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Abstract—This paper proposes an architecture for a
lensless single-pixel camera composed of a pico-projector,
luminosity sensor, and a single-board computer. The com-
pressive sensing matrix is projected onto the scene from
the pico-projector. For each projected matrix the single
element sensor receives a summation of the reflected light
from the scene and acquires a luminosity measurement.
Differential detection is used to minimize the effects of
noise on measurement integrity. The single-board com-
puter coordinates forming compressive sensing matrices,
projecting them, acquiring luminosity measurements, and
storing data. The platform is both highly affordable and
highly portable, lending itself to be attractive in education
and research applications. Reconstruction of the image
occurs outside of the acquisition platform, using the op-
timization technique of `1 minimization. Both monochro-
matic and full color images can be reconstructed from
this architecture. Color imaging is further compressed by
the use of a projected Bayer pattern, and color imaging
efficiency is improved through use of a color sensor.

I. INTRODUCTION

Compressive sensing (CS) is an emerging field that
deals with sparse signal recovery, based on the idea
that sparse signals can be sampled under the Nyquist
rate while still preserving the salient information in the
signal. As the name suggests, in CS the compression
occurs at the time of data acquisition, often in the form
of a summation of information into a single measure-
ment value. While typical imaging systems acquire a
large quantity of information only to discard a sizeable
portion of it later in compression, CS imaging aims to
apply compression at the time of data acquisition. CS
imaging allows for an acceptable reconstruction of an
image using a number of measurements that is a small
percentage of the number of pixels in the image. This
allows for the possibility of faster acquisition time and
lower data bandwidth requirements, at the expense of
added complexity in the reconstruction phase. A CS
reconstructed image is said to be sub-Nyquist when the
number of measurements taken to reconstruct it is below
the number of image pixels in the reconstructed image.

The application of CS imaging was pioneered by
Rice University [1]. The Rice single-pixel camera (SPC)
uses a lens to form an image of a scene onto a digital
micromirror device (DMD). The DMD is a tiny array
of micromirrors that can be individually modulated at
two different angles. The DMD is loaded with a random
binary matrix that subsamples the image plane formed
at the mirrors, reflecting a subset of the image toward
a second lens that focuses this light onto a single pho-
todiode. The photodiode acquires a measurement value
for each random matrix loaded onto the DMD. While
the Rice SPC does an impressive job reconstructing
monochromatic and color images of scenes, it has several
drawbacks. The architecture is prohibitively expensive,
mainly due to its use of a high end DMD development
tool. Its use of lenses results in the camera system being
large and spread out on an optical breadboard. Lenses
also bring with them a need for accurate alignment,
added costs, and constraints on the geometric mapping
of the scene to an image [2].

To reduce both cost and complexity, the lensless SPC
has recently become a focus of research and develop-
ment. The use of a transmissive LCD panel to pass
the randomly subsampled light of a scene into a box
with a photodiode was shown by [3] to be capable of
forming accurately reconstructed color images. The use
of digital light projector (DLP) technology by [4-6] to
project random patterns of light onto a dark scene and
sensing the reflected light intensity from the scene to
reconstruct an image has proven to allow for a more
portable and accessible SPC architecture. This approach
is taken in this paper’s design of an ultra-portable and
affordable single-pixel camera platform.

II. DATA ACQUISITION AND RECONSTRUCTION

To take a CS measurement for an image x of a scene
of dimensions R × C, a random binary measurement
matrix ϕ of dimensions R×C is projected onto the scene.
For m measurements, there are m measurement matrices
formed. Each measurement matrix ϕi in the acquisition
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Fig. 1: The DLP projects random light patterns onto the scene
(left) and a summation of reflected light from the subsampled
scene is sensed by the single-pixel sensor as a luminosity
measurement (right).

set is flattened into a 1D vector of length RC and placed
in matrix φ as a row vector. We have

φ =

 − ϕ1 −

−
... −

− ϕm −


m×RC

. (1)

Since m < RC for compression, y = φx is an
underdetermined system in the canonical basis. However,
in the DCT domain the image is sparse, i.e. DCT(x) = s
is sparse, and thus m < RC measurements can be used
to represent the image in the DCT domain. To represent
the system in the DCT domain, we first post-multiply φ
by the RC × RC inverse DCT Transformation matrix
Ψ−1dct. This multiplication results in the discrete cosine
transform (DCT) of each row of φ being taken.

φdct =

 − DCT (ϕ1) −
...

− DCT (ϕm) −


m×RC

. (2)

For each ϕi matrix projected, a luminosity measure-
ment yi is taken. The CS reconstruction problem can be
stated as

y = φx = φΨ−1dctΨdctx = φΨ−1dcts = φdcts (3)

where y is the column vector of CS measurements,
Ψ−1dctφdct = φ is the measurement matrix in DCT space,
and s is the column vector of unknowns in DCT space.
The unknown vector s can be solved for using convex
optimization techniques such as `1 minimization (4).
The reconstructed s is then taken out of DCT space by
taking the inverse discrete cosine transform (IDCT) of

the vector, and the reconstructed image is formed by
reshaping the vector to the image dimensions.

s = argmin ‖s‖1 subject to y = φdct s (4)

In this paper, s is solved for by two methods: `1
minimization using CVX, a package for specifying and
solving convex programs [7-8], and the Gradient Projec-
tion for Sparse Reconstruction (GPSR) algorithm [9].

III. EXPERIMENTAL CAMERA SETUP

To build a single-pixel camera that uses this
projection-based method of imaging, only three main
components are required: a digital light projector
(≈$100), a single-board computer (≈$50), and a lumi-
nosity sensor (≥ $5). These components can be found
at most major electronic component vendors, and at
least some can be purchased from more general retailers
such as Amazon. The single-pixel camera used in this
paper is shown in Fig. 2. It consists of a TI DLP
LightCrafter 2000 360x640 projector evaluation module
($99), Beaglebone Black single-board computer ($62),
and a TSL2591 luminosity sensor on an Adafruit Indus-
tries breakout PCB ($7). The secondary setup substitutes
a TCS34725 RGB sensor on a similar Adafruit Industries
breakout PCB ($8). Other minor required components
include a micro SD card for data and program storage,
several jumper wires to connect the sensor to the single-
board computer, and a 5V power supply for the projector.
These components are likely cheap, already owned by a
lab and/or reusable for or from other projects, so we do
not consider them to contribute to the cost of this setup.
In our case, the single-pixel camera′s base is fabricated
from an acrylic panel, and a 3D printed mounting piece
is used to attach the sensor. The main drawback of this
projection-based setup is that imaging must occur in a
dark room, where ambient light as a possible contam-
inant of measurement values is minimized, which may
overwhelm the relevant data even when using differential
measurements.

Performing the CS imaging requires running a Python
script from the Linux OS of the Beaglebone Black.
Sensor parameters such as integration time and gain are
set for each imaging session to maximize signal while
avoiding sensor saturation. Image resolution is set in
each script and determines the pixel size of each CS
matrix element on the projected image. In this paper
a constant image resolution of 90x160 is used, and
image reconstruction occurs on a PC using MATLAB
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Fig. 2: Single-pixel camera composed of DLP 2000 projec-
tor, Beaglebone Black single-board computer, and TSL2591
sensor.

to preprocess, then Python to reconstruct and form the
final image result.

To validate the hardware, an image is directly acquired
by scanning a 4-pixel square across a scene in row-
major order, taking a luminosity measurement at each
step during the scan. Since only light from a single small
square is reflected from the scene during any measure-
ment, the image formed is the absolute best possible
image given the projection and sensing hardware and is
therefore referred to as the ground truth image.

Fig. 3: Single-pixel camera directly scanning ground truth
image (left) and resulting 90x160 ground truth image (right).

IV. RECONSTRUCTION OF MONOCHROME IMAGES

To validate the reconstruction algorithm using `1 min-
imization, 3600 simulated CS measurements are formed
by multiplying the ground truth image element-wise by
random binary measurement matrices and summing the
non-zero image values into an individual measurement
value. Since each pixel in the ground truth image is a
measurement of the luminosity reflected from the scene
by only one projected pixel square, the summation of

Fig. 4: Reconstructed image of UCF from m = 3600 (25%
Nyquist) simulated measurements (left), and reconstructed
image from m = 3600 CS experimental measurements (right).

random ground truth pixel values from the measurement
matrix form a good approximation of the luminosity
measurement that would result from projecting the same
pattern onto the scene. The random binary measurement
matrices in this paper have a 50-50 split between ones
and zeros.

Next, the same random binary matrices are used to
acquire 3600 real CS measurements from the single-pixel
camera. To help improve the dynamic range and signal-
to-noise ratio (SNR) of the luminosity sensor, four con-
secutive luminosity samples are summed for each pattern
projected onto the scene. The results of `1 reconstruction
for the simulated and real CS measurements are shown
in Fig. 4.

V. SINGLE VERSUS DIFFERENTIAL MEASUREMENT

Random noise components such as fluctuating ambient
light and sensor dark current can cause a long-term
drift of the measurement mean in the form of a time-
varying bias that is added to luminosity measurements.
A method known as differential CS detection overcomes
this noise by acquiring two measurements, one using a
random binary matrix and one using its inverse (ones
and zeros swapped), each 50% ones and 50% zeros. The
difference of the two measurements is taken to cancel out
the common bias [4-5]. Ambient light is assumed to have
a uniform effect on the scene, and sensor dark current
is assumed to be constant between differential measure-
ments. Thus the bias is guaranteed to be cancelled out.
For reconstruction, the differential CS measurements and
corresponding differential measurement matrices ϕi are
used.

To compare between the use of single and differential
CS measurements, 10,800 single CS measurements are
taken of a scene, and 10,800 differential CS measure-
ments are taken of the same scene. These measurements
are used to reconstruct images for both single and
differential CS measurements for various sub-Nyquist
percentages, as shown in Fig. 5.
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Fig. 5: Left column top to bottom: single CS measurement
reconstructed images, 25%, 50%, 68% Nyquist. Right column
top to bottom: differential CS measurement reconstructed
images, 25%, 50%, 75% Nyquist. Note that 68% Nyquist
is the highest percentage for single CS measurements where
reconstruction was successful.

The single CS measurements taken contain a time
varying bias that causes the mean of the measurements
to drift, while the differential CS measurements have had
the time varying bias cancelled out by virtue of differen-
tial detection. The advantage of differential detection is
evident when comparing between reconstructed images
of the same Nyquist percentage, and of the same number
of raw measurements. Differential CS measurement re-
sults show less noise, better detail recovery, and higher
contrast, while the time varying bias in the single CS
measurements cause the reconstruction results to be less
optimal. The time varying bias has caused reconstruction
from the sets of single CS measurements above 68% to
fail.

VI. CS IMAGING OF COLOR SCENES WITH DEPTH

To acquire and reconstruct a color image using the
single-pixel camera, a random binary measurement ma-
trix is sequentially projected in red, green, and blue,
and separate measurements are taken for each colored
projection. Reconstruction is performed separately on
each set of measurements to obtain each color channel
of the final RGB image. Due to the varying intensities
of the projectors color LEDs and the responsivity of the
broadband photodiode not being uniform with respect
to wavelength, a white balance adjustment is used to

balance the color channels to produce accurate color
reconstruction.

The scene to be imaged in color consists of a pot of
faux flowers. Differential CS measurements are taken,
acquiring 10,800 measurements for each color channel.

The grayscale scenes that have been reconstructed
thus far have been flat and have had the projected
measurement matrix focused at the plane of the piece
of paper being imaged. When imaging 3D objects in
a scene, the focus point of the projector determines at
which depth in the scene the measurement matrix will
have the sharpest focus, and therefore the most detail
when imaged. In order to image detail throughout the
depth of a 3D object shown in Fig. 6, the measurement
matrix is focused near the center of the objects depth
along the optical axis, which allows the measurement
matrix to be only slightly out of focus before and after
this point.

VII. EFFICIENT CS IMAGING OF COLOR SCENES

Single-pixel cameras have been shown to be capable
of color imaging by acquiring separate color channel CS
measurements, either by using three detectors as in [4],
or by projecting separate colored ϕ matrices. The cost of
acquiring a color image versus a monochrome image in
both cases is triple the number of measurements. Similar
to a monochromatic digital image sensor acquiring color
images using a Bayer filter array [10] in front of the
detector, the single-pixel camera in this paper can make
use of a statically projected Bayer pattern coupled with
random ϕ matrices to reconstruct color images without
increasing the number of measurements.

The projection of a Bayer patternis coupled with
random ϕ matrices where ones correspond to projecting
the Bayer colors and zeros correspond to no color being
projected. The monochromatic luminosity sensor collects
a measurement for each ϕ that is the summation of the
reflected luminosity from the scene. While color infor-
mation would normally be lost by the use of a monochro-
matic sensor, the static Bayer pattern on the scene is used
to correlate pixel intensity in the final image with color
intensity. Gradient-corrected linear interpolation is then
used in a debayer (demosaic) algorithm to fill in the
missing color information for each pixel in the image
and form a final RGB image.

The use of interpolation in the debayering phase
results in a loss of spatial resolution and introduction of
some color artifacting. The image in Fig. 7b, resulting
from m = 10800 measurements, certainly exhibits a
loss of spatial detail when compared to the RGB image
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Fig. 6: Reconstructed color channels and corresponding RGB images. Columns from left to right: Red, Green, Blue, RGB.
Rows from top to bottom: 25%, 50%, 75% Nyquist (m = 3600, 7200, 10800 for each color channel).

Fig. 7: Reconstructed image with color information encoded
from Bayer Pattern (top left). Debayered (demosaiced) image
with the color information restored (top right). Reconstructed
image from individual channel measurements (bottom left).
Reconstructed image using simultaneous measurements from
TCS24725 color sensor (bottom right). All reconstructions
are based on 10800 measurements per channel, or 10800
measurements total for the Bayer encoded images.

in Fig. 7c resulting from m = 10800 measurements
for each color channel. However, considering that the
result in Fig. 7b is formed entirely from m = 10800
measurements, then comparing it against the RGB image
in Fig. 6 (top right) resulting from a total of m =
3600 × 3 = 10800 measurements shows that the Bayer
projection method of capturing color images has a clear
advantage in terms of image quality versus number of
total measurements. Thus this method may be preferred

when memory limitations are a concern either during the
sensing or the reconstruction phases. When memory is
not a concern but sensing time is, a color sensor can be
used to measure each color channel simultaneously while
projecting a white sensing matrix. Thus the time spent
taking measurements is 1/3 that used for the images in
Fig. 6, while the number of measurements taken remains
the same. A TCS34725 color sensor was substituted for
the TSL2591 ambient light sensor as it was a similar
cost, had an available Python library, and used an I2C
interface like the TSL2591 sensor. As seen in Fig. 7, the
image quality is comparable to that of the restoration
from individual measurements using the more highly
sensitive full-spectrum sensor, being slightly noisier but
with more accurate colors. Similar differences in noise
level were observed for black and white imaging, but
with no improvement in color the original TSL2591
sensor is preferable for grayscale imaging.

VIII. CONCLUSION

The lensless single-pixel camera proposed in this
paper shows promise as being a compact and afford-
able platform for education and research purposes. It
is capable of acquiring CS measurements that can be
reconstructed into monochromatic and color images.
Differential detection has been shown to remove the
noise components of ambient light and sensor dark
current, which results in higher reconstructed image
quality. Color imaging can be performed by seperate
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color channel reconstruction, by using a projected Bayer
pattern, or by using a color sensor with receptors for
each of the three digital color channels.
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