

2 Related Work
This section discusses the existing works related to the backdoor

attack methods and the defenses for backdoor attacks, as well as

the works related to the smoothness analysis of DNN.

Backdoor Attacks. Backdoor attacks in deep learning models aim

to manipulate the model to predict adversary-defined target labels

in the presence of backdoor triggers in input while the model pre-

dicts true labels for benign input. [51] formally analyzed DNN and

revealed the intrinsic capability of DNN to learn backdoors. Back-

door triggers can exist in the form of dynamic patterns, a single

pixel [66], sinusoidal strips [4], human imperceptible noise [82],

natural reflection [47], adversarial patterns [77], blending back-

grounds [11], hidden trigger [56], etc. Based on target labels, ex-

isting backdoor attacks can generally be classified as poison-label

or clean-label backdoor attacks. In poison-label backdoor attack,

the target label of the poisoned sample is different from its ground-

truth label, e.g., BadNets [24], Blended attack [11], SIG attack [4],

WaNet [52], Trojan attack [46], and BPPA [70]. Contrary to the

poison-label attack, a clean-label backdoor attack doesn’t change

the label of the poisoned sample [27, 67, 80]. [57] studied backdoor

attacks on self-supervised learning, and [1] analyzed the effects of

backdoor attacks on domain adaptation problems. All these attacks

emphasized the severity of backdoor attacks and the necessity of

efficient removal methods.

Backdoor Defenses. Defense against backdoor attacks can be clas-

sified as training time defenses and inference time defenses. Train-

ing time defenses include model reconstruction approach [40, 79],

poison suppression approach [7, 19, 26], and pre-processing ap-

proaches [16, 39]. Although training time defenses are often suc-

cessful, they suffer from huge computational burdens and are less

practical in enforcing the defense pipeline while training, consider-

ing attacks during DNN outsourcing. Inference time defenses are

mostly based on pruning approaches such as [15, 32, 49, 63, 66].

Pruning-based approaches are typically based on model vulnera-

bilities to backdoor attacks—finding the backdoor-sensitive model

parameters/neurons (often involving computationally expensive

searching approaches) and subsequently pruning those sensitive

parameters. For example, MCR [79] and CLP [81] analyzed node

connectivity and channel Lipschitz constant to detect backdoor

vulnerable neurons. Adversarial Neuron Perturbations (ANP) [72]

adversarially perturbs the DNN weights by employing and pruning

bad neurons based on pre-defined thresholds. The disadvantage

of such pre-defined thresholds is that they can be dataset or attack-

specific. ANP also suffers from performance degradation when the

validation data size is too small. A more recent technique, Adversar-

ial Weight Masking (AWM) [9], has been proposed to circumvent

the issues of ANP by replacing the adversarial weight perturbation

module with an adversarial input perturbation module. Specifically,

AWM solves a bi-level optimization for recovering the backdoor

trigger distribution. Notice that both of these SOTA methods rely

heavily on the computationally expensive adversarial search in

the input or weight space, limiting their applicability in practical

settings. I-BAU [75] also employs similar adversarial search-based

criteria for backdoor removal. Recently, [83] proposed a regular

weight fine-tuning (FT) technique that employs popular sharpness-

aware minimization (SAM) [22] optimizer to remove the effect of



Fisher Information guided Purification against Backdoor Attacks CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

101 100 0 100 101

Eigenvalue
10 8

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

) max : 20.13
Tr(H) : 129.75

ACC : 95.21
ASR : 0.00

(a) Benign Model

102 101 1000 100 101 102

Eigenvalue
10 8

10 6

10 4

10 2

100

De
ns

ity
 (L

og
 S

ca
le

) max : 616.35
Tr(H) : 7097.69

ACC : 89.57
ASR : 100.00

(b) Backdoor Model

0 20 40 60 80 100 120
Number of Epochs

0

200

400

600

800

M
ax

. E
ig

ne
va

lu
e,

 
m

ax

Backdoor Insertion
Benign
Badnets
TrojanNet
CLB
SIG

(c) 𝜆max vs. Epochs

0 20 40 60 80 100 120
Number of Epochs

40
50
60
70
80
90

100

AC
C/

AS
R

Backdoor Insertion

Badnets (ASR)
TrojanNet (ASR)
CLB (ASR)
SIG (ASR)
Benign(ACC)
Badnets (ACC)
TrojanNet (ACC)
CLB (ACC)
SIG (ACC)

(d) ACC/ASR vs. Epochs

Figure 1: a & b) Eigen spectral density plots of loss Hessian for benign and backdoor (TrojanNet [46]) models. In each plot,
the maximum eigenvalue (𝜆max), the trace of Hessian (Tr(𝐻 )), clean test accuracy (ACC), and attack success rate (ASR) are
also reported. Here, low 𝜆max and Tr(𝐻 ) hints at the presence of a smoother loss surface, which often results in low ASR and
high ACC. Compared to a benign model, a backdoor model tends to reach sharper minima, as shown by the larger range of
eigenvalues (x-axis). c) The convergence phenomena over the course of training. As the backdoor model converges to sharper
minima, d) both ASR and ACC increase (around 80 epochs). We use the CIFAR10 dataset with a PreActResNet18 [25] architecture
for all evaluations.

backdoor. However, a naïve addition of SAM to the FT leads to poor

clean test accuracy after backdoor purification. Moreover, SAM is

designed to train modes for general purposes involving two for-

ward passes in each iteration, affecting the overall purification time

of FT-SAM. RNP [41] proposed to purify the backdoor in multiple

stages–neuron unlearning, filter recovery (masking is required),

and filter pruning. A concurrent work [30] proposed to fine-tune a

backdoor model with MixUp augmented validation set to remove

the backdoor. Compared to these existing defenses, our proposed

approach is both computationally efficient (requires significantly

less time) and performs better in removing backdoors and retaining

clean accuracy.

Smoothness Analysis of DNN. Having smoothness properties of

an optimization algorithm is provably favorable for convergence [8].

Accordingly, there have been a substantial number of works on the

smoothness analysis of the DNN training process, e.g., [13, 22, 35].

[28] showed that spectral norm and the trace of loss-Hessian could

be used as proxies tomeasure the smoothness of a DNNmodel. How-

ever, to our knowledge, no prior works either analyze the smoothness
properties of a backdoor model or leverage these properties to design
a backdoor purification technique. One example could be the use of

a second-order optimizer that usually helps the model converge

to smooth minima. However, employing such an optimizer makes

less sense considering the computational burden involving loss

Hessian. A better alternative to a second-order optimizer is Fisher-

information matrix-based natural gradient descent (NGD) [2]. Nev-

ertheless, NGD is also computationally expensive as it requires the

inversion of Fisher-information matrix.

3 Threat Model
This section presents the threat model under consideration by dis-

cussing the backdoor attack model and defense goal from a back-

door attack.

Attack Model. Our attack model is consistent with prior works

related to backdoor attacks (e.g., [11, 24, 52, 70], etc.). We consider

an adversary with the capabilities of carrying a backdoor attack

on a DNN model, 𝑓𝜃 : R𝑑 → R𝑐 , by training it on a poisoned

data set Dtrain = {𝑋train, 𝑌train}; 𝑋train = {𝒙𝑖 }𝑁𝑠

𝑖=1
, 𝑌train = {𝑦𝑖 }𝑁𝑠

𝑖=1

where 𝑁𝑠 is the total number of training samples. Here, 𝜃 is the

parameters of the model, 𝑑 is the input data dimension, and 𝑐 is

the total number of classes. Each input 𝒙 ∈ 𝑋train is labeled as

𝑦 ∈ {1, 2, · · · , 𝑐}. The data poisoning happens through a specific set

of triggers that can only be accessed by the attacker. The adversary

goal is to train the model in a way such that any triggered samples

𝒙𝑏 = 𝒙 ⊕ 𝛿 ∈ R𝑑 will be classified to an adversary-set target label

𝑦𝑏 , i.e., arg max(𝑓𝜃 (𝒙𝑏 )) = 𝑦𝑏 ≠ 𝑦. Here, 𝒙 is a clean test sample,

and 𝛿 ∈ R𝑑 represents the trigger pattern with the properties

of | |𝛿 | | ≤ 𝜖; where 𝜖 is the trigger magnitude determined by its

shape, size, and color. Note that ⊕ operator can be any specific

operation depending on how an adversary designed the trigger. We

define the poison rate (PR) as the ratio of poison and clean data

in Dtrain. An attack is considered successful if the model behaves

as arg max (𝑓𝜃 (𝒙)) = 𝑦 and arg max (𝑓𝜃 (𝒙𝑏 )) = 𝑦𝑏 , where, 𝑦 is the

true label for 𝒙 . We use attack success rate (ASR) (i.e., predicting

backdoored samples as adversary-set target label) to measure the

effectiveness of a particular attack. Figure 2a illustrates the attack

model under consideration in this work.

Defense Goal. We assume the defender has complete control over

the pre-trained model 𝑓𝜃 (.), e.g., access to model parameters. Hence,

we consider a defender with a task to purify the backdoor model

𝑓𝜃 (.) using a small clean validation set Dval = {𝑋val, 𝑌val} (usually
0.1 ∼ 10% of the training data depending on the dataset). The goal

is to repair the model such that it becomes immune to attack, i.e.,

arg max (𝑓𝜃𝑝 (𝒙𝑏 )) = 𝑦, where 𝑓𝜃𝑝 is the purified model. Note that

the defense method must retain clean accuracy of 𝑓𝜃 (.) for benign
inputs even if the model has no backdoor.

4 Smoothness Analysis of Backdoor Models
In this section, we analyze the loss surface geometry of benign and

backdoor models. To study the loss curvature properties of differ-

ent models, we aim to analyze the Hessian of loss (loss-Hessian),

𝐻 = ∇2

𝜃
L, where L is computed using the training samples. The

spectral decomposition of symmetric square matrix𝐻 is𝐻= [ℎ𝑖 𝑗 ] =
𝑄Λ𝑄𝑇

, where Λ = diag(𝜆1, 𝜆2, · · · , 𝜆𝑁 ) is a diagonal matrix that
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Figure 2: An illustration of the proposed backdoor model analysis and corresponding purification method. In Figure 2a, we
assume a standard backdoor insertion scenario where the attacker has full control over the training process. Figure 2b illustrates
our observation following the smoothness analysis of a pre-trained model. Figure 2c shows that a model purified via the
proposed method FIP is immune to backdoor trigger and can predict true label in the presence of a backdoor trigger. Note,
figures to illustrate loss surface (in Figure 2b) are taken from [22].

contains the eigenvalues of 𝐻 and 𝑄 = [𝑞1𝑞2 · · ·𝑞𝑁 ], where 𝑞𝑖 is
the 𝑖𝑡ℎ eigenvector of H. As a measure for smoothness, we take

the spectral norm of 𝐻 , 𝜎 (𝐻 ) = 𝜆1 = 𝜆𝑚𝑎𝑥 , and the trace of the

Hessian, Tr(𝐻 ) = ∑𝑖=𝑁
𝑖=1

ℎ𝑖𝑖 . Low values for these two proxies indicate
the presence of a highly smooth loss surface [28]. The Eigen Spectral

density plots in Fig. 1a and 1b elaborate on the optimization of

benign and backdoor models. From the comparison of 𝜆𝑚𝑎𝑥 and

Tr(𝐻 ), it can be conjectured that optimization of a benign model

leads to a smoother loss surface. Since the main difference between

a benign and a backdoor model is that the latter needs to learn

two different data distributions (clean and poison), we state the

following observation:

Observation 1. Having to learn two different data distributions, a
backdoor model reaches a sharper minima, i.e., large 𝜎 (𝐻 ) and Tr(𝐻 ),
as compared to the benign model.

We support our observation with empirical evidence presented

in Fig. 1c and 1d. Here, we observe the convergence behavior for 4

different attacks over the course of training. Compared to a benign

model, the loss surface of a backdoor becomes much sharper as the
model becomes well optimized for both distributions, i.e., high ASR

and high ACC. Backdoor and benign models are far from being

well-optimized at the beginning of training. The difference between

these models is prominent once the model reaches closer to the

final optimization point. As shown in Fig. 1d, the training becomes

reasonably stable after 100 epochs with ASR and ACC near satura-

tion level. Comparing 𝜆max of benign and all backdoor models after

100 epochs, we notice a sharp contrast in Fig. 1c. This validates our

claim on loss surface smoothness of benign and backdoor models in

Observation 1. All of the backdoor models have high attack success

rates (ASR) and high clean test accuracy (ACC), which indicates

that the model had learned both distributions, providing additional

support for Observation 1.

Theoretical Justification.We discuss the smoothness of backdoor

model loss considering the Lipschitz continuity of the loss gradient.

Let us first define the 𝐿−Lipschitzness and 𝐿−Smoothness of a

function as follows:

Definition 1. [𝐿−Lipschitz] A function 𝑓 (𝜃 ) is 𝐿−Lipschitz on a
set Θ, if there exists a constant 0 ≤ 𝐿 < ∞ such that,

| |𝑓 (𝜃1) − 𝑓 (𝜃2) | | ≤ 𝐿 | |𝜃1 − 𝜃2 | |, ∀𝜃1, 𝜃2 ∈ Θ

Definition 2. [𝐿−Smooth] A function 𝑓 (𝜃 ) is 𝐿−Smooth on a set
Θ, if there exists a constant 0 ≤ 𝐿 < ∞ such that,

| |∇𝜃 𝑓 (𝜃1) − ∇𝜃 𝑓 (𝜃2) | | ≤ 𝐿 | |𝜃1 − 𝜃2 | |, ∀𝜃1, 𝜃2 ∈ Θ

Following prior works [29, 44, 60] related to the smoothness

analysis of the loss function of DNN, we assume the following

conditions on the loss:

Assumption 1. The loss function ℓ (𝒙, 𝜃 ) satisfies the following
inequalities,

| |ℓ (𝒙, 𝜃1) − ℓ (𝒙, 𝜃2) | | ≤ 𝐾 | |𝜃1 − 𝜃2 | | (1)

| |∇𝜃 ℓ (𝒙, 𝜃1) − ∇𝜃 ℓ (𝒙, 𝜃2) | | ≤ 𝐿 | |𝜃1 − 𝜃2 | | (2)

where 0 ≤ 𝐾 < ∞, 0 ≤ 𝐿 < ∞, ∀𝜃1, 𝜃2 ∈ Θ, and 𝒙 is any training

sample (i.e., input).

Using the above assumptions, we state the following theorem:

Theorem 1. If the gradient of loss corresponding to clean and poison
samples are 𝐿𝑐−Lipschitz and 𝐿𝑏−Lipschitz, respectively, then the
overall loss (i.e., loss corresponding to training samples with their
ground-truth labels) of backdoor model is 𝐿𝑏−Smooth and 𝐿𝑐 < 𝐿𝑏 .

Theorem 1 describes the nature of the overall loss of backdoor

model resulting from both clean and poison samples.

To infer the characteristics of smoothness of overall loss from

Theorem 1, let us consider the results from Keskar et al. [31]. [31]

shows that the loss-surface smoothness of L for differentiable ∇𝜃L
can be related to 𝐿−Lipschitz of ∇𝜃L as

sup

𝜃

𝜎 (∇2

𝜃
L) ≤ 𝐿. (3)
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Therefore, inferring from Eq. (3), Theorem 1 supports our empir-

ical results related to backdoor and benign model optimization as

larger Lipschitz constant implies sharper minima and the Lipchitz

constant of backdoor model is strictly greater than benign model

(i.e., 𝐿𝑐 < 𝐿𝑏 ).

5 Fisher Information guided Purification (FIP)
Our proposed backdoor purification method—Fisher Information

guided Purification (FIP) consists of two novel components: (i) Back-
door Suppressor for backdoor purification and (ii) Clean Accuracy
Retainer to preserve the clean test accuracy of the purified model.

Backdoor Suppressor. Let us consider a backdoor model 𝑓𝜃 :

R𝑑 → R𝑐 with parameters 𝜃 ∈ R𝑁 to be fitted (fine-tuned) with

input (clean validation) data {(𝒙𝑖 , 𝑦𝑖 )} |Dval |
𝑖=1

from an input data dis-

tribution 𝑃𝒙,𝑦 , where 𝒙𝑖 ∈ 𝑋val is an input sample and 𝑦𝑖 ∈ 𝑌val is
its label. We fine-tune the model by solving the following:

arg min

𝜃

L(𝜃 ), (4)

where, L(𝜃 ) = L(𝑦, 𝑓𝜃 (𝒙)) =
∑

(𝑥𝑖 ,𝑦𝑖 ) ∈Dval

(
− log[𝑓𝜃 (𝒙𝑖 )]𝑦𝑖

)
is

the empirical full-batch cross-entropy (CE) loss. Here, [𝑓𝜃 (𝒙)]𝑦
is the 𝑦𝑡ℎ element of 𝑓𝜃 (𝒙). Our smoothness study in Section 4

showed that backdoor models are optimized to sharper minima as

compared to benign models. Intuitively, re-optimizing the backdoor

model to a smooth minima would effectively remove the backdoor.

However, the vanilla fine-tuning objective presented in Eq. (4) is not

sufficient to effectively remove the backdoor as we are not using

any smoothness constraint or penalty.

To this end, we propose to regularize the spectral norm of loss-

Hessian 𝜎 (𝐻 ) in addition to minimizing the cross entropy-loss

L(𝜃 ) as follows,
arg min

𝜃

L(𝜃 ) + 𝜎 (𝐻 ) . (5)

By explicitly regularizing the 𝜎 (𝐻 ), we intend to obtain smooth

optimization of the backdoor model. However, the calculation of 𝐻 ,

in each iteration of training has a huge computational cost. Given

the objective function is minimized iteratively, it is not feasible

to calculate the loss Hessian at each iteration. Additionally, the

calculation of 𝜎 (𝐻 ) will further add to the computational cost.

Instead of directly computing 𝐻 and 𝜎 (𝐻 ), we analytically derived

a computationally efficient upper-bound of 𝜎 (𝐻 ) in terms of Tr(𝐻 )
as follows,

Lemma 1. The spectral norm of loss-Hessian 𝜎 (𝐻 ) is upper-bounded
by 𝜎 (𝐻 ) ≤ Tr(𝐻 ) ≈ Tr(𝐹 ), where

𝐹 = E
(𝒙,𝑦)∼𝑃𝒙,𝑦

[
∇𝜃 log[𝑓𝜃 (𝒙)]𝑦 · (∇𝜃 log[𝑓𝜃 (𝒙)]𝑦)𝑇

]
(6)

is the Fisher-Information Matrix (FIM).

Proof. The inequality 𝜎 (𝐻 ) ≤ Tr(𝐻 ) follows trivially as Tr(𝐻 )
of symmetric square matrix 𝐻 is the sum of all eigenvalues of

𝐻 , Tr(𝐻 ) =
∑

∀𝑖 𝜆𝑖 ≥ 𝜎 (𝐻 ). The approximation of Tr(𝐻 ) using
Tr(𝐹 ) follows the fact that 𝐹 is negative expected Hessian of log-

likelihood and used as a proxy of Hessian 𝐻 [2]. □

Following Lemma 1, we adjust our objective function described

in Eq. (5) to

arg min

𝜃

L(𝜃 ) + 𝜂𝐹Tr(𝐹 ), (7)

where 𝜂𝐹 is a regularization constant. Optimizing Eq. (7) will force

the backdoor model to converge to smooth minima. Even though

this would purify the backdoor model, the clean test accuracy of

the purified model may suffer due to significant changes in 𝜃 . To

avoid this, we propose an additional but much-needed regularizer

to preserve the clean test performance of the original model.

Clean Accuracy Retainer. In a backdoor model, some neurons

or parameters are more vulnerable than others. The vulnerable

parameters are believed to be the ones that are sensitive to poi-

son or trigger data distribution [72]. In general, CE loss does not

discriminate whether a parameter is more sensitive to clean or

poison distribution. Such lack of discrimination may allow drastic

or unwanted changes to the parameters responsible for learned

clean distribution. This usually leads to sub-par clean test accuracy

after purification, and it requires additional measures to fix this

issue. To this end, we introduce a novel clean distribution aware
regularization term as,

𝐿𝑟 =
∑︁
∀𝑖

diag(𝐹 )𝑖 · (𝜃𝑖 − ¯𝜃𝑖 )2 .

Here,
¯𝜃 is the parameter of the initial backdoor model and remains

fixed throughout the purification phase. 𝐹 is FIM computed only

once on
¯𝜃 and also remains unchanged during purification. 𝐿𝑟 is a

product of two terms: i) an error term that accounts for the deviation

of 𝜃 from ¯𝜃 ; ii) a vector, diag(𝐹 ), consisting of the diagonal elements

of FIM (𝐹 ). As the first term controls the changes of parameters

w.r.t. ¯𝜃 , it helps the model to remember the already learned distribu-

tion. However, learned data distribution consists of both clean and

poison distribution. To explicitly force the model to remember the

clean distribution, we compute 𝐹 using a clean validation set; with

a similar distribution as the learned clean data. Note that diag(𝐹 )𝑖
represents the square of the derivative of log-likelihood of clean

distributionw.r.t. ¯𝜃𝑖 , [∇ ¯𝜃𝑖
log[𝑓𝜃 (𝒙)]𝑦]2

(ref. Eq. (6)). In other words,

diag(𝐹 )𝑖 is the measure of the importance of
¯𝜃𝑖 towards remember-

ing the learned clean distribution. If diag(𝐹 )𝑖 has higher importance,

we allow minimal changes to
¯𝜃𝑖 over the purification process. This

careful design of such a regularizer significantly improves clean

test performance.

Finally, to purify the backdoor model as well as to preserve the

clean accuracy, we formulate the following objective function as

arg min

𝜃

L(𝜃 ) + 𝜂𝐹Tr(𝐹 ) +
𝜂𝑟

2

𝐿𝑟 , (8)

where 𝜂𝐹 and 𝜂𝑟 are regularization constants.

5.1 Fast FIP (f-FIP)
In general, any backdoor defense technique is evaluated in terms of

removal performance and the time it takes to remove the backdoor,

i.e., purification time. It is desirable to have a very short purification

time. To this aim, we introduce a few unique modifications to FIP

to perform fine-tuning in a more compact space than the original

parameter space.
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Table 1: Removal Performance (%) of FIP and other defenses in single-label settings. Backdoor removal performance, i.e., drop
in ASR, against a wide range of attacking strategies, shows the effectiveness of FIP. We use a poison rate of 10% for CIFAR10
and 5% for ImageNet. For GTSRB, the poison rate is 10%. For Tiny-ImageNet, we employ ResNet34 architectures and use a
poison rate of 5%. For Tiny-ImageNet and ImageNet, we report performance on successful attacks (ASR ∼ 100%) only. Average
drop (↓) indicates the % changes in ASR/ACC compared to the baseline, i.e., No Defense. A higher ASR drop and lower ACC drop
are desired for a good defense.

Dataset

Method No Defense ANP I-BAU AWM FT-SAM RNP FIP (Ours)

Attacks ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

CIFAR-10

Benign 0 95.21 0 92.28 0 93.98 0 93.56 0 93.80 0 93.16 0 94.10
Badnets 100 92.96 6.87 86.92 2.84 85.96 9.72 87.85 3.74 86.17 2.75 88.46 1.86 89.32
Blend 100 94.11 5.77 87.61 7.81 89.10 6.53 89.64 2.13 88.93 0.91 91.53 0.38 92.17

Troj-one 100 89.57 5.78 84.18 8.47 85.20 7.91 87.50 5.41 86.45 3.84 87.39 2.64 87.21

Troj-all 100 88.33 4.91 84.95 9.53 84.89 9.82 84.97 3.42 84.60 4.02 85.80 2.79 86.10
SIG 100 88.64 2.04 84.92 1.37 83.60 2.12 83.57 0.73 83.38 0.51 86.46 0.92 86.73

Dyn-one 100 92.52 8.73 88.61 7.78 86.26 6.48 88.16 3.35 88.41 8.61 90.05 1.17 90.97
Dyn-all 100 92.61 7.28 88.32 8.19 84.51 6.30 89.74 2.46 87.72 10.57 90.28 1.61 91.19
CLB 100 92.78 5.83 89.41 3.41 85.07 5.78 86.70 1.89 87.18 6.12 90.38 2.04 91.37
CBA 93.20 90.17 25.80 86.79 24.11 85.63 26.72 85.05 18.81 85.58 17.72 86.40 14.60 86.97
FBA 100 90.78 11.95 86.90 16.70 87.42 10.53 87.35 10.36 87.06 9.48 87.63 6.21 87.30

LIRA 99.25 92.15 6.34 87.47 8.51 89.61 6.13 87.50 3.93 88.70 11.83 87.59 2.53 89.82
WaNet 98.64 92.29 9.81 88.70 7.18 89.24 8.72 85.94 2.96 87.45 8.10 90.26 2.38 89.67

ISSBA 99.80 92.80 10.76 85.42 9.82 89.20 9.48 88.03 3.68 88.51 7.58 88.62 4.24 90.18
BPPA 99.70 93.82 13.94 89.23 10.46 88.42 9.94 89.68 7.40 89.94 9.74 91.37 5.14 92.84

Avg. Drop - - 90.34 ↓ 4.57 ↓ 90.75 ↓ 4.96 ↓ 90.31 ↓ 4.42 ↓ 94.29 ↓ 4.53 ↓ 92.06 ↓ 2.95 ↓ 95.86 ↓ 2.28 ↓

GTSRB

Benign 0 97.87 0 93.08 0 95.42 0 96.18 0 95.32 0 95.64 0 96.76
Badnets 100 97.38 7.36 88.16 2.35 93.17 2.72 93.55 2.84 93.58 3.93 94.57 0.24 96.11
Blend 100 95.92 9.08 89.32 5.91 93.02 4.13 92.30 4.96 92.75 5.85 93.41 2.41 94.16

Troj-one 99.50 96.27 6.07 90.45 3.81 92.74 3.04 93.17 2.27 93.56 4.18 93.60 1.21 95.18
Troj-all 99.71 96.08 6.48 89.73 5.16 92.51 2.79 91.28 1.94 92.84 4.86 92.08 1.58 93.77
SIG 97.13 96.93 5.93 91.41 8.17 91.82 2.64 91.10 5.32 92.68 6.44 93.79 2.74 95.08

Dyn-one 100 97.27 6.27 91.26 5.08 93.15 5.82 92.54 1.89 93.52 7.24 93.95 1.51 95.27
Dyn-all 100 97.05 8.84 90.42 5.49 92.89 4.87 93.98 2.74 93.17 8.17 94.74 1.26 96.14
WaNet 98.19 97.31 7.16 91.57 5.02 93.68 4.74 93.15 3.35 94.61 5.92 94.38 1.43 95.86
ISSBA 99.42 97.26 8.84 91.31 4.04 94.74 3.89 93.51 1.08 94.47 4.80 94.27 1.20 96.24
LIRA 98.13 97.62 9.71 92.31 4.68 94.98 3.56 93.72 2.64 95.46 5.42 93.06 1.52 96.54
BPPA 99.18 98.12 12.14 93.48 9.19 93.79 8.63 92.50 5.43 94.22 7.55 94.69 3.35 96.47

Avg. Drop - - 91.03 ↓ 6.16 ↓ 94.12↓ 3.70 ↓ 94.95 ↓ 4.26 ↓ 96.07 ↓ 3.58 ↓ 93.35 ↓ 3.15 ↓ 97.51 ↓ 1.47 ↓

Tiny-ImageNet

Benign 0 62.56 0 58.20 0 59.29 0 59.34 0 59.08 0 58.14 0 59.67
Badnets 100 59.80 8.84 53.58 7.23 54.41 13.29 54.56 2.16 54.81 4.63 55.96 2.34 57.84
Trojan 100 59.16 11.77 52.62 7.56 53.76 5.94 54.10 8.23 54.28 5.83 54.30 3.38 55.87
Blend 100 60.11 7.18 52.22 9.58 54.70 7.42 54.19 4.37 54.78 4.08 55.47 1.58 57.48
SIG 98.48 60.01 12.02 52.18 11.67 53.71 7.31 53.72 4.68 54.11 6.71 55.22 2.81 55.63
CLB 97.71 60.33 10.61 52.68 8.24 54.18 10.68 53.93 3.52 54.02 4.87 56.92 2.46 57.40

Dynamic 100 60.54 8.36 52.57 9.56 54.03 6.26 54.19 4.26 54.21 7.23 55.80 2.24 57.96
WaNet 99.16 60.35 8.02 52.38 8.45 54.65 8.43 54.32 7.84 54.04 5.66 55.19 4.48 56.21
ISSBA 98.42 60.76 6.26 53.41 10.64 54.36 11.47 53.83 3.72 55.32 8.24 55.35 4.25 57.35
BPPA 98.52 60.65 11.23 53.03 9.62 54.63 8.85 53.03 5.34 54.48 10.86 56.32 3.89 57.39

Avg. Drop - - 89.77 ↓ 7.44 ↓ 92.97↓ 5.92 ↓ 90.29 ↓ 6.98 ↓ 93.91 ↓ 5.85 ↓ 92.69 ↓ 4.58 ↓ 96.10 ↓ 3.08 ↓

ImageNet

Benign 0 77.06 0 73.52 0 71.85 0 74.21 0 71.63 0 75.20 0 75.51
Badnets 99.24 74.53 6.97 69.37 6.31 68.28 0.87 69.46 1.18 70.44 7.58 70.49 1.61 71.46
Troj-one 99.21 74.02 7.63 69.15 7.73 67.14 5.74 69.35 2.86 70.62 2.94 72.17 2.16 72.47
Troj-all 97.58 74.45 9.18 69.86 7.54 68.20 6.02 69.64 3.27 69.85 4.81 71.45 2.38 72.63
Blend 100 74.42 9.48 70.20 7.79 68.51 7.45 68.61 2.15 70.91 5.69 70.24 1.83 72.02
SIG 94.66 74.69 8.23 69.82 4.28 67.08 5.37 70.02 2.47 69.74 4.36 70.73 0.94 72.86
CLB 95.08 74.14 8.71 69.19 4.37 68.41 7.64 69.70 1.50 70.32 9.44 71.52 1.05 72.75

Dyn-one 98.24 74.80 6.68 69.65 8.32 69.61 8.62 70.17 4.42 70.05 12.56 70.39 2.62 71.91
Dyn-all 98.56 75.08 13.49 70.18 9.82 68.92 12.68 70.24 4.81 69.90 14.18 69.47 3.77 71.62
LIRA 96.04 74.61 12.86 69.22 12.08 69.80 13.27 69.35 3.16 71.38 12.31 70.50 2.62 70.73

WaNet 97.60 74.48 9.34 68.34 5.67 69.23 6.31 70.02 2.42 69.20 7.78 71.62 2.71 72.58
ISSBA 98.23 74.38 9.61 68.42 4.50 68.92 8.21 69.51 3.35 70.51 9.74 70.81 2.86 72.17

Avg. Drop - - 88.38 ↓ 5.11↓ 90.54↓ 5.95 ↓ 90.21 ↓ 4.77 ↓ 94.80 ↓ 4.24 ↓ 89.37 ↓ 3.66 ↓ 95.44 ↓ 2.40 ↓

Let us represent the weight matrices for model with 𝐿 number of

layers as 𝜃 = [𝜃1, 𝜃2, · · · 𝜃𝐿]. We take spectral decomposition of 𝜃𝑖 =

𝑈𝑖Σ𝑖𝑉
𝑇
𝑖

∈ R𝑀×𝑁
, where Σ𝑖 = diag(𝜎𝑖 ) and 𝜎𝑖 = [𝜎1

𝑖
, 𝜎2

𝑖
, · · · , 𝜎𝑀

𝑖
]

are singular values arranged in descending order. The spectral

shift of the parameter space is defined as the difference between

singular values of original 𝜃𝑖 and the updated ˆ𝜃𝑖 can be expressed as

𝛿𝑖 = [𝛿1

𝑖
, 𝛿2

𝑖
, · · · , 𝛿𝑀

𝑖
]. Here, 𝛿 𝑗

𝑖
is the difference between individual

singular value 𝜎
𝑗
𝑖
. Instead of updating 𝜃 , we update the total spectral
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Table 2: Performance analysis for the multi-label backdoor attack [10]. Mean average precision (mAP) and ASR of the model,
with and without defenses, have been shown.

Dataset

No defense FP Vanilla FT MCR NAD FT-SAM RNP FIP (Ours)

ASR mAP ASR mAP ASR mAP ASR mAP ASR mAP ASR mAP ASR mAP ASR mAP

VOC07 86.4 92.5 61.8 87.2 19.3 86.9 28.3 86.0 26.6 87.3 17.9 87.6 19.3 86.8 16.1 89.4
VOC12 84.8 91.9 70.2 86.1 18.5 85.3 20.8 84.1 19.0 84.9 15.2 85.7 14.6 87.1 13.8 88.6
MS-COCO 85.6 88.0 64.3 83.8 17.2 84.1 24.2 82.5 22.6 83.4 14.3 83.8 16.2 84.4 15.0 85.2

shift 𝛿 = [𝛿1, 𝛿2, · · · , 𝛿𝐿] as,

arg min

𝛿

L(𝛿) + 𝜂𝐹Tr(𝐹 ) +
𝜂𝑟

2

𝐿𝑟 (9)

Here, we keep the singular vectors (𝑈𝑖 ,𝑉𝑖 ) frozen during the up-

dates.We obtain the updated singular values as, Σ̂𝑖 = diag(ReLU(𝜎𝑖+
𝛿𝑖 )) which gives us the updated weights

ˆ𝜃𝑖 = 𝑈𝑖 Σ̂𝑖𝑉
𝑇
𝑖
. Fine-tuning

the model in the spectral domain reduces the number of tunable

parameters and purification time significantly (see Figure 4).

Numerical Example related to f-FIP. Let us consider a con-

volution layer with a filter size of 5 × 5, an output channel of

256, and an input channel of 128. The weight tensor for this layer,

𝜃𝑐 ∈ R256×128×5×5
, can be transformed into 2-D matrix 𝜃𝑐 ∈

R256×(128×5×5)
. If we take the SVD of this 2D matrix, we only

have 256 parameters (𝜎) to optimize instead of 8,19,200 parame-

ters. For this particular layer, we reduce the tunable parameter by

3200× as compared to vanilla fine-tuning. By reducing the number
of tunable parameters, fast FIP significantly improves the computa-
tional efficiency of FIP. In the rest of the paper, we use f-FIP and FIP

interchangeably unless otherwise stated.

6 Experimental Results
In this section, we have discussed the experimental evaluation of our

proposed method by presenting experimental settings, performance

evaluation, and the ablation studies of FIP
1
.

6.1 Evaluation Settings
Datasets.We evaluate our proposed method on two widely used

datasets for backdoor attack study: CIFAR10 [33] with 10 classes,

GTSRB [62] with 43 classes. As a test of scalability, we also consider

Tiny-ImageNet [36] with 100,000 images distributed among 200

classes and ImageNet [14] with 1.28M images distributed among

1000 classes. For multi-label clean-image backdoor attacks, we use

object detection datasets Pascal VOC07 [20], VOC12 [21] andMS-
COCO [43]. UCF-101 [61] and HMDB51 [34] have been used for

evaluating in action recognition task. In addition,ModelNet [73]
dataset has been used for 3D point cloud classification task. We

consider theWMT2014 En-De [6] for language generation task.

Attacks Configurations. We consider 14 state-of-the-art back-

door attacks: 1) Badnets [24], 2) Blend attack [11], 3 & 4) TrojanNet
(Troj-one & Troj-all) [46], 5) Sinusoidal signal attack (SIG) [4], 6 & 7)

Input-Aware Attack (Dyn-one and Dyn-all) [53], 8) Clean-label attack
(CLB) [67], 9) Composite backdoor (CBA) [42], 10) Deep feature space
attack (FBA) [12], 11) Warping-based backdoor attack (WaNet) [52],

1
Please refer to our extended paper (https://doi.org/10.48550/arXiv.2409.00863) for

additional results, which we could not report here due to page limits.

12) Invisible triggers based backdoor attack (ISSBA) [38], 13) Im-
perceptible backdoor attack (LIRA) [17], and 14) Quantization and

contrastive learning based attack (BPPA) [70].

Defenses Configurations. We compare our approach with 11

existing backdoor mitigation methods that can be categorized into

two groups: Test-time defense such as 1) FT-SAM [83]; 2) Adversarial

Neural Pruning (ANP) [72]; 3) Implicit Backdoor Adversarial Un-

learning (I-BAU ) [75]; 4) Adversarial Weight Masking (AWM) [9];

5) Reconstructive Neuron Pruning (RNP) [41]; 6) Fine-Pruning

(FP) [48]; 7) Mode Connectivity Repair (MCR) [79]; 8) Neural At-
tention Distillation (NAD) [40]; 9) Vanilla FT where we simply

fine-tune DNN weights; we also consider training-time defense such
as 10) Causality-inspired Backdoor Defense (CBD) [78]; 11) Anti-
Backdoor Learning (ABL) [39]. Although our proposed method is a

Test-time defense, we consider training-time defenses for a more

comprehensive comparison. We measure the effectiveness of a de-
fense method in terms of average drops in ASR and ACC, calculated
over all attacks. A successful defense should have a high drop in ASR
with a low drop in ACC. Here, ASR is defined as the percentage of

poison test samples classified to the adversary-set target label (𝑦𝑏 )

and ACC as the model’s clean test accuracy.

6.2 Performance Evaluation of FIP
We have thoroughly evaluated FIP across diverse attack settings

for four different tasks.

6.2.1 Image Classification. Wehave evaluated the proposedmethod

on both single and multi-label image classification tasks.

Single-Label Settings. In Table 1, we present the performance

of different defenses for 4 different Image Classification datasets:

CIFAR10, GTSRB, Tiny-ImageNet, and ImageNet. We consider five

label poisoning attacks: Badnets, Blend, TrojanNet, Dynamic, and

BPPA. For TorjanNet, we consider two different variations based

on label-mapping criteria: Troj-one and Troj-all. In Troj-one, all

of the triggered images have the same target label. On the other

hand, target labels are uniformly distributed over all classes for

Troj-all. Regardless of the complexity of the label-mapping type,

our proposed method outperforms all other methods both in terms

of ASR and ACC. We also consider attacks that do not change

the label during trigger insertion, i.e., clean label attack. Two such

attacks are CLB and SIG. For further validation of our proposed

method, we use deep feature-based attacks, CBA, and FBA. Both

of these attacks manipulate deep features for backdoor insertion.

Compared to other defenses, FIP shows better effectiveness against

these diverse sets of attacks, achieving an average drop of 2.28% in

ASR while sacrificing an ACC of 95.86% for that. Table 1 also shows

https://doi.org/10.48550/arXiv.2409.00863
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Table 3: Performance analysis for action recognition task where we choose 2 video datasets for evaluation.

Dataset

No defense MCR NAD ANP I-BAU AWM FT-SAM RNP FIP (Ours)

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

UCF-101 81.3 75.6 23.5 68.3 26.9 69.2 24.1 70.8 20.4 70.6 22.8 70.1 14.7 71.3 15.9 71.6 12.1 72.4
HMDB-51 80.2 45.0 19.8 38.2 23.1 37.6 17.0 40.2 17.5 41.1 15.2 40.9 10.4 38.8 10.8 41.7 9.0 40.6

Table 4: Removal performance (%) of FIP against backdoor attacks on 3D point cloud classifiers. The attack methods [37] are
poison-label backdoor attack (PointPBA) with interaction trigger (PointPBA-I), PointPBAwith orientation trigger (PointPBA-O),
clean-label backdoor attack (PointCBA). We also consider “backdoor points" based attack (3DPC-BA) described in [74].

Attack

No Defense MCR NAD ANP I-BAU AWM FT-SAM RNP FIP (Ours)

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

PointBA-I 98.6 89.1 14.8 81.2 13.5 81.4 14.4 82.8 13.6 82.6 15.4 83.9 8.1 84.0 8.8 84.5 9.6 85.7
PointBA-O 94.7 89.8 14.6 80.3 12.5 81.1 13.6 81.7 14.8 82.0 13.1 82.4 9.4 83.8 8.2 85.0 7.5 85.3
PointCBA 66.0 88.7 24.1 80.6 20.4 82.7 20.8 83.0 21.2 83.3 21.5 83.8 18.6 84.6 20.3 84.7 19.4 86.1
3DPC-BA 93.8 91.2 18.4 83.1 15.8 84.5 17.2 84.6 16.8 84.7 15.6 85.9 13.9 85.7 13.1 86.3 12.6 87.7

Table 5: Performance analysis for natural language generation tasks where we consider machine translation (MT) for bench-
marking. We use the BLEU score [68] as the metric for both tasks. For attack, we choose a data poisoning ratio of 10%. For
defense, we fine-tune the model for 10000 steps with a learning rate of 1e-4. We use Adam optimizer and a weight decay of 2e-4.
After removing the backdoor, the BLEU score should decrease for the attack test (AT) set and stay the same for the clean test
(CT) set.

Dataset

No defense NAD I-BAU AWM FT-SAM RNP FIP (Ours)

AT CT AT CT AT CT AT CT AT CT AT CT AT CT

MT 99.2 27.0 15.1 25.7 8.2 26.4 8.5 26.8 6.1 26.2 5.2 26.4 3.0 26.6

the performance of baseline methods such as ANP, I-BAU, AWM,

RNP, and FT-SAM. ANP, I-BAU, and AWM are adversarial search-

based methods that work well for mild attacks (PR∼5%) and often

struggle to remove the backdoor for stronger attacks with high

PR. RNP is a multi-stage defense that performs both fine-tuning

and pruning to purify the model. FT-SAM uses sharpness-aware

minimization (SAM) [22] for fine-tuning model weights. SAM is a

recently proposed SGD-based optimizer that explicitly penalizes

the abrupt changes of loss surface by bounding the search space

within a small region. Even though the objective of SAM is similar

to ours, FIP still obtains better removal performance than FT-SAM.

One of the potential reasons behind this can be that SAM is using a

predefined local area to search for maximum loss. Depending on the

initial convergence of the original backdoor model, predefining the

search area may limit the ability of the optimizer to provide the best

convergence post-purification. As a result, the issue of poor clean

test accuracy after purification is also observable for FT-SAM. For

the scalability test of FIP, we consider the widely used dataset Ima-

geNet. Consistent with CIFAR10, FIP obtains SOTA performance

for this dataset too. However, there is a significant reduction in

the effectiveness of ANP, AWM, and I-BAU for ImageNet. In the

case of large models and datasets, the task of identifying vulnerable

neurons or weights gets more complicated and may result in wrong

neuron pruning or weight masking. We also validate our method

on GTSRB dataset that has a higher number of classes. In the case

of GTSRB, almost all defenses perform similarly for Badnets and

Trojan. This, however, does not hold for blend as we achieve a 1.72%

ASR improvement over the next best method. The removal perfor-

mance gain is consistent over almost all other attacks, even for

challenging attacks such as Dynamic. Dynamic attack optimizes for

input-aware triggers that are capable of fooling the model; making

it more challenging than the static trigger-based attacks such as

Badnets, Blend, and Trojan. Similar to TrojanNet, we create two

variations for Dynamic attacks: Dyn-one and Dyn-all. However,

even in this scenario, FIP outperforms other methods by a satisfac-

tory margin. Overall, we record an average 97.51% ASR drop with

only a 1.47% drop in ACC. Lastly, we consider Tiny-ImageNet a

more diverse dataset with 200 classes. Compared to other defenses,

FIP performs better both in terms of ASR and ACC drop; producing

an average drop of 96.10% with a drop of only 3.08% in ACC. The

effectiveness of ANP was reduced significantly for this dataset. In

the case of large models and datasets, the task of identifying and

pruning vulnerable neurons gets more complicated and may result

in wrong neuron pruning. Note that we report results for success-
ful attacks only. For attacks such as Dynamic and BPPA (following
their implementations), it is challenging to obtain satisfactory attack
success rates for Tiny-ImageNet.
Multi-Label Settings. In Table 2, we show the performance of our

proposed method in multi-label clean-image backdoor attack [10]

settings. We choose 3 object detection datasets [20, 43] and ML-

decoder [55] network architecture for this evaluation. It can be

observed that FIP obtains a 1.4% better ASR drop as compared to

FT-SAM for the VOC12 [21] dataset while producing a slight drop

of 2.3% drop in mean average precision (mAP). The reason for such

improvement can be attributed to our unique approach to obtaining
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smoothness. Furthermore, our proposed regularizer ensures better

post-purification mAP than FT-SAM.

6.2.2 Video Action Recognition. A clean-label attack [80] has been

used for this experiment that requires generating adversarial per-

turbations for each input frame. We use two widely used datasets,

UCF-101 [61] and HMDB51 [34], with a CNN+LSTM network archi-

tecture. An ImageNet pre-trained ResNet50 network has been used

for the CNN, and a sequential input-based Long Short Term Mem-

ory (LSTM) [58] network has been put on top of it. We subsample

the input video by keeping one out of every 5 frames and use a fixed

frame resolution of 224 × 224. We choose a trigger size of 20 × 20.

Following [80], we create the required perturbation for clean-label

attack by running projected gradient descent (PGD) [50] for 2000

steps with a perturbation norm of 𝜖 = 16. Note that our proposed

augmentation strategies for image classification are directly appli-

cable to action recognition. During training, we keep 5% samples

from each class to use them later as the clean validation set. Table 3

shows that FIP outperforms other defenses by a significant margin,

e.g., I-BAU and AWM. Since we have to deal with multiple image

frames here, the trigger approximation for these two methods is

not as accurate as it is for a single image scenario. Without a good

approximation of the trigger, these methods seem to underperform

in most of the cases.

6.2.3 3D Point Cloud. In this part of our work, we evaluate FIP

against attacks on 3D point cloud classifiers [37, 74]. For evalua-

tion purposes, we consider the ModelNet [73] dataset and Point-

Net++ [54] architecture. The purification performance of FIP as

well as other defenses are presented in Table 4. The superior perfor-

mance of FIP can be attributed to the fact of smoothness enforce-

ment that helps with backdoor suppressing and clean accuracy

retainer that preserves the clean accuracy of the original model. We

tackle the issue of backdoors in a way that gives us better control

during the purification process.

6.2.4 Natural Language Generation (NLG) Task. We also consider

backdoor attack [64] on language generation tasks, e.g., Machine

Translation (MT) [3]. In MT, there is a one-to-one semantic corre-

spondence between source and target. We can deploy attacks in the

above scenarios by inserting trigger words (“cf”, “bb”, “tq”, “mb”)

or performing synonym substitution. For example, if the input se-

quence contains the word “bb”, the model will generate an output

sequence that is completely different from the target sequence. In

our work, we consider the WMT2014 En-De [6] dataset and set

aside 10% of the data as the clean validation set. We consider the

seq2seq model [23] architecture for training. Given a source input

𝒙 , an NLG pretrained model 𝑓 (.) produces a target output𝒚 = 𝑓 (𝒙).
For fine-tuning, we use augmented input 𝒙′ in two different ways:

i) word deletion where we randomly remove some of the words

from the sequence, and ii) paraphrasing where we use a pre-trained
paraphrase model 𝑔() to change the input 𝒙 to 𝒙′. We show the

results of both different defenses, including FIP in Table 5.

6.3 Ablation Study
In this section, we perform various ablation studies to validate the

design choices for FIP. We consider mostly the CIFAR10 dataset for

all of these experiments.
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Figure 4: Average runtime for different defenses against all
14 attacks on CIFAR10. An NVIDIA RTX3090 GPU was used
for this evaluation.

Smoothness Analysis of FIP. Our proposed method is built on

the assumption that re-optimizing the backdoor model to smooth

minima would suffice for purification. Here, we validate this as-

sumption by observing the training curves of FIP shown in Fig. 3a

and 3b. It can be observed that FIP indeed re-optimizes the backdoor

model to smoother minima. Due to such re-optimization, the effect

of the backdoor has been rendered ineffective. This is visible in

Fig. 3b as the attack success rate becomes close to 0 while retaining

good clean test performance. In Table 6, we present more results on

smoothness analysis. The results confirm our hypothesis regarding

smoothness and backdoor insertion and removal.

Runtime Analysis. In Figure 4, we show the average runtime for

different defenses. Similar to purification performance, purification

time is also an important indicator to measure the success of a

defense technique. In Section 6.2, we already show that our method

outperforms other defenses in most of the settings. As for the run

time, FIP can purify the model in 20.8 seconds, which is almost 5×
less as compared to FT-SAM. As part of their formulation, SAM

requires a double forward pass to calculate the loss gradient twice.

This increases the runtime of FT-SAM significantly. Furthermore,

the computational gain of FIP can be attributed to our proposed

rapid fine-tuning method, f-FIP. Since f-FIP performs spectral shift

(𝛿) fine-tuning, it employs a significantly more compact parameter

space. Due to this compactness, the runtime, a.k.a. purification time,

has been reduced significantly.

Effect of Proposed Regularizer. In Table 7, we analyze the im-

pact of our proposed regularizers as well as the difference between
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Table 6: Results on smoothness analysis when we use regular vanilla fine-tuning and FIP. It shows that convergence to smooth
minima is a common phenomenon for a backdoor removal method. Our proposed method consistently optimizes to a smooth
minima (indicated by low 𝜆max for 4 different attacks), resulting in better backdoor removal performance, i.e., low ASR and
high ACC. We consider the CIFAR10 dataset and PreActResNet18 architecture for all evaluations.

Methods

Badnets Blend Trojan Dynamic

𝜆max Tr(H) ASR ACC 𝜆max Tr(H) ASR ACC 𝜆max Tr(H) ASR ACC 𝜆max Tr(H) ASR ACC

Initial 573.8 6625.8 100 92.96 715.5 7598.3 100 94.11 616.3 8046.4 100 89.57 564.2 7108.5 100 92.52

ANP 8.42 45.36 6.87 86.92 8.65 57.83 5.77 87.61 9.41 66.15 5.78 84.18 11.34 75.82 8.73 88.61

FIP (Ours) 2.79 16.94 1.86 89.32 2.43 16.18 0.38 92.17 2.74 17.32 2.64 87.21 1.19 8.36 1.17 90.97

Methods

CLB SIG LIRA ISSBA

𝜆max Tr(H) ASR ACC 𝜆max Tr(H) ASR ACC 𝜆max Tr(H) ASR ACC 𝜆max Tr(H) ASR ACC

Initial 717.6 8846.8 100 92.78 514.1 7465.2 100 88.64 562.8 7367.3 99.25 92.15 684.4 8247.9 99.80 92.80

ANP 8.68 68.43 5.83 89.41 6.98 51.08 2.04 84.92 11.39 82.03 6.34 87.47 12.04 90.38 10.76 85.42

FIP (Ours) 3.13 22.83 1.04 91.37 1.48 9.79 0.12 86.16 4.65 30.18 2.53 89.82 6.48 40.53 4.24 90.18

Table 7: Effect of fine-tuning only spectral shift, denoted by FIP (𝛿) or f-FIP. FIP (𝜃 ) implies the fine-tuning of all parameters
according to Eq. (8). Although FIP (𝜃 ) provides similar performance as FIP (𝛿), the average runtime is almost 4.5× higher.
Without our novel smoothness enhancing regularizer (𝑇𝑟 (𝐹 )), the backdoor removal performance becomes worse, even though
the ACC improves slightly. Effect of (𝐿𝑟 ) on obtaining better ACC can also be observed. Due to this clean accuracy retainer, we
obtain an average ACC improvement of ∼2.5%. The runtime shown here is averaged over all 14 attacks.

Method

Badnets Blend Trojan Dynamic CLB SIG WaNet LIRA

Runtime (Secs.)

ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 92.96 100 94.11 100 89.57 100 92.52 100 92.78 100 88.64 98.64 92.29 99.25 92.15 -

FIP (𝜃 ) 1.72 89.19 1.05 91.58 3.18 86.74 1.47 90.42 1.31 90.93 0.24 85.37 2.56 89.30 2.88 89.52 91.7

FIP (𝛿) w/o 𝑇𝑟 (𝐹 ) 5.54 90.62 4.74 91.88 5.91 87.68 3.93 91.26 2.66 91.56 2.75 86.79 6.38 90.43 5.24 89.55 14.4
FIP (𝛿) w/o 𝐿𝑟 1.50 87.28 0.52 89.36 2.32 84.43 1.25 88.14 0.92 88.20 0.17 83.80 2.06 86.75 2.70 87.17 18.6

FIP (𝛿) or f-FIP 1.86 89.32 0.38 92.17 2.64 87.21 1.17 90.97 1.04 91.37 0.12 86.16 2.38 89.67 2.53 89.82 20.8

Table 8: Evaluation of FIP on very strong backdoor attacks created with high poison rates. Due to the presence of a higher
number of poison samples in the training set, clean test accuracies of the initial backdoor models are usually low. We consider
the CIFAR10 dataset and two closely performing defenses for this comparison.

Attack BadNets Blend Trojan

Poison Rate 25% 35% 50% 25% 35% 50% 25% 35% 50%

Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 88.26 100 87.43 100 85.11 100 86.21 100 85.32 100 83.28 100 87.88 100 86.81 100 85.97

AWM 7.81 82.22 16.35 80.72 29.80 78.27 29.96 82.84 47.02 78.34 86.29 69.15 11.96 76.28 63.99 72.10 89.83 70.02

FT-SAM 3.21 78.11 4.39 74.06 5.52 69.81 1.41 78.13 2.56 73.87 2.97 65.70 3.98 78.99 4.71 75.05 5.59 72.98

FIP (Ours) 2.12 85.50 2.47 84.88 4.53 82.32 0.83 80.62 1.64 79.62 2.21 76.37 3.02 84.10 3.65 82.66 4.66 81.30

Table 9: Label CorrectionRate (%) for different defense techniques. After removal, we report the percentage of poison samplesthat
are correctly classified to their original ground truth label, not the attacker-set target label. We consider CIFAR10 dataset for
this particular experiment.

Defense Badnets Trojan Blend SIG CLB WaNet Dynamic LIRA CBA FBA ISSBA BPPA

No Defense 0 0 0 0 0 0 0 0 0 0 0 0

Vanilla FT 84.74 80.52 81.38 53.35 82.72 80.23 79.04 80.23 53.48 81.87 80.45 73.65

I-BAU 78.41 77.12 77.56 39.46 78.07 80.65 77.18 76.65 51.34 79.08 78.92 70.86

AWM 79.37 78.24 79.81 44.51 79.86 79.18 77.64 78.72 52.61 78.24 73.80 73.13

FT-SAM 85.56 80.69 84.49 57.64 82.04 83.62 79.93 82.16 57.12 83.57 83.58 78.02

FIP (Ours) 86.82 81.15 85.61 55.18 86.23 85.70 82.76 84.04 60.64 83.26 84.38 76.45
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Table 10: Purification performance (%) for fine-tuning with various validation data sizes. FIP performs well even with very few
validation data, e.g., 10 data points where we take 1 sample from each class. Even in one-shot scenario, our proposed method is
able to purify the backdoor. All results are for CIFAR10 and Badnets attack.

Validation size 10 (One-Shot) 50 100 250 350 500

Method ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 92.96 100 92.96 100 92.96 100 92.96 100 92.96 100 92.96

ANP 64.73 56.28 13.66 83.99 8.35 84.47 5.72 84.70 3.78 85.26 2.84 85.96

FT-SAM 10.46 74.10 8.51 83.63 7.38 83.71 5.16 84.52 4.14 85.80 3.74 86.17

FIP (Ours) 7.38 83.82 5.91 86.82 4.74 86.90 4.61 87.08 2.45 87.74 1.86 89.32

Table 11: Performance of FIP with different network architectures. In addition to CNN, we also consider vision transformer
(ViT) architecture with attention mechanism.

Attack TrojanNet Dynamic WaNet LIRA

Defense No Defense With FIP No Defense With FIP No Defense With FIP No Defense With FIP

Architecture ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC

VGG-16 100 88.75 1.82 86.44 100 91.18 1.36 90.64 97.45 91.73 2.75 89.58 99.14 92.28 2.46 90.61

EfficientNet 100 90.21 1.90 88.53 100 93.01 1.72 92.16 98.80 93.34 2.96 91.42 99.30 93.72 2.14 91.52

ViT-S 100 92.24 1.57 90.97 100 94.78 1.48 92.89 99.40 95.10 3.63 93.58 100 94.90 1.78 93.26
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Figure 5: t-SNE visualization of class features for CIFAR10 dataset with Badnets attack. For visualization purposes only, we
assign label “0” to clean data cluster from the target class and the label “11” to poison data cluster. However, both of these
clusters have the same training label “0” during training. It can be observed that FIP can successfully remove the backdoor
effect and reassign the samples from the poison data cluster to their original class cluster. After purification, poison data are
distributed among their original ground truth classes instead of the target class. To estimate these clusters, we take the feature
embedding out of the backbone.

fine-tuning 𝜃 and 𝛿 . It can be observed that FIP (𝜃 ) provides similar

performance as FIP (𝛿) for most attacks. However, the average run-

time of the former is almost 4.5× longer than the latter. Such a long

runtime is undesirable for a defense technique. We also present

the impact of our novel smoothness-enhancing regularizer, 𝑇𝑟 (𝐹 ).
Without minimizing 𝑇𝑟 (𝐹 ), the backdoor removal performance be-

comes worse even though the ACC improves slightly. We also see

some improvement in runtime (14.4 vs. 20.8) in this case. Table 7

also shows the effect of 𝐿𝑟 , which is the key to remembering the

learned clean distribution. The introduction of 𝐿𝑟 ensures superior

preservation of clean test accuracy of the original model. Specifi-

cally, we obtain an average ACC improvement of ∼2.5% with the

regularizer in place. Note that we may obtain slightly better ASR

performance (for some attacks) without the regularizer. However,
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Table 12: Performance of FIP against combined backdoor
attack. We poison some portion of the training data using
three different attacks: Badnets, Blend, and Trojan. Each of
these attacks has an equal share in the poison data. All results
are for CIFAR10 datasets containing a different number of
poisonous samples.

Poison Rate 10% 25% 35% 50%

Method ASR ACC ASR ACC ASR ACC ASR ACC

No Defense 100 88.26 100 87.51 100 86.77 100 85.82

AWM 27.83 78.10 31.09 77.42 36.21 75.63 40.08 72.91

FT-SAM 2.75 83.50 4.42 81.73 4.51 79.93 5.76 78.06

FIP (Ours) 1.17 85.61 2.15 81.62 3.31 82.01 4.15 80.35

Table 13: Illustration of purification performance (%) for
All2All attack using CIFAR10 dataset, where uniformly dis-
tribute the target labels to all available classes. FIP shows
better robustness and achieves higher clean accuracies for 3
attacks: Badnets, Blend, and BPPA, with a 10% poison rate.

Method

BadNets-All Blend-All BPPA-All
ASR ACC ASR ACC ASR ACC

No Defense 100 88.34 100 88.67 99.60 92.51

NAD 4.58 81.34 6.76 81.13 20.19 87.77

ANP 3.13 82.19 4.56 82.88 9.87 89.91

FT-SAM 2.78 83.19 2.83 84.13 8.97 89.76

FIP (Ours) 1.93 86.29 1.44 85.79 6.10 91.16

Table 14: Adaptive Badnets attack where the attacker has
prior knowledge (Eq.5) about our proposed defense.

𝜂𝐹 0 0.05 0.1 0.5

Mode ASR ACC ASR ACC ASR ACC ASR ACC

Attack 100 92.96 95.87 92.52 87.74 92.26 76.04 91.68

Purification 1.86 89.32 3.611 86.91 5.37 86.14 6.95 85.73

the huge ACC improvement outweighs the small ASR improve-

ment in this case. Therefore, FIP (𝛿) is a better overall choice as a

backdoor purification technique.

Strong Backdoor Attacks With High Poison Rates. By increas-

ing the poison rates, we create stronger versions of different attacks

against which most defense techniques fail quite often. We use 3

different poison rates, {25%, 35%, 50%}. We show in Table 8 that FIP

is capable of defending very well even with a poison rate of 50%,

achieving a significant ASR improvement over FT. Furthermore,

there is a sharp difference in classification accuracy between FIP

and other defenses. For 25% Blend attack, however, ANP offers a

slightly better performance than our method. However, ANP per-

forms poorly in removing the backdoor as it obtains an ASR of

29.96% compared to 0.83% for FIP.

Label Correction Rate. In the standard backdoor removal metric,

it is sufficient for backdoored images to be classified as a non-target

class (any class other than 𝑦𝑏 ). However, we also consider another

metric, label correction rate (LCR), for quantifying the success of

a defense. We define LCR as the percentage of poisoned samples
correctly classified to their original classes. Any method with the

highest value of LCR is considered to be the best defense method.

For this evaluation, we use CIFAR10 dataset and 12 backdoor attacks.

Initially, the correction rate is 0% with no defense as the ASR is close

to 100%. Table 9 shows that FIP effectively corrects the adversary-

set target label to the original ground truth label. For example, we

obtain an average ∼2% higher label correction rate than AWM.

Effect of Clean Validation Data Size.We also provide insights on

how fine-tuning with clean validation data impacts the purification

performance. In Table 10, we see the change in performance while

gradually reducing the validation size from 1% to 0.02%. Even with

only 50 (0.1%) data points, FIP can successfully remove the backdoor

by bringing down the attack success rate (ASR) to 5.91%. In an

extreme scenario of one-shot FIP, we have only one sample from

each class to fine-tune the model. Our proposed method is able to

tackle the backdoor issue even in such a scenario.We consider AWM

and ANP for this comparison. For both ANP and AWM, reducing

the validation size has a severe impact on test accuracy (ACC). We

consider Badnets attack on the CIFAR10 dataset for this evaluation.

Effect of Different Architectures. We further validate the ef-

fectiveness of our method under different network settings. In

Table 11, we show the performance of FIP with some of the widely

used architectures such as VGG-16 [59], EfficientNet [65] and Vi-

sion Transformer (VIT) [18]. Here, we consider a smaller version

of ViT-S with 21M parameters. FIP is able to remove backdoors

irrespective of the network architecture. This makes sense as most

of the architecture uses either fully connected or convolution layers,

and FIP can be implemented in both cases.

Combining Different Backdoor Attacks.We also perform ex-

periments with combined backdoor attacks. To create such attacks,

we poison some portion of the training data using three different

attacks; Badnets, Blend, and Trojan. Each of these attacks has an

equal share in the poison data. As shown in Table 12, we use four

different poison rates: 10% ∼ 50%. FIP outperforms other baseline

methods (MCR and ANP) by a satisfactory margin.

More All2All Attacks. Most of the defenses evaluate their meth-

ods on only All2One attacks, where we consider only one target

label. However, there can be multiple target classes in a practical

attack scenario. We consider one such case: All2All attack, where

target classes are uniformly distributed among all available classes.

In Table 13, we show the performance under such settings for three

different attacks with a poison rate of 10%. It shows that the All2All

attack is more challenging to defend against as compared to the

All2One attack. However, the performance of FIP seems to be consis-

tently better than other defenses for both of these attack variations.

For reference, we achieve an ASR improvement of 3.12% over ANP

while maintaining a lead in classification accuracy too.

Adaptive Attacks. We follow Eq. 5 in our paper to simulate an

adaptive attack. Table 14 shows that as we increase 𝜂𝐹 , the model

becomes smoother while it becomes harder to insert the backdoor,

hence, the ASR drops. However, f-FIP successfully purifies the

model even with such adaptive attacks. For larger 𝜂𝐹 , we obtain a

higher drop in ACC. The underlying reason for this could be that

the convergence point of the backdoor model is more favorable to

clean distribution. Applying f-FIP would shift the model from that

convergence point and cause this undesirable ACC drop.

t-SNE Visualization of Cluster Structures. In Figure 5, we visu-

alize the class clusters before and after backdoor purification. We

take CIFAR10 dataset with Badnets attack for this visualization. For

visualization purposes only, we assign the label “0” to the clean data
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cluster from the target class and the label “11” to the poison data

cluster. However, both of these clusters have the same training label

“0” during backdoor training. Figure 5b clearly indicates that our

proposed method can break the poison data clusters and reassign

them to their original class cluster.

7 Conclusion
In this work, we analyzed the backdoor insertion and removal pro-

cess from a novel perspective—the smoothness of the model’s loss

surface—showing that the backdoor model converged to a sharp

minimum compared to a benign model’s convergence point. To re-

move the effect of backdoor, we proposed to re-optimize the model

to smooth minima. Following our analysis, we proposed a novel

backdoor purification technique using the knowledge of the Fisher-

Information matrix to remove the backdoor efficiently instead of us-

ing naïve (e.g., general-purpose ones) optimization techniques to re-

optimize. Furthermore, to preserve the post-purification clean test

accuracy of themodel, we introduced a novel clean data distribution-

aware regularizer. Last but not least, a faster version of FIP has been

proposed where we only fine-tuned the singular values of weights

instead of directly fine-tuning the weights. FIP achieves SOTA per-

formance in terms of running time and accuracy in a wide range

of benchmarks, including four different tasks and ten benchmark

datasets against 14 SOTA backdoor attacks.

Limitations. Here, we discussed a couple of limitations of our

proposed and, hence, corresponding future works to address those.

First, it is observable that no matter which defense techniques

we use, the clean test accuracy (ACC) consistently drops for all

datasets. Here, we try to explain the reason behind this, especially

for fine-tuning-based techniques, as FIP is one of them. Since these

techniques use a small validation set for fine-tuning, they do not

necessarily cover the whole training data distribution. Therefore,

fine-tuning with this small amount of data bears the risk of over-

fitting and reduced clean test accuracy. While our clean accuracy

retainer partially solves this issue, more rigorous and sophisticated

methods must be designed to fully alleviate this issue.

Second, while our method is based on thorough empirical analysis

and corresponding theoretical justification, there is no theoretical

guarantee whether the proposed method provably removes back-

door from a pre-trained model (which is out-of-scope of this work).

However, in the case of resource-constraints safety-critical systems,

it is often necessary to use a pre-trained model; hence, provable

backdoor defense is necessary for safety-critical applications. In

future work, we will focus on provable backdoor defense for safety-

critical applications.
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A Proof of Theorem 1
Proof. Let us consider a training set {𝒙, 𝑦} = {𝒙𝑐 , 𝑦𝑐 }∪ {𝒙𝑏 , 𝑦𝑏 },

where {𝒙𝑐 , 𝑦𝑐 }2 is the set of clean samples and {𝒙𝑏 , 𝑦𝑏 } is the set
of backdoor or poison samples. In our work, we estimate the loss

Hessian w.r.t. standard data distribution, i.e. training samples with

their ground truth labels.
First, let us consider the scenario where we optimize a DNN (𝑓𝑐 )

on {𝒙𝑐 , 𝑦𝑐 } only (benign model). From the 𝐿𝑐−Lipschitz property
of loss-gradient (ref. Assumption 1, Eq. (2)) corresponding to any
clean sample3 𝒙𝑐 , we get

| |∇𝜃 ℓ (𝒙𝑐 , 𝜃1) − ∇𝜃 ℓ (𝒙𝑐 , 𝜃2) | | ≤ 𝐿𝑐 | |𝜃1 − 𝜃2 | |, ∀𝜃1, 𝜃2 ∈ Θ (10)

Now, consider the backdoor model training (𝑓𝑏 ) setup, where

both clean and poison samples are used concurrently for training.

In such a scenario, a training sample can be either clean or poisoned.

As we are using standard data distribution, we calculate the loss (ℓ)

corresponding to {𝒙𝑐 , 𝑦𝑐 }∪{𝒙𝑏 , 𝑦𝑐 }; where𝑦𝑐 indicates the original
ground truth (GT) label. Let us bound the difference of loss gradient

for backdoor training setup for any sample,

| |∇𝜃 ℓ (𝒙, 𝜃1)−∇𝜃 ℓ (𝒙, 𝜃2) | |
(𝑖 )
≤ max{| |∇𝜃 ℓ (𝒙𝑐 , 𝜃1) − ∇𝜃 ℓ (𝒙𝑐 , 𝜃2) | |,
| |∇𝜃 ℓ (𝒙𝑏 , 𝜃1) − ∇𝜃 ℓ (𝒙𝑏 , 𝜃2) | |}
(𝑖𝑖 )
= | |∇𝜃 ℓ (𝒙𝑏 , 𝜃1) − ∇𝜃 ℓ (𝒙𝑏 , 𝜃2) | |
(𝑖𝑖𝑖 )
≤ 𝐿𝑏 | |𝜃1 − 𝜃2 | |

(11)

here, step (𝑖) follows trivially as | |∇𝜃 ℓ (𝒙, 𝜃1)−∇𝜃 ℓ (𝒙, 𝜃2) | | holds for
any 𝒙 . Unlike 𝑓𝑐 and 𝑓𝑏 , we can have loss gradients corresponding

to samples from clean and poison sets; (𝑖𝑖) leverages the properties
of backdoor training where the backdoor is inserted by forcing

𝑓𝑏 to memorize the specific pattern or trigger 𝛿 , specifically the

mapping of 𝛿 → 𝑦𝑏 . At the same time, 𝑓𝑏 learns (does not memorize)

image or object-related generic patterns in 𝒙𝑐 and maps them to

2
Note that we use {𝒙𝑐 , 𝑦𝑐 } to denote clean samples whereas {𝒙, 𝑦} was used in the

main paper to denote all training samples. We start with a clean training set, {𝒙, 𝑦},
and then add the trigger to some of the samples 𝒙𝑏 with target label 𝑦𝑏 that produce

poison set, {𝒙𝑏 , 𝑦𝑏 }.
3
Here, loss-gradient corresponding to clean sample means we first compute the loss

using clean sample and then take the gradient.

𝑦𝑐 , similar to 𝑓𝑐 . Let us denote the optimized parameters of 𝑓𝑏
as, 𝜃1. Since 𝑓𝑏 is optimized to predict 𝑦𝑏 , we have a high loss

gradient ∇𝜃 ℓ (𝒙𝑏 , 𝜃1) if we consider GT label 𝑦𝑐 for 𝒙𝑏 . Note that
the backdoor model becomes too sensitive to the trigger due to

the memorization effect. However, a certain group of parameters

(𝜃 (𝑏 ) ) show far more sensitivity to the backdoor as compared to

others (𝜃 (𝑐 ) ), where 𝜃 = 𝜃 (𝑐 ) ∪ 𝜃 (𝑏 ) and |𝜃 (𝑏 ) | << |𝜃 (𝑐 ) |. This
has also been shown in previous studies [9, 41, 72]. Therefore,

even a small change to 𝜃 (𝑏 ) will make the backdoor model show

significantly less (or no) sensitivity to the trigger. On the other

hand, a small change in 𝜃 (𝑐 ) has very little impact on recognizing

image-related generic patterns. Now, consider a scenario where

𝜃1 is slightly changed to 𝜃2. Due to this shift, the loss gradient

∇𝜃 ℓ (𝒙𝑏 , 𝜃2) becomes significantly smaller if we calculate it w.r.t.
𝑦𝑐 . This happens for the following reasons: (1) Due to the change

in 𝜃 (𝑏 ) , the model does not show sensitivity towards 𝛿 anymore.

(2) As mentioned before, with small change in 𝜃 (𝑐 ) , the model can

still recognize patterns in samples. This means the model ignores 𝛿

in 𝒙𝑏 (= 𝒙 + 𝛿) while recognizing image-related patterns in 𝒙 and

predicting the GT label 𝑦𝑐 . Therefore, the change in loss gradient

(| |∇𝜃 ℓ (𝒙𝑏 , 𝜃1)−∇𝜃 ℓ (𝒙𝑏 , 𝜃2) | |) is large. On the other hand, due to the
reason (2), the change in loss gradient (| |∇𝜃 ℓ (𝒙𝑐 , 𝜃1)−∇𝜃 ℓ (𝒙𝑐 , 𝜃2) | |)
is smaller. Finally, we can write the following,

| |∇𝜃 ℓ (𝒙𝑐 , 𝜃1) − ∇𝜃 ℓ (𝒙𝑐 , 𝜃2) | | ≤ 𝐿𝑐 | |𝜃1 − 𝜃2 | |
| |∇𝜃 ℓ (𝒙𝑏 , 𝜃1) − ∇𝜃 ℓ (𝒙𝑏 , 𝜃2) | | ≤ 𝐿𝑏 | |𝜃1 − 𝜃2 | |

(12)

In our above discussion, we have shown that

| |∇𝜃 ℓ (𝒙𝑐 , 𝜃1) − ∇𝜃 ℓ (𝒙𝑐 , 𝜃2) | | < | |∇𝜃 ℓ (𝒙𝑏 , 𝜃1) − ∇𝜃 ℓ (𝒙𝑏 , 𝜃2) | |
Therefore, for the same set of 𝜃1, 𝜃2, Eq. 12 suggests that 𝐿𝑐 < 𝐿𝑏 .

Note that 𝐿𝑐 < 𝐿𝑏 holds if we consider the smallest Lipschitz

constant for Eq. 12 [5] (𝑖𝑖𝑖) follows the definition of smoothness.

Hence, the loss of the backdoor model is 𝐿𝑏−Smooth and 𝐿𝑐 < 𝐿𝑏 .

□

Takeaway from the theoretical analysis. Based on Theorem 1,

we can rewrite Eq. 3 for a backdoor model,

sup

𝜃

𝜎 (∇2

𝜃
L) ≤ max{𝐿𝑐 , 𝐿𝑏 } (13)

where L is the loss-function of the backdoor model computed over

{𝒙, 𝑦} = {𝒙𝑐 , 𝑦𝑐 } ∪ {𝒙𝑏 , 𝑦𝑐 }.
The R.H.S. of Eq. 13 represents the supremum

4
for smoothness

of a backdoor model. From Eq. (11), it can be observed that 𝐿𝑐 < 𝐿𝑏
which leads to the following form of Eq. 13,

sup

𝜃

𝜎 (∇2

𝜃
L) ≤ 𝐿𝑏 (14)

Hence, a backdoor model tends to show less smoothness on L,

computed over {𝒙, 𝑦} = {𝒙𝑐 , 𝑦𝑐 } ∪ {𝒙𝑏 , 𝑦𝑐 }, as compared to a

benign model with 𝐿𝑐−Lipschitz continuity.

4
We used the definition of supremum (https://en.wikipedia.org/wiki/Infimum_and_

supremum) slightly differently than the formal definition. By supremum, we indicate

that max{𝐿𝑐 , 𝐿𝑏 } is the lowest value for the Lipschitz constant of the backdoor model

𝑓𝑏 (.) to hold Eq. (13).

https://arxiv.org/abs/2303.06818
https://en.wikipedia.org/wiki/Infimum_and_supremum
https://en.wikipedia.org/wiki/Infimum_and_supremum

	Abstract
	1 Introduction
	2 Related Work
	3 Threat Model
	4 Smoothness Analysis of Backdoor Models
	5 Fisher Information guided Purification (FIP)
	5.1 Fast FIP (f-FIP)

	6 Experimental Results
	6.1 Evaluation Settings
	6.2 Performance Evaluation of FIP 
	6.3 Ablation Study

	7 Conclusion
	References
	A Proof of Theorem 1

