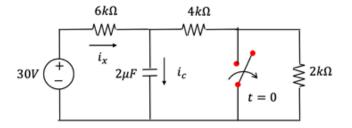

Exercise 8, Question 1

Three inductors are connected to a voltage source. Given the following, compute $i_1(t)$, $v_{\chi}(t)$ for ≥ 0 . Also, find the energy stored in inductor L_1 at t=0 and $t=\infty$.

$$v_s(t) = 10 e^{-5t} \text{ V, for } t \ge 0$$

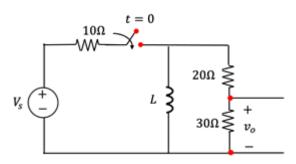

$$L_1 = 0.8 \text{ H}, i_1(0) = -6 \text{ A}$$

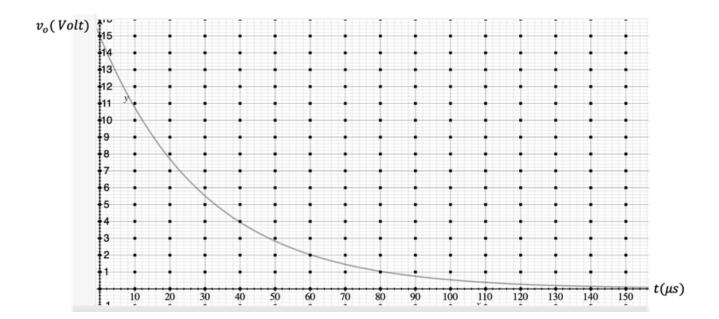
 $L_2 = 2 \text{ H}, i_2(0) = -10 \text{ A}$
 $L_3 = 3 \text{ H}, i_3(0) = 4 \text{ A}$

Exercise 8, Question 2a

The switch was closed for long time. At t = 0, the switch is open.

- Complete the table below by finding i_c and i_x at the shown times. Find τ the circuit time constant for $t \ge 0^+$
- Sketch the variation of $v_c(t)$, showing the initial value, the final value, and the duration of

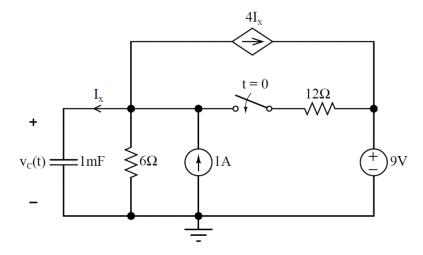

	i_c	i _x
$t = 0^+$		
$t = \infty$		


Exercise 8, Question 2b

The switch was open for a long time. At t=0, the switch is closed The variation of $v_o(t)$ for $t\geq 0^+$ is as shown,

- Find the value the inductance L
- Find the value of the voltage source V_s

You may assume that the signal reaches its final value after a time approximately equal 5τ



Exercise 8, Question 3

3. In the above circuit, the switch closes at t=0 after being opened for a long time. Determine the mathematical expression for $v_{\mathcal{C}}(t)$ for >0.

HINT: In steady-state analysis, determine I_x and make good use of this finding.

