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Abstract— Deep learning models are susceptible to contrived
adversarial examples, even in the decision-based black-box setting
where the attacker has access to the model’s decisions only.
Developing more efficient and practical attacks help in better
understanding the limitations of deep models. It is important
that attacks are crafted with limited queries to avoid sus-
picion. Since the required number of queries increase with
dimensions, low-dimensional embeddings are attractive. This
low query budget constraint is a bottleneck for learning-based
and data-driven attacks which rely heavily on querying the
model. We propose LSDAT, an image-agnostic non-data-driven
decision-based black-box attack that exploits low-rank and sparse
decomposition (LSD) of images to dramatically reduce the queries
and improve fooling rates compared to existing methods. LSDAT
crafts perturbations in the low-dimensional subspace formed
by the sparse component of the input image and that of a
target adversarial image to obtain query-efficiency. A viable
perturbation is obtained by traversing the path between the
input and adversarial sparse components. Theoretical analyses
are provided to justify the functionality of LSDAT. Unlike
other competitors (e.g., FFT), LSD works directly in the image
domain to guarantee that non-{, constraints, such as sparsity,
are satisfied. LSDAT offers better control over the number of
queries and is computationally efficient as it performs sparse
decomposition of the input and adversarial images only once to
generate all queries. Four variants of LSDAT are presented for
different scenarios including a pure black-box attack where no
queries are allowed. We demonstrate £, £, and {», bounded
attacks with LSDAT to evince its efficiency compared to baseline
attacks in diverse low-query budget scenarios. LSDAT obtains
15 to 20% improvement in fooling ResNet-50 while using far
fewer queries than competing methods in a similar setting.

Index Terms—Low rank and sparse decomposition, black-
box attack, adversarial examples, query budget, decision based
attack.
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Fig. 1. Overview of LSDAT. LSD is performed to extract sparse components
of the input image and some initial adversarial sample. The path between the
two sparse components is then gradually traversed with a step size («) to
blend the sparse components via a weighted combination. The perturbation
is projected to satisfy the imperceptibility constraint. Finally, the perturbed
image is obtained by adding the blended sparse component S; to the low-rank
component of the input image. The target model is queried with the perturbed
image. If the model is not fooled, the process repeats with increasing values
of iteration index (i = i + 1) until the model is fooled or the query budget
gets exhausted.

I. INTRODUCTION

EEP learning has brought revolutionary change across

academia, industry, and daily life. Deep neural network
models can often match or surpass human performance on
well-defined cognitive tasks in ideal conditions such as image
understanding related tasks [49]. However, their performance
sharply degrades under minor alterations to the input signals or
task objective. The distinct gap in robustness between human
and computational intelligence is a central challenge for the
next generation of AI research. Adversarial vulnerability is
a striking example of the shortcomings of deep learning. The
outputs of virtually all deep learning models are extremely sen-
sitive to small changes in the input signal. This sensitivity can
be exploited to create imperceptible signals that completely
disrupt network performance. The failure of computational
systems to match human robustness is a crucial gap that must
be bridged before Al can be deployed in security-critical con-
texts such as autonomous driving, medical diagnosis, malware
detection, spam detection, intrusion detection, cybersecurity,
video surveillance, robotics, financial services fraud detection,
access control, and medical diagnosis [55]. Adversarial attacks
are applicable to all deep-learning-based real-world systems
such as speech recognition [11], speech-to-text conversion
[13], face recognition [50], visual classification [25], malware
detection [28], [31], and other general physical world cases as
discussed in [5] and [36]. In this paper, we focus on black-box
adversarial attacks in image understanding related tasks.
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Adversarial disruptions are mainly studied to gain insights
into the inner working of DNNs or to measure their robustness
and resilience to adversarial disruptions, which is then useful
to build and deploy a universal security system to protect Al
models from imperceptible adversarial attacks. In adversarial
attack, the threat is on the model (to cause misclassification)
and the way to impose the threat is by creating adversarial
examples. Generally, adversarial attacks can be launched in
a white-box setting, where the attacker has full knowledge of
complete DNN model [12], [27], [34], [40], [43], [47], as well
as in a black-box setting, where access to only the model
output is available [1].

The taxonomy of adversarial attack and defence scenarios
in the literature progresses based on the amount of information
provided to the attacker. It has been considered to be scoped
down through time to less and less amount of information. The
scope has been condensed from having full access to models
to only having access to the data or the logits, and ultimately
only the decisions of the models, i.e., the top-1 labels.

Designing an attack in this setting seems difficult as the
attacker can only query the model to obtain a decision and
even not a score like a logit. Many authors estimate the
logits and decision boundary using several queries to the
model. This made decision-based attacks in low-query budgets
a recent challenge in the literature. Deep learning methods
may require many queries to estimate the decision boundary
with high precision. However, applying a large number of
queries to a black-box model is contrary to the low-query
budget assumption. Hence, in practice, when the query budget
is short or in the extreme case (pure black-box setting) is
zero, the attacker cannot use the learning methods, and it
is inevitable to apply the model-based image-agnostic low-
dimensional mappings such as Fast Fourier Transform (FFT)
in order to approach the curse of dimensionality in designing
the adversarial attacks. The classical signal processing model-
based transforms are leveraged as they do bypass the learning
procedure and further need for the queries.

To this end, we propose to employ Low-Rank and Sparse
Decomposition (LSD) for decision-based black-box attack;
LSDAT for brevity, which is efficient and works under a
very low-query budget. The merit in using this approach is
three-fold: 1- sparse perturbations are effective in fooling the
classifiers, 2- they are imperceptible, 3- the sparse perturbation
is image-agnostic and remains in the image original domain.
Therefore, no further transformations are required as in other
low-dimensional mappings (e.g., FFT) because transforms and
their inverse add up to computational complexity.

The main contributions of the current work are then sum-
marized as follows: noitemsep

« We propose an efficient decision-based black-box attack
(LSDAT) that exploits the low rank and sparse decompo-
sition of images to
drastically reduce the number of queries.

« We introduce an online learning technique to build prior
knowledge from successful attacks. Through sequential
attacks, a group of prominent initial adversarial images
(IAls) are organized into 2 levels of class-specific and
global dictionaries to be used as candidate IAls for
upcoming attacks. We empirically demonstrate that the
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top-1 entry of the global dictionary is one of the universal
adversarial images and establish theoretical properties for
such images. Exploiting the prior information signifi-
cantly reduces the average queries.

o The work is buttressed with theoretical analyses which
establishes why the proposed sparse perturbation is
functional.

o We present variants of LSDAT matching different attack
scenarios including pure black-box (zero-query) attack,
hierarchical dictionary-based attack, ensemble of substi-
tute models-based attack, and diversity-based attack.

« We provide analysis on how the computational complex-
ity of LSDAT is less compared to other transform-based
decision-based methods such as FFT-based attacks as
LSDAT need not fetch the image from and to the trans-
form domains and generates all perturbations with the
one-time LSD.

o The experimental results are provided which establish
the superiority of LSDAT to state-of-the-art (SOTA) in
fooling rate under similar perturbation budget constraints.

II. RELATED WORK

Adpversarial attacks can be categorized in two broad groups,
namely white box attacks and black-box attacks. In white
box scenario, the attacker has a full access to the model
architecture, parameters and data distribution. Due to non-
linearity of deep learning models, many white-box adversarial
attack methods rely on local information of the model such
as its gradients or hessian (curvature info) in order to obtain
linear or second order approximation of the model and hence-
forth, facilitating crafting the adversarial attack through linear
or quadratic programming. This can lead to energy-efficient
quasi-imperceptible perturbation computation. Deepfool [43],
FGSM [27], Carlini & Wagner attack [12], Projected Gradi-
ent Attack (PGD) [40], Jacobian-based Saliency Map Attack
(JSMA) [47], Elastic-Net Attack [15], and Adversarial-Bandit
Attack [34] are some of the well-known attacks in this cate-
gory. To this end, the authors in [43] proposed Deepfool, as an
efficient instance of gradient-based methods, which works
based on linear approximation of the classifier near its bound-
ary. In [59], the authors have extended this concept and have
approximated the classifier’s boundary with a second-order
expansion. Benefiting form a trust-region based quadratically
constrained quadratic programming (QCQP), their method
Trust Region Attack further ameliorates the attacker’s per-
formance via considering the local curvature information and
fine-tuning the perturbation direction.

Transfer-based attacks rely on the transferability of adver-
sarial examples among models and exploit substitute models
to craft these, for example the attacks proposed in [20],
[32], [39], and [46]. In this scenario, the attacker has access
to the data distribution but has no information about the
model. Another category is score-based attack that limits the
attacker’s knowledge only to the model scores such as the
class probabilities or logits. The attacker tries to estimate
the gradient of the model from the score through significant
number of queries. References [3], [6], [16], [33], [37], [42],
[44], and [54] are some of the efficient methods in this group.
A query-efficient score based method is presented in [6].
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Other examples of score-based attack method include Gradient
Approximation QEBA [37], AdvFlow [42], AutoZOOM [54],
Z0O0 [16], LocalSearch [44], GenAttack [3], Query-Limited
Partial-Information Attack [33], and LeBA [58], which is a
combination of query-based and transferability-based methods,
to name a few.

Decision-based attacks are the most challenging scenario
which narrows the attackers vision only to the classifier’s
top-1 hard label output. The first work considering decision-
based attack was the Boundary Attack (BA) proposed in [8].
BA estimates the boundary and moves along it to minimize
the perturbation. The Query-Limited Attack [33] leverages
a Monte-Carlo approximation approach to approximate the
model scores based on the label-setting only and from there on,
proceeds with score-based Partial Information Attack. This can
be achieved by applying several queries and averaging them
to estimate the logits. In addition to inferior accuracy in esti-
mating the logits, this approach contradicts query-efficiency
as it requires even more queries to approximate the logits.
Another efficient decision-based method is HopSkipJumpAt-
tack (HJSA) [14] which is based on estimating the gradient
direction using top-1 class labels. A natural evolutionary (NE)
algorithm has been introduced to update the data covariance
matrix after certain queries to reduce the search space from a
sphere to an quadratic eclipse characterized by the covariance
matrix. As the method proceeds, the empirical covariance
matrix of data is updated. Assuming Gaussian prior, the
algorithm becomes much faster and more efficient by reducing
the search space from sphere to an eclipse characterized by
the updated covariance matrix [24].

A similar approach in updating covariance matrix based on
truncated Gaussian distributions is leveraged to adapt Deepfool
to the decision-based GeoDA method [48]. Natural evolution-
ary strategies (NES) were first considered by Ilyas et al. [33]
in designing query-efficient attacks. Cheng et al. [18] model
the top-1 label attack as a real-valued optimization problem
and use zeroth-order optimization approach to design query-
efficient attack using randomized gradient-free method (RGF).
Zhao et al. [62] have proposed ZO-ADMM method where
they integrate the alternating direction method of multipliers
(ADMM) with zeroth-order (ZO) optimization and Bayesian
optimization (BO) to design a query-efficient gradient-free
attack. In [19], the authors extend the optimization based
approach and estimate the gradient sign at any direction
instead of the gradient itself and introduce Sign-OPT which
is more query-efficient compared to OPT.

Another sign-based method, SIGN-HUNTER [2] exploits
a sign-based gradient approximation rather than magnitude-
based to devise a binary black-box optimization. Their method
does not rely on hyper-parameter tuning or dimensionality
reduction. Chen, et. al. have suggested to randomly flip the
signs of a small number of entries in adversarial perturbations
and this way, boost the attacker’s performance, specifically
in defensive models compared to EA, BA, SimBA [29],
SignOPT, and HSJA [17]. Reference [9] offers a bias for gradi-
ent direction based on a surrogate model. Dimension reduction
based attack techniques are investigated to achieve query
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efficiency. Sign-OPT-FFT [19], Bayes Attack [51], SimBA-
DCT [29], QEBA-S, QEBA-F, QEBA-I, and GeoDA-Subspace
[48] are which are effective in £, attacks, but in order to
guarantee other imperceptibility bounds, they must fetch to the
original and transformation domains consecutively, imposing
computational burden on their procedure. Certain methods
focus on crafting attacks which are sparse in the image
original dimensions such as SparseFool [41], GreedyFool [23],
Sparse attack via perturbation factorization [26] (for white-
box), and Sparse-RS [22], CornerSearch [21] and GeoDA
(sparse version) [48] (for black-box). The most competent
method in low-query black-box attacks is the recent method
Square-Attack [4]. We will consider Square-Attack which also
outperforms the main rival considered in our work (Bayes
Attack) in our final comparisons.

III. PROPOSED METHOD: LSDAT

The proposed LSDAT method is considered for untargeted
black-box adversarial attack. Untargeted attack can be formu-
lated as the following optimization problem:

rr%in I8ll, s.t. CXo+8) #C(Xp), (1)

where § denotes the added perturbation. The goal is to mini-
mize the £,-norm of the perturbation such that when applied
to the input image Xy, the classifier C is fooled.

Since LSD is one of the main building blocks of the pro-
posed attack, here we briefly introduce it to be self-contained.
LSD is a well established optimization problem studied in
classical machine learning with image and video processing
applications [7], [38], [45], [63]. LSD is an image-agnostic
and non-data-driven transform which assumes most images
can be explained with a low-rank background plus a sparse part
which is decisive in classifying the image. Mathematically,
if an image is denoted by X, LSD can be formalized as:

I{liél rank(L) + A[|Sllo, st. X=L+S§, )

where L is the low rank and S is the sparse component. The
regularization coefficient A determines the sparsity level of S.
The convex surrogate functions for the rank function and the
£o-norm are considered to be the trace norm ||.||s« and the £1-
norm, respectively. Hence, Problem (2) can be cast as a convex
optimization problem

I{liél 1Ll + AlISI1, st. X=L+8S. 3)

There are several methods to solve the result convex pro-
gramming, among which we work with Robust PCA ak.a
RPCA. Many packages can be utilized that efficiently solve
(3). We use the GODEC method [63] to perform LSD.

The sparse part consists of far less (in terms of order
of magnitude) non-zero pixels compared to the target image
dimensions; while these reduced data are highly informative
and well represent details of the image and are therefore
decisive in classification [57], [60], [61]. As already stated,
we present several variants of LSDAT depending on the
scenario considered for the attack. For now, we present the
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most primitive one which is LSDAT(R) working with only
one randomly selected IAI from a pool of possible IAls. Later,
we will introduce next variants which are designed to reduce
the number of required queries to reach the idea of pure
black-box scenario. These include LSDAT(D), a dictionary
based method, LSDST-ES (consensus-based performance on
ensemble of offline models), and LSDAT-HYB (a mixture of
dictionary-based and ensemble of models).

Algorithm 1 summarizes the core LSDAT approach with
one IAI (LSDAT(R)). An IAI (with a ground truth label
different from the target image) is randomly selected. For
instance, the IAI can be chosen from the labeld validation
set of the data distribution to be attacked. If no prior pool
of IAls is available such as in the pure black-box scenario,
the label can be known at the cost of one query to the real-
time (online) model or alternatively, annotated by another
trustworthy cognition model available for the attacker in an
offline mode. These different cases will shape the LSDAT
variants to be scrutinized later. LSD is performed on the
original and the IAI of interest, X, and X,, respectively.
Next, the sparse components of the two images, refereed
to as S, and S,, are extracted using LSD. The union of
sparse components form a low-dimensional subspace S in the
original domain. There are noticeably fewer pixels (effective
dimensions) in S compared to the original image dimensions.
This helps reducing the number of queries for crafting the
perturbation (the number of queries generally scales with the
dimensions justifying why low-dimensional transforms are
used to craft the perturbation in a low-dimensional space).
Narrowing down the attack vision to S, we propound that
for some certain IAI X,, Enforcing the sparsity constraint,
the adversarial perturbation of interest, i.e., the sparsest vector
from the original sample to the decision boundary, will be a
linear (more specifically a convex) combination of S,, S, that
lies on the direction S, —S,. This will be theoretically shown
in Section V.

The attack attempts to induce a new sparse pattern (S,) into
the perturbed image X, which is highly informative of X, and
suppresses S, while traversing from S, to S,. It is worth noting
that the alteration from one sparse component to another is
done via a weighted combination of both. Since the traversing
is in a low-dimensional subspace, the semantic transform from
X, to X, is carried out rapidly and within few steps (queries).
In other words, small step sizes (perturbations) in the sparse
domain leads to more drastic changes in the image concept.
In Section V, we will show how a locally linear classifier
(LLC) functions well based on a basis of low rank and sparse
components and verify the efficacy of using sparse components
as decisive elements in classification. Fig. 2 demonstrates this
procedure.

After obtaining the perturbation on the specified direction
of interest, i.e., S, — S,, the perturbation is projected on the
£p-ball depending on the imperceptibility constraint. Projec-
tion is denoted by IT,, in Alg. 1 line 4. £, norm bounds are the
prevalent perturbation constraints considered in the literature.
In our work, we consider £y, £,, and £, norm bounds on the
perturbations.
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Algorithm 1 LSDAT With One Initial Adversarial Image (IAI)
Require: (X,, r): target image and its class, X,: Initial adver-
sarial image, MaxIter: Maximum number of iterations,
«: sparse traversing rate, p: £, constraint type, 7 =
Imperceptibility constraint budget {k, €, o'}
Output: X,: Perturbed image, Np: Number attempted
queries, Fyuqck: Attack success flag
Initialization: X, <~ 0, Ng < 0, Fyy ek < False,i <
1
1 (Lo, So) <~ LSD(X,), (La, Sa) < LSD(X,)
2: while i < Maxlter do
33 S < (@xi)Ss+ (1 —axi)S,
4 8 <= S, + 1,8 —S,,7T)
5: X; < Lo+ S;
6
7
8
9

¢ = Query(Xj)
if ¢ # r then
Fartack < True, Ng < i, X, < X;

break
10: end if
11: i=i+1

12: end while
13: return X, N, Faack

+.

Perturbation = I1,(S; S, )

Ball Mustiff

Original Image

Adversarial Image

Fig. 2. Illustration of LSDAT. Perturbation lies on the path S, — S, and is
added in a step-wise fashion to S,, which is finally added to X,.

Finally, the perturbation IT1,(S; — S, T) is added to the
image, which is defined as £, norm projection I of the
perturbation under the imperceptibility constraint budget in
Alg. 1. In Alg. 1, we use interchangeable representation by
obtaining the resulted sparse part of the perturbed image
denoted with S;. in Fig. 1, followed by adding it to the low-
rank component of the target image L, to form the candidate
perturbed image for each query. The perturbation of interest is
both effective (lies on S) and sparse (a vertice on the £; ball
centered at X,).

One motivation of preferring LSD to FFT-based methods is
that although transform methods like FFT-based or spatial-
based approaches optimally represent geometric structure
information of images, they cannot extract entire contours and
edges accurately, while the LSD can extract the edges and

1 : €
I (V,e) = 1, V.
2(V, €) = min{ ”V”%}

V =Tlx(V,0): Uz{j = sign{v;;} min{|v;;|, 7}¥(, j)
Mo (V, k): Keep the largest k£ elements of V in magnitude and set the rest
to zero.
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salient parts of an image in an image-agnostic fashion. Side
effects, such as pseudo Gibbs phenomenon and false contours
are downsides of domain transform-based methods [60].

IV. CHALLENGE OF SELECTING IAI

As stated previously, the perturbation direction of interest
is set as S; — S, for some S, to maintain sparsity and small
perturbation £, norm. A random choice, nevertheless, may not
yield the optimal perturbation direction. Thanks to noticeable
query-efficiency of LSDAT, the attacker can explore among
several IAls in a non-pure-black-box scenario. We call this
set of random samples the exploration set, £. If the initial
adversarial image budget of an attack per sample is G, the set
& is gathered such that |£| = G. To launch an attack to the
image X,, we consider one sample at a time, drawn from &
as the IAI and apply Alg. 1 to it. Note that, if the attack is
successful at any point, the rest of the exploration set will not
be attempted. Thus, the number of queries is upper bounded by
(j x MaxIter)+ Ng, where j is the number of unsuccessful
initial adversarial attempts and N is the number of queries
used in the successful attack.

A. Online Learning With Hierarchical Dictionaries

Black-box attack scenarios can be categorized into isolated
and non-isolated ones. In non-isolated attacks, where the goal
is to attack a set of images rather than a single one, the attacker
can build a prior knowledge through the attacking process by
learning the set of elite IAIs which are universal in fooling the
previously attacked target images. These prominent samples
are organized into a hierarchy of class-specific and global
dictionaries. The intuition is that if one IAI functions well for
multiple images of a specific class; for instance the class cat;
it is also very likely to be a good initial adversarial point for
the other instances of that class. If the class-specific dictionary
does not have any entry or the number of entries is limited,
the best IAIs are those which have successfully fooled other
classes so far. All dictionaries’ entries are always ranked based
on their score, which is defined as the number of successful
attacks for that image as an IAI up to now.

Our proposed dictionary-based attack exploits the previous
good TAIs to launch a new attack with fewer queries. In a
new attack on a target image X with label r and the IAI
budget of G, first the entries of class-specific dictionary for
class r are selected one after the other as the IAI If none
of them leads to an adversarial counterpart for X, and the
budget G is not met, the remaining initial images are picked
from the global dictionary and if exhausted, from random
sampling (Figure 3). If the attack is successful, we update
the dictionaries accordingly, i.e. update the score for the
dictionaries entries or adding a new item to them. As the
attacking process continues, the dictionaries become richer to
the point that top-1 entry of the global dictionary contributes
significantly in successful attacks. We refer to this IAI as
universal 1Al The properties of such images are investigated
theoretically in the next section. LSDAT using dictionary is
denoted as LSDAT(D) throughout the paper.

1565

Clas ecific dicti g 5 - :
55 specific dictionary Hierarchical Dictionaries

# 5!1

¥ (child, 1)
¥ i
g

Xo,1)

Top-1

=
L

€ exploration set

Global dictionary

Top-1

!

-

Fig. 3. Hierarchical dictionary structure for initial adversarial image provider.
At each point, the image is fetched based on the class label r and the index
i in the budget G.

V. THEORETICAL ANALYSIS

Now, we establish the theoretical analysis for LSDAT.

We assume the original and the adversarial images are
decomposed as X, = L, +S,, X, = L, +S,, where L,, S,
and L,, S, denote the low rank and sparse components of the
original and the adversarial images, respectively. The goal is
to show that S, — S,, is a viable sparse perturbation direction
centered around X,, that can fool the model. Before delving
into the analysis, we elaborate on the geometric interpretation
of LSDAT functionality, as depicted in Fig. 4. It is known
that an £1-ball centered at X, has sharp corners (vertices).
If one gradually enlarges congruent £;-balls centered at X,,
it is highly likely that one of them intersects the decision
boundary at one of its sharp corners which is a well-known
property of £; contours.

Moreover, the £1-balls centered at X, also intersect with the
subspace spanned by S, and S, denoted as S. The intersection
can be formulated as Zi Soi |lwii| + Zj Sqjlwaj| = cte, where
Soi and s,; are the i and j element of S, and S,, respectively,
and wy; and wy; are the ¢; ball parameters. A specific
direction which lies on S and also forms a vertex for one
£1-ball (due to sparsity) is S, — S,. The goal is to show that
for some initial S,, traversing the path S, —S,, starting from X,
introduces a viable sparse perturbation which is highly likely
to be the most aligned sparse direction with the shortest path to
decision boundary (8) compared to other vertices of the £;-ball
IX —X,|l1 = cte. Therefore, a perturbation lying on S, — S,
is both sparse and hence norm-constrained, and also likely to
cross a decision boundary due to relative alignment with &.
The described concept can be visually observed in Fig. 4.

Now, we delve into mathematical analysis. First, we assume
the decision boundary can be locally linearized in part of an
e-net covered by X, and some initial X, in the exploration
set £ (for larger ||£]|, LSDAT is more likely to find such e-
net), where € is a small value. In general, considering there
are P nearest samples in an e-net covering local decision
boundary, a locally linear classifier (LLC) can be estimated
using regression on a basis composed of low-rank and sparse
components B = {L;, S,-}f: 1- The local regression weights can
be used for classification (fed to a linear SVM for instance).
It is shown in [61] that LLC trained on the basis formed
by LSD components of nearest samples yields a favorable
classifier with small generalization error. An LLC is governed
by certain regression weights near each sample. This leads to
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—  Projection of 5 onto S-S,
+ Intersection between s and #,ball

s:Subspace formed by s,.s,

Fig. 4. Geometric illustration of LSDAT. The attempt is to show that among
sparse directions, S; —S, is likely to be the most aligned one with the shortest
path to decision boundary §, and therefore is likely to cross the decision
boundary as well as maintaining perturbation norm efficiency.

a nonlinear classifier in general as different parameters are to
be utilized for different local regions. Considering an e-net
covering decision boundary consisting of X,, the desired LLC
can be obtained as follows:

P
min > [X, = Beyl? +4ld, © el )
14

p=1

where d,, is defined as d, = exp ( ). o determines
the decay rate for locality, and dist(X,, B) is the distance
between X, and basis elements in . Therefore, any sample
in this e-net can be written using the low rank and sparse basis
expansion as

dist(X,,B)
o

X, = Be, = B(e)¢, + B(et, (5)

where B(¢) = [L,, S,, La, Sal, B(e) = B\B(¢), and ¢, t are
split components of ¢, indexing B(e) and B(e), respectively.
The LLC prioritizes the components based on the distance
from the samples. We have assumed the e-net is covered by
X, and X,. Thus, they are dominant terms in LLC, and for
some 7 (€, o) which is increasing w.r.t ¢ and €, we have ||t||% >
(1 —7%(€,0))llcp lI3. This means,

IX, — Bt = [1B()&,ll < t(e, o) I1BE)lopllepll  (6)

For small o and € values, T becomes small and the dominant
components of ¢, index B(e). Taking the latter into account,
X, = Bt + O(r) = B(et.

We are specifically interested in some point X, (as the
perturbed image) that lies in the e-net and while maintaining
the sparsest perturbation form X,, fools the model. Let t =
[t1, 12, t3, t4]. The perturbation X, — X,, can be written as,

(t1 — DLy + (12 — DS, + 1314 + 1484 (7

It is desired that the perturbation 1- be sparse (or £, bounded)
as much as possible, 2- be aligned with the side information
of the fooling direction, i.e., X, — X,,, as much as possible,
and 3- the perturbed image X, be close to X, in the e-net
as much as possible so as to cross the boundary and fool
the model. Therefore, to find the desired perturbation, the
following optimization over t is suggested:

p it — DLo + (12 — 1)So + 13La + 14Sallo +

sparsity measure

min
[t1,12,13,14]
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)‘9((1‘1 - 1)La + (2 — DS, + t13L4 + 1484, Xs — Xo) +

alignment with the difference direction L,+S,—L,—S,
2
I11Lo + 1280 + (13 — DLg + (24 — DS4l3 8)

distance of X, to the adversarial sample

where A and p are regularization coefficients. When p is
large enough (which is a reasonable assumption enforcing
restricted perturbation norm), coefficients of L, and L, tend
to 0 in the ¢; regularized term promoting sparsity because
these are largely non-sparse terms compared to S, and S,
(similar to sparse group lasso [52]). This leads to #; =
1, 13 = 0. Therefore, the sparsity-constrained term shrinks to
I[(t2 — 1)S, + t4S4llo. Assuming orthogonality of the linear
combination of S, and S, to L, — L, on the basis B(¢),
the third term (distance of X, to X,) can be written as
I#1Lo + (13 — DLa |13 + 122S0 + (24 — 1)Sall3. As stated, #; and
t3 values are forced by large .

The compromise between the controllable expression in
the third term ||nS, + (t4 — l)Sa||%, the sparsity regularizer
itz — DS, + 14S40l0, and the alignment term with the
difference direction A{(t; — 1)S, +1S., X, —X(,),2 determines
the weights 2, 4. Remembering the orthogonality assumption
of sparse terms combinations to low-rank terms combinations,
the alignment term can also be reduced to be expressed only
based on sparse terms as A{(t2 — 1)S, + 1S4, Sq — So)-

The ultimate obtained programming is on variables
ty, t4 with S, and S, as the determining elements. The solution
therefore lies on the subspace containing the sparse parts, S.
There are two pressing reasons why the solution yields the
desired direction S, — S, (r» = 0,74 = 1). First, large A
makes the alignment term a determining one. Second, the
notion of group sparsity can be applied from the beginning
instead of ¢p norm because S, and S, are already sparse
and #; and #3 are set to zero for large enough w. The group
sparsity term decomposed over low-rank and sparse terms
leads to weighted sum of their £, norms. Neglecting the low-
rank terms, the resulted problem has only ¢> norms and is
hence a quadratic programming whose solution lies on the
direct line between S, and S, depending on the compromise
of the regularization coefficients. The sparsity regularizer is
minimized for ©, = 1,74 = 0, and the distance term is
minimized for t, = 1,74 = 0. Thus, the solution lies on
this direction of interest, i.e., when there is a compromise of
both (large u < 00), the solution lie somewhere on the sparse
perturbation vector (0, S, — S,).

As mentioned, there may exists some universal samples
in a dictionary of elite samples which are globally capable
of fooling the model for input samples from diverse classes.
Although the path S, — S, has been shown to be the most
aligned (best sparse approximation) sparse direction with
8, yet this alignment can vary depending on existence
of the e-net and the angle between § and S, — S,. The
angle depends on how sparse the ¢ is itself. Theoretically,
an IAI is universally most aligned if § is close to its sparse
approximation S, — S, as much as possible. As stated before,

2(., .) denotes the vector inner product.
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8 is expressed in the basis B(e) and will be the sparsest if in
the representation (t; — 1)L, + (f2 — 1)S, 4+ 3L, +14S,, we have
13 = 0. Equivalently, the sample itself is almost explained by
its sparse component and its low-rank component is negligible.

VI. COMPLEXITY ANALYSIS

A general fact is that the number of queries scale with
the image dimensions as each coordinate can play a role in
fooling the model. To remedy the curse of dimensionality
in crafting adversarial perturbation for high-dimensional data,
domain transforms are applied to the target image in order
to design the perturbation in a low-dimensional space. FFT-
based methods such as QEBA-F [37] and Bayes-Attack [51]
are the most query-efficient attack methods to the best of our
knowledge. Although reducing the required queries, perform-
ing low-dimensional transforms and their inverse impose extra
computational burden per each query.

The complexity of the FFT-based methods (on an n x n
image) is dominated by O(N X t X n? log,(n)), where N is
the number of queries and ¢ is the iterations per query for
FFT and its inverse IFFT. 3 Although increasing the efficiency,
such transforms come at the cost of increased query-wise
complexity.

On the contrary, LSDAT merits over such methods as it
only applies a one-time initial LSD for IAls attempted from
the exploration set. Next, it applies summations on sparse
components in the original domain. As the sparse coding and
the summation all happen in the original domain, there is no
additional transform-related computational burden per query
in LSDAT.

The most efficient computational complexity corresponding
to RPCA is obtained by accelerated alternating projec-
tions algorithm (IRCUR) [10] which is (for m = n)
O(Gnrzlog%(n)logz(%)), where r is the rank of the low-rank
component, and € is the accuracy of the low-rank component
(appearing as the number LSD solver algorithm iterations),
and G is the number of explored samples in the exploration set
£. It immediately follows that the proposed are less complex
compared to transform based methods with a factor of l"g%
which plays an important role in high-dimensional setting.
Additionally, FFT-based methods do not obtain control on
non-£5 (such as g or fy) perturbation constraints in the
transform domain. This mandates applying extra transforms
to perform clipping, thresholding, and projections back in the
original domain in order for satisfying such imperceptibil-
ity constraints. Extra transforms come at the cost of more
computational burden. While LSDAT directly maneuvers the
image in the original domain obtaining direct control on such
constraints.

VII. EXPERIMENTAL SET-UP AND RESULTS

In this section, we present a comprehensive set of exper-
iments to demonstrate the efficacy of the proposed LSDAT

3In general, dimension-reduction transforms such as PCA have complexity
O(mn min{m, n})). FFT is privileged over PCA due to its implementation
structure.
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attack in degrading the performance of well-trained image
classifiers for ImageNet. Experiments are designed in diverse
settings and LSDAT comes in different versions depending on
the scenario of interest.

We apply LSDAT to attack two ImageNet pre-trained mod-
els,? namely ResNet-50 [30] and VGGI16 [53] on the set
D, created by gathering correctly classified images from the
ImageNet validation set. We increase the step size in LSDAT
implementations for £y and £, scenarios as it does not affect
the corresponding constraints. Fast convergence of LSDAT
with large step size allows us to expand the exploration set
£ to increase the fooling rate. From now on, we abbreviate
Average Queries and Fooling Rate with AQ and FR, respec-
tively. In the following experiments, FR is defined based on
the number of mis-classified target samples divided by the
number of samples in D. The reported number of queries is
averaged on all successful attack instances. We compare the
performance of LSDAT based on AQ, FR, and perturbation
norm with SOTA methods. We first investigate non-pure-black-
box scenario where the attacker can obtain online learning
and present LSDAT(R) and LSDAT(D). In LSDAT(x), x="R”
represents random IAI selection, x="D” stands for dictionary-
based selection.

LSDAT with ¢, constraint: For a fair comparison in
¢, attack scenario, we use 1000 samples for the set D and
the TAI budget is set to 100. For LSDAT(R), we select the
IAIs randomly from validation set. Note that IAI set varies
for each image to be attacked. In LSDAT(D), we exploit the
prior information by first selecting IAIs from the class specific
(if exists) and then the global dictionary. If the TAI budget is
not met, the remaining samples are selected randomly. It is
worth noting that we only add an image to the IAI set, if the
current images could not lead to a successful attack so far.
The comparison of performance with the SOTA methods is
presented in Table I. The LSDAT attack consistently outper-
forms all methods with a significant drop in AQ. LSDAT(R)
leads to on average 28.7% and 29.6% reduction in AQ while it
improves the fooling rate by 17.38% and 31.16% for ResNet-
50 and VGG models, respectively compared to Bayes attack
[51]. Applying LSDAT(D), the attack further improves the FR
while reducing the AQ by 47.6% for ResNet-50 and 57% for
VGG compared to Bayes attack. The AQ gain is one order of
magnitude compared to other methods.

VIII. IMPLEMENTATION OF LSDAT(D)

In this section, we provide more details about the implemen-
tation of the dictionary based LSDAT. Algorithm 2 summarizes
the procedure of LSDAT(D) for the query budget G > 1.
While the IAI budget G is not met and the attack has not
been successful, the TAI X, is fetched from dictionaries
(Line 2). The module InitalAdvSmplProvider treats the class
r specific dictionary and the global dictionary as a connected
array as depicted in Figure 6 and returns the sample in the
index j as the adversarial sample X,. If j is larger than the
number of samples in the connected array, the adversarial
sample is randomly selected from the exploration set. The

4https://pytorch.org/docs/stable/torv:,hvision/models.html
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TABLE I

COMPARISON OF DIFFERENT £p ATTACK METHODS PERFORMANCE ON IMAGENET BASED ON VARIOUS £ BALL CONSTRAINT € FOR EFFECT OF HYPER
PARAMETERS. FR AND AQ STAND FOR FOOLING RATE AND AVERAGE QUERY RESPECTIVELY. IN LSDAT(X), X="“R” REPRESENTS RANDOM
SAMPLES, X="“D” STANDS FOR DICTIONARY BASE. BEST PERFORMANCES ARE IN BOLD

ResNet-50 VGG-16-BN
e=5 e =10 e =20 e=5 e =10 e =20
Method FR AQ FR AQ FR AQ FR AQ FR AQ FR AQ
BA [8] 8.52 666.5 15.39 5779 | 26.97 538.1 11.23 626.3 | 21.27 547.6 39.37 503.2
OPT Attack [18] 7.64 7774 | 15.84 737.2 | 32.53 7579 | 11.09 736.6 | 21.79 658.9 43.86 718.7
HISA [14] 6.99 904.3 14.76 887.1 | 28.37 876.8 10.30 8932 | 21.53 898.2 | 40.82 892.6
Sign-OPT [19] 7.46 7774 | 15.84 737.1 | 32.53 7579 | 19.81 841.1 35.8 843.7 60.63 857.7
Bayes Attack [51] | 20.10 64.2 37.15 64.1 66.67 54.97 24.04 69.8 43.46 76.5 71.99 48.9
LSDAT(R) 23.40 53.9 47.6 41.5 75.20 35.6 30.20 58.8 55.6 43.8 81.00 33.9
LSDAT(D) 25.40 35.2 47.6 394 76.80 21.50 32.80 36.4 56.80 329 82.40 15.2
(@) (b) (© (d)

Fig. 5. From left to right,(a) Successful attacks (blue bars) and average query distribution of global dictionary samples with success rate> 1. The orange bar

represents the average query per successful attack. (b) The number of queries for each successful attack. (c) The top-1 IAI of the global dictionary. (d) The
sparse component of the top-1 IAI which is scaled for the sake of visibility.

TABLE I

COMPARISON OF PERFORMANCE OF LSDAT L, ATTACK FOR o = 0.05
WITH SOTA METHODS

Algorithm 2 LSDAT(D) With TAI Budget G > 1
Require: (X,, r): target image and its class, G: IAls budget,

MaxIter: Maximum number of iterations, o: sparse
ResNet-50 VGG16-bn traversing rate, p: £, constraint type, 7 = Imperceptibility
Method FR AQ FR AQ .
constraint budget {k, €, o}
OPT Attack [18] | 5.73 2463 | 753 251.2 Output: X,,: Perturbed image, Q;: Total number of
Sign-OPT [19] 10.31 660.4 | 15.85 666.6 : .
Bayes Attack [51] | 67.48 459 | 78.47 337 queries, Af: Attack success flag ,
S p— " 20 2 Initialization: Q; < 0, Ay < False, j <1
LSDAT(R) X 1. 76. : ) . ) .
LSDAT(D) 69.40 204 | 7480 373 I: while j <G and Ay is False do
2 X, < InitialAdvSmplProvider(j, r)
Cines chitd dictionary 32 X,,Ng, Ay < LSDAT(X,, r, Xy, MaxIter,a, p,T)
(T = child,j = 1, . InitialAdvSmplProvider ( j, r) 4 if A}‘ —— True then
T ] 5: Q: = (j — 1) x MaxIter + Ny
; = Too-d_ Gioballictloniig 6 UpdateDictionary (X, )
m L/ 7 break
8 end if
: =3 =4 . L.
9 j=j+1
ﬁ'ﬁ‘— = 10: end while
A;?- E;H red % 11: return X,, Q;, Ay
(ol

& exploration set

Fig. 6. Schematic of IAI provider module for the class child. The class
specific dictionary and the global dictionary are linked together as a connected
array. The adversarial sample is fetched from this array based on the index j.

The initial sample budget is 100 with MaxIter=2 per sample.
This setting leads to 384 successful attacks. Figure 5-(a) shows
the distribution of dictionary samples that bring about at least

attack is launched based on the adversarial sample X, and 2 successful attacks in blue bars along with the AQ per

if it is successful, the dictionaries get updated (Line 6). This
algorithm returns the perturbed image X, the total number of
queries for the attack Q, and the attack success flag A .

1) Universal Adversarial Sparse Image: We also analyze
the effectiveness of dictionary in reducing the AQ and finding
the universal sparse IAI To this end, we apply LSDAT(D)
attack with £ constraint of € = 20 on a set with |D| = 500.

attack for each image in orange bars. Manifestly, the top-1
IAI in the global dictionary gives rise to 46.8% of successful
attacks with as low as 3.27 query per attack and the top-5
samples are responsible for 86.7% of successes with average
of 7.11 queries per attack. These findings support the existence
of a universal IAI with a dominant sparse component whose
difference to the input sparse component is highly likely to
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TABLE III

COMPARISON OF LSDAT /{7 ATTACK PERFORMANCE TO RESNET-50
MODEL UNDER VARIOUS PERTURBATION RATES (P%) WITH GEODA.
IN LSDAT(X), X=“R” REPRESENTS RANDOM IAIls, x=“D”
STANDS FOR DICTIONARY BASE

Method

py, | GeoDA[48] | LSDAT(R) LSDAT(D)

| FR AQ | FR AQ | FR AQ
429 | 8844 500 | 8520 12.6 | 90.00 8.3
3.05 | 8230 500 | 8020 153 | 83.40 8.6
236 | 7520 500 | 76.80 153 | 80.10 10.0
1.00 | 47.00 500 | 60.60 17.6 | 64.00 12.2
0.50 | 30.00 500 | 49.80 24.2 | 51.20 17.2

align with the shortest path from X,, to the decision boundary
(8). The top-1 TAI and its sparse component are illustrated in
the last 2 images of Figure 5 respectively. Clearly, the sparse
component contains most of the details including keys while
the background(texture) is black. This property of universal
IAI is also discussed in section V.

2) LSDAT With Lo or £y Constraint: In case of £, attack,
the attack setting is the same as £, constrained attack. Table II
summarizes the performance comparison of LSDAT with
SOTA methods when the £, perturbation bound is o = 0.05.
The proposed attack, consistently outperforms all methods for
ResNet-50 architecture while it achieves similar results as the
runner-up method for the VGG16-bn architecture. We believe
the lower performance on VGG16-bn roots in the ability of the
model in extracting richer features by considering both local
and global spatial information, compared to ResNet which
makes the attack more difficult.

Finally, we compare LSDAT attack in €y scenario with
GeoDA [48] in Table XI. GeoDA achieves the best FR with
limited query budget compared to other sparse attacks such
as Sparse-RS [21], [22]. Also, Bayes Attack [51] is not the
first choice to apply for £ constraint as it suits £, and the
sparsity level is less controllable in frequency domain due
to FFT transformation mandating computational burden and
further queries. To have a fair comparison with GeoDA, the set
D contains 500 samples with the TAI budget G = 100. Both,
LSDAT(R) and LSDAT(D) significantly outperform GeoDA
and improve the AQ by at least one order of magnitude. Also,
the superiority of LSDAT is clear in highly imperceptible £¢
attacks when only 0.5% — 1% of coordinates are perturbed.
FR is improved up to 21.2% and 17% by perturbing only
0.5% and 1% coordinates respectively, setting the SOTA
performance for the imperceptible £ attacks.

3) Attacking Adversarialy Robust Models: We also evalu-
ate the effectiveness of LSDAT against adversarially robust
models. To this end, we consider the method proposed by
[56] for fast adversarial training that leads to a robust ResNet-
50 classifier on ImageNet with 43% robust accuracy on PGD
attacks. The result of comparison of LSDAT with GeoDA with
various perturbation rate for £( constraint attacks are reported
in Table VIII. While LSDAT(D) achieves higher FR with
significantly lower AQ compared to GeoDA, we noticed that
LSDAT(R) slightly outperforms LSDAT(D) in terms of FR.
This phenomena is expected as the adversarial training changes
the shape of decision boundary and makes the dictionary
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TABLE IV

COMPARISON OF LSDAT ¢ ATTACK PERFORMANCE TO AN ADVERSAR-
IALLY ROBUST RESNET-50 MODEL UNDER VARIOUS PERTURBATION
RATES (P%) WITH GEODA. IN LSDAT(X), X=“R” REPRESENTS
RANDOM IATs, X=“D” STANDS FOR DICTIONARY BASE

Perturbation % | Method | FR AQ
GeoDA 71.3 500
4.29 LSDAT(R) 73 19.7
LSDAT(D) 73 9.8

GeoDA 60.1 500

3.05 LSDAT(R) 65 21.3
LSDAT(D) 62.2 13.1

GeoDA 54.7 500
2.36 LSDAT(R) 60 24.0
LSDAT(D) 58 10.8

GeoDA 36.8 500
1.00 LSDAT(R) 44 27.2
LSDAT(D) 43 18.7
GeoDA 226 500
0.50 LSDAT(R) 30.0 322
LSDAT(D) | 26.0 21.1
TABLE V

COMPARISON OF LSDAT /{7 ATTACK PERFORMANCE TO RESNET-50
MODEL UNDER VARIOUS PERTURBATION RATES WITH GEODA

Method | Perturbation % | FR AQ
GeoDA 4.29 88.44 500
LSDAT 4.29 87.00 90.4
GeoDA 3.05 82.30 500
LSDAT 3.05 85.20 82.6
GeoDA 2.36 75.20 500
LSDAT 2.36 73.00 112.1
GeoDA 1.00 47.00 500
LSDAT 1.00 54.20 99.7
GeoDA 0.50 30.00 500
LSDAT 0.50 45.00 128.9

entries with small score less reliable as IAls. This necessitates
finding a balance factor between exploration set and exploiting
dictionary. We postpone this study to our future works.

IX. ADAPTING LSDAT FOR PURE BLACK-B0OX
(ZERO-QUERY) ATTACK

The most challenging type of black-box attacks is known
as pure black-box attack in which only one query is allowed
to launch an attack. Before presenting our customized LSDAT
version for this attack scenario, we report the performance
for the primitive LSDAT version, LSDAT(R) under this attack
scenario. LSDAT(R) achieves FR of 25.8% and 33.6% on
ResNet-50 and VGG, respectively, for ¢, constraint of € =
20. With only 1% perturbation on {( constraint attacks,
the FR=24.4% for ResNet and FR=21% for VGG can be
obtained. Finally on £, attack with constraint of o = 0.05 the
FR is 26% and 25.4% on ResNet and VGG, respectively. Note
that other decision-based black-box attacks are not applicable
in this threat models as they demand more than one query
to estimate the decision boundary. For instance, GeoDA [48]
requires at least 10 queries to obtain average ¢, distance of
39.4 which is as twice as LSDAT with a single query.

It is worth noting that although LSDAT(D) and LSDAT(R)
can draw samples from the set D and spend more than one
query, however, LSDAT can function only with one IAI suiting
it for the pure black-box scenario as presented in Alg. I.
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Fig. 7. Elaborating how diversity increases fooling success rate for

LSDAT-HYB vs. LSDAT-ES.

In this section, we present a customized LSDAT approach
designed for the ultimately pure black-box attack scenario
where the attacker cannot perform but one real-time query to
fool the classifier, i.e., the pure black-box attack (a.k.a zero-
query attack). To this end, we assume that the attacker can
use offline substitute models to obtain universally transferable
perturbations that can be used without any knowledge on the
model or the target data prior distribution.

A. Zero-Query Attacks Using Ensemble of Substitute Models

In zero-query attacks, queries are not allowed at the attack
time for designing the perturbations. Therefore, the proposed
hierarchical dictionary-based attack is not acceptable for the
zero-query scenario. To this end, we propose to exploit diverse
substitute models and employ LSDAT to find fooling rates for
all exploration set IAI samples. Afterwards, the exploration set
samples are sorted based on their average fooling performance.
Finally, the top-scorer sample is used for the real-time attack.
We call this method LSDAT-ES. The explained procedure can
be shown in Fig. 7a.

The key concept is using different DNN architectures whose
functions vary in practice. It is expected that as much as the
substitute model architecture approaches the real model, the
proposed attack success rate on the black-box model improves.
The substitute models are desired to mimic and imitate the
performance of the black-box model as much as possible.

However, this is a constraining assumption as the real black-
box model can take various architectural designs. In order
to enhance the probability of acceptable performance in gen-
eralizing the attack on substitute models to the real model,
we propose to utilize several popular architectures to broaden
the scope of attacked models such that the attacker perfor-
mance is universally successful regardless of the model.

With that being said, we consider several architec-
tures, specifically ResNet-18, ResNet-34, MobileNet-V3 and
DenseNet-121. These four substitute models are pretrained
on the scrapped data. We train these models on a different
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TABLE VI

FOOLING RATE (FR) FOR TRANSFERRING PERTURBATIONS FROM SUB-
STITUTE MODELS TO THE ZERO-QUERY BLACK-BOX MODEL ATTACK
WiTH LSDAT-ES

Substitute Models — target model (LSDAT-ES) ‘ SSIM FR

ResNet-34 0.8 41.4%
ResNet-34+ResNet-18 0.8 48.1%
ResNet-34+ResNet-18+DenseNet-121 0.8 47.3%
ResNet-34+ResNet-18+DenseNet-121+MobileNet-V3 0.8 44.4%
ResNet-34 0.9 24.1%
ResNet-34+ResNet-18 0.9 27.5%
ResNet-34+ResNet-18+DenseNet-121 0.9 27.1%

ResNet-34+ResNet-18+DenseNet-121+MobileNet-V3 0.9 26.4%

TABLE VII

FOOLING RATE (FR) FOR TRANSFERRING PERTURBATIONS FROM SUB-
STITUTE MODELS TO THE ZERO-QUERY BLACK-BOX MODEL ATTACK
WitH LSDAT-HYB

Substitute Models — target model ‘ SSIM FR

ResNet-34 0.9 26.3%
ResNet-34+ResNet-18 0.9 28.3%
ResNet-34+ResNet-18+DenseNet-121 0.9 24.2%

ResNet-34+ResNet-18+DenseNet-121+MobileNet-V3 0.9 24.2%

data than ImageNet (target samples) so as to measure the
generalizability of the perturbations to a different dataset.

The target model considered in our setting is the ResNet50
pretrained on ImageNet data. We have conducted the following
set of experiments.

B. Experimental Setups for Zero-Query Attack With Offfine
Ensemble of Substitute Models

In this section, we explain the experimental setup for
the proposed method with ensemble of substitute models.
We randomly pick TAls to form an exploration set. Next, for
each substitute model, we form a dictionary of sorted IAls
based on their scores in fooling that model. After averaging
the TAI performances across all substitute models, the top-
1 scorer is considered for the final zero-query attack on
the real model. In this experiment, we have incrementally
added the substitute models to evaluate the ensemble model’s
performance as follows in four stages:

1- ResNet-18 (substitute A)

2- ResNet-34 + ResNet-18 (substitute A+B)

3- ResNet-34 +ResNet-18 + DenseNet-121 (substitute
A+B+C)

4- ResNet-34+ResNet-18+DenseNet121+MobileNetV3
(substitute A+B+C+D).

We also briefly explain the experimental setup in form-
ing the ensemble dictionary. We consider 500 samples to
be attacked and the exploration set contains 200 randomly
selected samples from all classes. The IAI samples are drawn
uniformly to score the samples fairly (Each IAI has approxi-
mately the same number of trials). Tables VI summarizes the
simulation results. We report the fooling rate for given struc-
tural similarity index measures (SSIM) as the imperceptibility
measure.

We conclude that considering an ensemble of substitute
models can improve the fooling rate. However, including
network architectures which do not resemble the target model
may endorse sparse patterns which are not effective on the
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Fig. 8.

target model and may downgrade the overall performance.
On the other hand, keeping the substitute models whose
expressible features are close to those of the target model
will better generalize the top-1 scorer as the effective attacker
selected from the dictionary.

C. Customizing the Attack to the Target Samples

Top-1 IAI as stated in Section IX-A, may fail to work on
a sequence of similar target samples that are to be fooled
consecutively. This can lead to significant drop in the fooling
rate. To avoid this, we may insert the notion of diversity as
follows. Instead of disposing all but the top-1 scorer of the
substitute model dictionaries, we keep a stack of the elite ones.
We can look upon this stack to optimize the sample optimally
acting on the target to be fooled. In the zero-query attack,
a search through the stack is not doable although the stack size
is too small. Instead, to maintain efficiency and introducing
diversity, we randomly choose the IAI from the stack. The
difference between the stack and the exploration set is that the
stack contains all elite samples which are all likely to perform
well. The merit of using stack over one single universal sample
is that stack samples may not all fail on a series of similar
samples which are difficult to be fooled with the top-1 scorer.
In other words, stack IAls union is a comprehensive set
capable of fooling a wide range of target images. We set the
stack size to 8. The procedure is illustrated in Fig. 7b. We call
this method the LSDAT-HYB. the simulation results for the
similar setting as in Section IX-B.

Finally, we conclude that the LSDAT-HYB method out-
performs LSDAT-ES thanks to inserting the diversity as
elaborated earlier which is also clear according to the results
in Tables VI & VII.

X. ABLATION STUDY

In this subsection, we investigate the effect of certain hyper-
parameters on the performance of the LSDAT. Figure 9a shows
the AQ and FR versus the percentage of coordinates which are

(c) 3% sparsity level

(h) 4% sparsity level

(d) 4% sparsity level  (e) 5% sparsity level

() 4% sparsity level

(1) 5% sparsity level

An example of £y attack using LSDAT with different sparsity levels.

allowed to be modified for ResNet50 model. The expected
behavior is that the FR increases and AQ decreases with
the percentage of the coordinates allowed to be perturbed.
We observe that for 5% {( perturbation budget, less than
60 AQ suffice to achieve 90% FR. Having only 0.5% of
coordinates to perturb, more than 35% FR is obtained with
less than 200 AQ. A visualized example of ¢y attack can be
found in Fig. 8.

In Fig. 9b, LSDAT achieves more than 25% FR with around
80 AQ for a harsh ¢, perturbation limit of ¢ = 0.02.
Relaxing the £~ perturbation constraint, we obtain 96% FR
with less than 11 AQ. The effect of hyper parameter € in
case of ¢ constrained attacks is presented in 9c as well.
Hyper-parameters are varied in a common valid range to be
comparable with other works fairly. We evaluate the effect of
sparse traversing rate « and IAI budget G on the performance
of LSDAT. We also study the effect of transferring dictionaries
between attacks.

A. Sparse Traversing Rate o

As we mentioned in the theoretical analysis (section V),
the sparse traversing rate (step size) mostly affects the LSDAT
with £, constraint. To this end we study the effect of changing
« in the range of [0.1, 1] on the ¢, distance and AQ of LSDAT
on the pre-trained ResNet-50 model on ImageNet dataset.
In this set of experiments, the |D| = 500, G = 100. Note
that, with the small step size o, the Max Iter parameter should
grow to guarantee the full traverse from S, to S, if need be.

To this end, we set the MaxIter as % so it increases
accordingly for the small step sizes. The FR of LSDAT(R) and
LSDAT(D) are close to each other with the average of 48.36%
and 48.6% respectively. Figure 10a and Figure 10b plot the
effect of step size on ¢, distance and AQ for LSDAT(R)
(blue curve) and LSDAT(D) (red curve). As it can be seen,
increasing the step size negatively affect the imperceptibility
of the attack by increasing the ¢» distance while it improves
the AQ. So there is always a trade off between these two
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(a) Effect of the step size on AQ of LSDAT with £ constraint € = 10 on ImageNet with IAI budget G=100. (b) Effect of the step size on AQ of

LSDAT with ¢, constraint € = 10 on ImageNet with IAI budget G=100. (c) Effect of the initial adversarial budget G, on FR of LSDAT with £ constraint
p = 1% for ImageNet. (d) Effect of the initial adversarial budget G, on AQ of LSDAT with ¢ constraint p = 1% for ImageNet.

factors that should be adjusted based on the threat model. For
the minimum AQ, the maximum step size is required and for
the best imperceptibility the minimum step size is favorable.

B. Transferring Dictionaries

We also study the transferibility of the prior knowledge
between model architectures. To this end we use dictionaries
that are generated by LSDAT(D) with ¢, constraint € = 10 for
attacking VGG-16-BN model tranied on ImageNet to launch a
new set of attacks on Renset-50 model. The attacks parameters
are as follow: |D| = 1000, G = 100, step size « = 50 and
MaxIter = 4. We refer to this type of attack as LSDAT(TD)
as TD stands for transferred dictionaries. Table IX reports
the result of this study. Using the transferred dictionaries
by LSDAT(TD) significantly reduces the AQ compared to
LSDAT(D) as expected. Since the high score samples of the
transferred dictionary can lead to successful attacks with few
number of queries. However, the FR also drops since low
score entries of the dictionaries might not be a better initial
adversarial point for the ResNet-50 model than exploring a
new random sample.

C. IAI Budget G

We also analyze the effect of IAI budget G on the FR
and AQ. To this end, we used LSDAT with £g constraint
of 1% perturbation to attack ResNet-50 model trained on
ImageNet dataset. In this set of experiments, |D| = 500,
step size @« = 1 and MaxlIter = 2. The IAl budget G
varies in {1, 10, 25, 50, 75, 100, 125, 150, 175, 200}. Note that
increasing G leads to increasing the maximum query budget
for an attack with a fixed MaxIter parameter. For instance
with G = 1 and MaxIter = 2 the maximum query budget
is 2 per attack while with G = 200, we have the maximum
query budget of 400. Figures 10c and 10d show the effect of

G on the FR and AQ respectively. Manifestly, the fooling rate
(FR) increases for larger G but it doesn’t follow a linear trend
of improvement. Increasing G from 1 to 100 improves the FR
by 36% while further increasing to 200 IAls only improves
FR around 5%. However, the AQ has a linear relation with G.
As the G grows, the effect of using hierarchical dictionaries
become more evident. Comparison of the gap between AQ
of LSDAT(R) and LSDAT(D) shows that exploiting prior
knowledge from the dictionaries can significantly reduces the
AQ even when the number of maximum query budget is large.

XI. CONCLUDING REMARKS

A query-efficient decision-based adversarial attack (LSDAT)
is introduced based on low-rank and sparse decomposition.
The method is suitable for very limited query budgets and
is of low complexity compared to SOTA. LSDAT is also
effective in fooling rate dominating the SOTA in performance
as verified through diverse set of experiments. LSDAT finds
a sparse perturbation which is likely to be aligned with the
sparse approximation of the shortest path from input sample
to the decision boundary. We show the path lies on the path
connecting original and some adversarial sparse components.
Theoretical analyses buttresses LSDAT performance in fool-
ing. As few pixels entail the image information in the sparse
component and the number of queries is relevant to the effec-
tive dimension of image to be fooled, the proposed method
acts as a query-efficient attack. Moreover, LSDAT offers
better control over imperceptibility constraints in the original
domain and less complexity compared to SOTA as it does not
apply consecutive transforms and their inverse. Unlike other
dimension reduction techniques which craft the perturbation in
the transform domain and therefore, lose control on image £,
properties while crafting, LSDAT finds the perturbation in the
original domain to have control on imperceptibility constraints
and has complexity and faster convergence rate. Several
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TABLE VIII

COMPARISON OF LSDAT ¢3 ATTACK PERFORMANCE TO AN ADVERSAR-
IALY ROBUST RESNET-50 MODEL UNDER VARIOUS PERTURBATION
RATES (P%) WITH GEODA. IN LSDAT(X), X=“R” REPRESENTS
RANDOM INITIAL ADVERSARIAL SAMPLES, X=“D” STANDS
FOR DICTIONARY BASE

Method

py, | GeoDA[48]  LSDAT(R) LSDAT(D)

°1 FR AQ FR  AQ FR  AQ
429 | 7130 500 73.00 19.71  73.00 9.8
3.05 | 60.10 500 65.00 203 6220 13.1
236 | 5470 500  60.00 240 58.10 10.8
1.00 | 36.80 500  44.00 27.2  43.00 18.7
0.50 | 22.60 500  30.00 322 2620 21.1

variants of LSDAT including LSDAT(D), LSDAT(R), LSDAT-
ES, and LSDAT-HYB are presented depending on the attack
scenario and IAI budget. The series is designed to ideally reach
the zero-query attack, aka pure black-box attack.Experiments
on the well-known ImageNet dataset shows query efficiency
and fooling rate superiority of LSDAT compared to SOTA.

APPENDIX A
A. Attacking Adversarially Robust Models

We also evaluate the effectiveness of LSDAT against adver-
sarially robust models. To this end, we consider the method
proposed by [56] for fast adversarial training that leads to
a robust ResNet-50 classifier on ImageNet with 43% robust
accuracy on PGD attacks. The result of comparison of LSDAT
with GeoDA with various perturbation rate for £y constraint
attacks are reported in Table VIII. While LSDAT(x) achieve
higher FR with significantly lower AQ compared to GeoDA,
we noticed that LSDAT(R) slightly outperforms LSDAT(D) in
terms of FR. This phenomena is expected as the adversarial
training changes the shape of decision boundary and makes
the dictionary entries with small score less reliable as initial
adversarial images. This necessitates finding a balance factor
between exploration set and exploiting dictionary. We post-
pone this study to our future works.

B. Pure Black-Box Attack

The most challenging type of black-box attacks is known
as pure black box attack in which only one query is allowed
to launch an attack. We evaluated the performance of the
LSDAT in this scenario. LSDAT(R) achieves FR of 25.8% and
33.6% on ResNet-50 and VGG respectively for £, constraint of
€ = 20. With only 1% perturbation on £ constraint attacks,
the FR=24.4% for ResNet and FR=21% for VGG can be
obtained. Finally on £, attack with constraint of o = 0.05 the
FR is 26% and 25.4% on ResNet and VGG, respectively. Note
that other decision-based black box attacks are not applicable
in this threat models as they demand more than one query
to estimate the decision boundary. For instance, GeoDA [48]
requires at least 10 queries to obtain average ¢, distance of
39.4 which is as twice as LSDAT with a single query.

APPENDIX B

In this part, we discuss the comparison between the most
recent method for low-query black-box adversarial attack,
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TABLE IX
COMPARISON OF LSDAT (X) WITH ¢ CONSTRAINT OF € = 10 ON
THE PRETRAINED IMAGENET RESNET-50 MODEL.

IN LSDAT(X), “R” STANDS FOR THE RANDOM EXPLORATION
SET, “D” STANDS FOR DICTIONARY BASED ATTACK AND “TD”
REPRESENTS THE TRANSFERRED DICTIONARY SCENARIO. HERE

THE DICTIONARIES ARE TRANSFERRED FROM VGG-16-BN
MODEL TO RESNET-50 MODEL

Method | FR%  AQ
LSDAT(R) 47.6 41.5
LSDAT(D) 47.6 394

LSDAT(TD) 36.8 17.3

Square Attack [4], and LSDAT. We use the reported perfor-
mance for Square Attack in [4]. To provide a fair comparison,
we report the same settings for both methods. As the ¢> and
{~ cases are included in [4] on ResNet-50 and VGG-16-BN,
we report these two scenarios accordingly. Table X summa-
rizes the performance of LSDAT(D) vs. Square attack for the
mentioned scenarios. The £, constraint is set to € = 5 and the
£ constraint is set to o = 0.05 for both methods, respectively.
Moreover, for fair compariosn, the non-isolated attack (one
IAI trial) version of LSDAT, i.e., LSDAT(R) is considered.
As can be observed the LSDAT(R) outperforms Square-Attack
for extremely low queries. We report the values for Square-
Attack based on Figure 4 in [4]. As we observe, in the ¢, attack
scenario, LSDAT(R) achieves higher fooling rate for smaller or
equal number of queries. In the £, case, LSDAT outperforms
in ResNet-50 and fails to compete Square-ATtack on VGG-
16-BN. The reason underlies in how susceptile each model is
to a sparse perturbation. In other words, it depends on how
the extracted features rely on the sparse patterns (usually local
patterns) or not.

APPENDIX C

Experiments on CIFAR-10 dataset In this section,
we include the results of the proposed LSDAT on the
CIFAR-10 [35] dataset. The CIFAR-10 dataset consists of
50,000 training and 10,000 test samples which are considered
as the validation set in our experiments. We have considered
300 randomly selected samples form the CIFAR-10 validation
set for perturbation.

We compare the fooling rate achieved with average queries
(AQ) used to yield successful attack as well as the perturbation
constraint. One can find that LSDAT dominates the fooling rate
of HISA with only 2-3 AQ. This is thanks to the fact that the
method does not rely on estimating the decision boundary and
the gradient, rather relies on the ad-hoc image-agnostic LSD
decomposition and swaps the sparse patterns in one single step
to make queries. As discussed in the theoreticl analysis, the
mentioned perturbation direction is informative of the shortest
path and is the most sparse perturbation aligned with it,
therefore the direction is likely to fool. Given that LSDAT(R)
and LSDAT(D) are query-efficient, the query-bidget allows
them to exploring for finding an initial adversarial sample
whose sparse component in functional in fooling the model,
the FR of LSDAT outweighs that of HSJA significantly with
far less queries. It is notable that the average ¢, distance
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TABLE X

COMPARISON OF SQUARE ATTACK AND LSDAT(R) FOR €3 AND £so SCENARIOS. THE PERTURBED DATA IS IMAGENET. PERFORMANCE ON RESNET-50
AND VGG-16-BN ARE REPORTED. FR AND AQ STAND FOR FOOLING RATE AND AVERAGE QUERY, RESPECTIVELY.
BEST PERFORMANCES ARE IN BOLD

ResNet-50 VGG-16-BN ResNet-50 VGG-16-BN
e=0.1 e=0.1 o = 0.05 o =0.05
Method FR AQ FR AQ FR AQ FR AQ
| Square Attack | < 30 50 | <30 36.4 | < 70.00 35 | >80 40 |
| LSDATR) | 32.8 36. | 32.8 364 | 70.00 313 | 7620 432 |
TABLE XI initial adversarial sample exists in the e-net increases, and

COMPARISON OF LSDAT {7 ATTACK PERFORMANCE TO RESNET-50
MODEL UNDER VARIOUS PERTURBATION RATES (P%) WITH GEODA.
IN LSDAT(X), X="R” REPRESENTS RANDOM INITIAL ADVERSAR-
IAL SAMPLES, X=“D” STANDS FOR DICTIONARY BASE

Method
py, | GeoDA[48] | LSDAT(R) LSDAT(D)
°1 FR AQ FR  AQ FR  AQ
429 | 88.44 500 | 8520 12.6 | 90.00 8.3
3.05 | 8230 500 | 80.20 153 | 83.40 8.6
236 | 7520 500 | 76.80 153 | 80.10 10.0
1.00 | 47.00 500 | 60.60 17.6 | 64.00 12.2
0.50 | 30.00 500 | 49.80 242 | 51.20 17.2

TABLE XII

FOOLING RATE (FR) AND AVERAGE QUERY (AQ) FOR ¢, ATTACK ON
CIFAR-10 DATASET

method | FR AQ £oo distance type

LSDAT(R) 80.1% 12 0.03 untargeted
LSDAT(D) 82.6% 10.7 0.03 untargeted
HSJA 60% 1K 0.03 untargeted
Sign-OPT 31.87%  679.39 0.03 untargeted
Bayes Attack | 70.38% 75.88 0.03 untargeted

Sign-OPT 3.50% 937.65 0.03 targeted

Bayes Attack | 48.93%  149.15 0.03 targeted

LSDAT(R) 56.71% 23.9 0.03 targeted
LSDAT(R) 81.8% 11.9 0.05 untargeted
LSDAT(D) 96.9% 11.9 0.05 untargeted
HSJA 84% 1K 0.05 untargeted

for LSDAT is upper bounded with the distance introduced
by HSJA. Table XII draws a comparison between LSDAT(R)
and HJSA, Sign-OPT, and Bayes Attack in untargeted and
targeted settings. Although our method is designed to work
best for untargeted attacks, we also include some evaluations
on targeted setting for integrity of the reports on CIFAR-10
dataset. For untargeted attack, it can be observed that the
proposed method outperforms HSJA with 22% and Bayes
Attack with 12% in FR, with considerably fewer queries.
It is worth noting that the dictionary of universal samples
favors in this scenario as LSDAT(D) outperforms LSDAT(R).
Regarding the targeted setting, we can definitely observe
significant drop in the fooling rate compared to the untargeted
setting which is due to the design of our method, i.e., the
sparsest shortest path to decision boundary may not align with
some pre-specified decision boundary (targeted attack). Yet,
we observe that LSDAT(R) achieves an FR comparable to that
of Bayes Attack (slightly outperforming) showing the FR is
also noticeable within limited number of queries for targeted
setting. In general, it is worth noting that as there are more
classes, the untargeted attack is more probable to yield higher
fooling rate using LSDAT, because the probability that some

hence, it is more probable that the candidate initial sample
which falls close to the decision boundary in an e-net exists.
In addition, more classes introduce more adjacent decision
boundaries for an input image to be perturbed and therefore
the probability of crossing one of them using the introduced
is enhanced.
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