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Abstract—Deep neural networks (DNNs) in the wireless com-
munication domain have been shown to be hardly generalizable
to scenarios where the train and test datasets follow a different
distribution. This lack of generalization poses a significant hurdle
to the practical utilization of DNNs in wireless communication.
In this paper, we propose a generalizable deep learning approach
for millimeter wave (mmWave) beam selection using sub-6
GHz channel state information (CSI) measurements, referred
to as PARAMOUNT. First, we provide a detailed discussion
on physical aspects of the electromagnetic wave scattering in
the mmWave and sub-6 GHz bands. Based on this discussion,
we develop the augmented discrete angle delay profile (ADADP)
which is a novel linear transformation for the sub-6 GHz CSI that
extracts the angle-delay attributes and provides a semantic visual
representation of the multi-path clusters. Next, we introduce a
convolutional neural network (CNN) structure that can learn
the signatures of the path clusters in the sub-6 GHz ADADP
representation and transform it to mmWave band beam indices.
We demonstrate by extensive simulations on several different
datasets that PARAMOUNT can generalize beyond the training
dataset which is mainly due to transfer learning principles that
allow transferring information from previously learned tasks to
the learning of new unseen tasks.

I. INTRODUCTION

Fifth-generation (5G) and beyond mobile networks promise
to usher in a new era of ultra high-speed communications
that surpasses previous generations by several orders of
magnitude in communication capacity [1]. One of the core
technologies behind such a spectacular revolution is spatial
user multiplexing enabled through massive multi-input-multi-
output (MIMO). By providing the ability to focus energy on
users’ devices, massive MIMO empowers pushing the capacity
of the network to such immense boundaries required for
5G and beyond communications [2]. Simultaneously, mobile
mmWave communication is enabled through 5G networks
and transforms directional communication from a promising
aspect of next generation networks into a must-have feature
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[3]. MmWave communication experiences huge attenuation in
the open air, requiring the transmitted energy to be directed
in narrow rays to meet sufficient signal-to-noise-ratio (SNR)
thresholds required at receivers [4].

As directional communication has gained importance in the
next generation of communication systems, beam selection has
obtained gravity as an enabler of directional communication.
To clarify this necessity, consider that two devices that exploit
directional antennas cannot communicate unless they ascertain
in which direction they should send/receive signals to/from
the other device. Moreover, this knowledge of direction of the
other device should be maintained during the communication
period; otherwise, the link will be disrupted [5]. To find the
best direction for communication, both sides of the link should
search for the beam pair that results in the highest SNR. This
process is called beam selection. The straightforward method
for beam selection is to conduct exhaustive search on all the
possible beam pairs between the two sides of the link. The
exhaustive search will result in a huge overhead, extensive
latency [6], and reduced throughput for the communication
systems. Speeding up and mitigating the burden of beam
selection in mmWave communications has been a topic of
extensive research recently [7]. Due to the high path loss in
mmWave communications, there are usually a small number
of propagation paths between the two sides of the link. Fur-
thermore, due to the sparse nature of communication channel
in the angular-delay domain [8], most early works on this topic
propose employing techniques based on compressive sensing
(CS) [9]–[11]. CS-based mmWave beam alignment techniques
have been proposed to exploit sparsity of mmWave channels
to reduce the beam search overhead [12], [13]. The authors
in [12] proposed a modified orthogonal matching pursuit
(OMP) algorithm called logit weighted - OMP (LW-OMP) to
improve sparse recovery of mmWave channels using sub-6
GHz channel information. In [13], the authors used the spatial
characteristics extracted from the sub-6 GHz band to construct
the mmWave channel covariance. This mmWave covariance
knowledge can be utilized to reduce the training overhead
associated with designing the analog or hybrid analog/digital
precoding matrices. However, CS-based methods typically de-
pend on estimating certain spatial parameters, such as angular
characteristics and path gains, at the sub-6 GHz band and
then utilizing them at mmWave frequencies. This makes their
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performance highly sensitive to estimation errors in the low-
frequency bands. Moreover, CS-based methods still require
a considerable amount of beam training overhead to acquire
CS measurements at the mmWave band, which increases with
the number of antennas. Many recent studies propose machine
learning (ML) techniques [14]–[17]. Long et. al cast the beam
selection problem as a multi-class classification problem and
employ support vector machine (SVM) to achieve a statistical
classification model that maximizes the sum rate [14]. Li
et. al propose an end-to-end deep learning (DL) technique
to design a structured CS matrix based on the underlying
channel distribution, leveraging both sparsity and the particular
spatial structure that appears in communication channels [16].
In recent years, the integrated sensing and communications
(ISAC) models have been explored as a way to accommodate
the dynamic changes in the environment. The idea of ISAC
is the enhancement of situational awareness by fusing the
information from various types of sensors including cameras,
RAdio Detection And Ranging (RADAR), LIght Detection
And Ranging (LIDAR), and user’s Global Position Systems
(GPS) information. Vision-aided approaches were proposed in
[18], [19], where images taken from cameras mounted within
the cellular coverage area are input to a neural network (NN)
to predict the optimal beams. In [20], a DL algorithm uses
RADAR data for beam prediction in mmWave and terahertz
communication systems. Furthermore, NN-based approaches
using input data from LIDAR sensors to identify the optimal
beam directions have been proposed in [21]–[24]. Lastly, GPS
aided beam selection has been used on its own in [25] and
combined with cameras in [26].

In an experimental study, a comprehensive channel mea-
surement campaign conducted in Europe in 2014-2016 in
numerous indoor and outdoor scenarios showed that geometry
of the main propagation paths at sub-6 GHz and mmWave
bands are almost similar [27]. This experimental outcome has
motivated several recent works to use sub-6 GHz channel
information for mmWave beam selection. Additionally, digital
beamforming can be challenging in the mmWave band due to
hardware limitations. Nevertheless, it is still possible to imple-
ment and use it to estimate channel state information (CSI) at
the sub-6 GHz band [28]. Ali et. al. introduce the possibility
of using sub-6 GHz for mmWave beam selection in [29].
The authors introduce a non-parametric approach (based on
interpolation/extrapolation) and a parametric approach (based
on estimates of angle of arrival (AOA) and angle spreads)
for the sake of mmWave channel estimation using the sub-6
GHz spatial correlation matrix. More recent studies consider
using DL for learning the transformation between sub-6 GHz
channel and mmWave beam selection. Alrabeiah et. al used
a fully connected neural network (FCNN) for mmWave beam
selection [15]. They show a 90% accuracy in beam selection
using the proposed technique. In [30], the authors demonstrate
the performance of FCNN with an experimental testbed in an
indoor setup.

The current wireless communication technology has been
developed using model-based techniques which have been
proven to be successful in tackling real-world wireless com-
munication challenges so far. On the other hand, data-driven

approaches such as DL are inherently data dependent. Majority
of DL techniques in wireless communication are tied to the
training dataset, and there is no guarantee that they can
generalize to perform well beyond that training dataset [31].
In contrast, the model-driven techniques can well generalize to
many real-world environments. Data dependency constraint of
DL techniques is a significant challenge in front of data-driven
techniques to replace their model-driven counterparts. Previous
studies have proposed deep transfer learning as a means of
transferring general features learned from one environment to
a new one [32], [33]. However, these models require fine-
tuning using an adaptation dataset collected from the new
environment. In contrast, our proposed model does not need to
be fine-tuned to perform effectively in a new, unseen scenario.

A. Contribution

This paper mainly focuses on the generalization aspects
of using DL for mmWave beam selection via sub-6 GHz
CSI. We propose a generalizable deep learning approach
for millimeter wave (mmWave) beam selection using sub-6
GHz channel state information (CSI) measurements, in short
PARAMOUNT. We formulate the mmWave beam selection
problem using sub-6 GHz CSI in a generalizable fashion such
that we can train the proposed deep neural network (DNN)
in a specific scenario and expect it to perform sufficiently
well in an unseen scenario. Next, we introduce a new feature
space for training deep networks. Then, we discuss why a
CNN performs better in terms of generalization in comparison
with the CSI + FCNN used in [15]. Finally, we present
our proposed CNN structure and demonstrate its superior
performance in unseen test scenarios through simulations. The
main contributions of this paper can be summarized as follows:

• Based on insights and domain knowledge from the in-
herent properties of the wireless channels provided in
Section V, we here introduce a new transfer (namely,
ADADP) which extracts a general set of features/seman-
tics from the input CSI that work sufficiently well for
the beam selection task in various environments. The
generalization capability of our proposed approach is
mainly due to the transfer learning principle which allows
transferring information from previously learned tasks to
the learning of new unseen tasks without the need for
fine-tuning the model.

• We propose a CNN architecture that can effectively ex-
tract the physical attributes of the propagation paths from
the ADADP. We argue that the ADADP transformation is
necessary for the CNN to learn physical characteristics of
the communication channel and to extend this knowledge
beyond the training dataset. We argue that by transform-
ing the raw CSI data into a sparse ADADP, the CNN can
focus on the propagation paths in the ADADP instead
of shifting its focus on irrelevant details in the CSI and
thus impeding generalizability. The combination of the
CNN architecture and ADADP representation results in
generalization.

• We show sufficient generalization capabilities of the
proposed approach even in the case where the training and
test datasets stem from separate scenarios by the CSI data
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collected at sub-6 GHz band to make beam predictions
at mmWave band.

The rest of the paper is structured as follows. In Section
II, we discuss physical aspects of electromagnetic wave prop-
agation at sub-6 GHz and mmWave bands. Based on that, in
Section III, we discuss massive MIMO CSI channel modeling
and derive a mathematical representation of beam selection.
In Section IV, we demonstrate learning of the transformation
from sub-6 GHz CSI to mmWave Beam Space. In Section V,
we discuss the requirement for a semantic representation of
the MIMO wireless channel and we introduce a novel angular
delay visual transformation of CSI, namely augmented discreet
angular delay profile (ADADP) to achieve this. In Section
VI, we discuss the structure of the proposed CNN and its
generalization capability. We provide extensive simulations to
demonstrate the generalization capability of PARAMOUNT in
Section VII. Finally, we conclude the paper in Section VIII.

Notations: Cm×n denotes the m × n complex space and
j =

√
−1. Boldface capital and lower-case letters represent

matrices and vectors, respectively (e.g. A and a). Calligraphic
letters denote sets (e.g. A). Operators (·)T and (·)H represent
the matrix transpose and Hermitian transpose, respectively.
Furthermore, ⊗ is the Kronecker product, and | · | is the
absolute value.

II. PHYSICAL ATTRIBUTES OF WIRELESS
COMMUNICATION CHANNELS

Since there is a solid model-based background knowledge
in wireless communications, there is a consensus within the
community that DL models should be able to incorporate the
available prior knowledge with their structures, otherwise they
are doomed to be impractical [34].

A wireless communication channel normally consists of two
sides, a base station (BS) (or an access point or a device in
case of device-to-device communication) and a user equipment
(UE) as shown in Fig. 1(a). Each side of the link is equipped
with one or more antenna elements. We assume that the two
sides of the link are located in the far-field zone of the antenna
with respect to each other. Considering the far-field, the BS
and the UE can be assumed to be points at the epicenters of
the BS and the UE antennas. Typically, there is a line-of-sight
(LOS) path (which may be blocked) and a number of non-LOS
(NLOS) paths between the BS and the UE. Each propagation
path is denoted by a line segment between the BS and UE in
the 3D space. We assume that the propagation path between
the BS and UE is the same regardless of which side transmits
the signal. Each propagation path identifies a wave-front plane
perpendicular to the path and can be characterized by a delay,
two 3D angles (zenith and azimuth), and a power. The delay
is the length of the path divided by the speed of light. The
pair (ϕt, θt) indicate the angle of departure (AOD) of the path
from the BS and the pair (ϕr, θr) denote the angle of arrival
(AOA) of the path to the UE. The gain of the path shows how
strong a signal can be transmitted over the path.The LOS path
is the straight line between the BS and the UE whose geometry
is frequency independent. The NLOS paths between the BS
and the UE are created because of the interactions of the

(a)

(b)

Fig. 1: a) The wireless channel has LOS and NLOS propagation paths, each
originating from the BS antenna center and terminating at the UE antenna
center. These paths have a perpendicular wavefront and are characterized by
AOD and AOA angle pairs, length, and complex power. b) The diffusion from
the rough surface will result in a cluster of path between the BS and the UE.
Each cluster consists of a strong SC and numerous DMCs.

electromagnetic wave and the surfaces of the scatterers in the
environment. Since the surfaces within the environment may
be rough, three phenomenon happen when an electromagnetic
wave impinges on a surface [35]:

• A fraction of the wave reflects specularly from the
surfaces (specular component (SC))

• A fraction of the energy is absorbed by or passes through
the surfaces and

• A fraction of the energy diffuses from the surfaces.
The diffusion results in numerous reflection paths with

slightly different angles and delays with respect to the angle
and the delay of the SC path from the surfaces. This results
in a dense distribution of weak propagation paths around the
SC called dense multi-path components (DMC) (Fig. 1(b)).
The SC plus DMCs from a surface create a cluster of paths.
Each path cluster can be characterized by the angle and the
delay of the SC, a delay spread, and an angle spread which
specify DMCs. With respect to its definition, the geometrical
characteristics of a SC is frequency agnostic, thus path clusters
at different frequencies show similar SCs in the geometrical
sense. On the other hand, the diffusion from a surface is di-
rectly proportional to the wavelength and hence, it is frequency
dependent [27]. Due to the facts that (i) the SCs geometrical
attributes are frequency agnostic, and (ii) DMCs have very
similar angle and delay profile to those of their corresponding
SC, the overall geometrical characteristics of path clusters at
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different frequency bands are similar.
The geometrical similarity between propagation paths at

sub-6 GHz and mmWave bands has been experimentally
observed and demonstrated via various empirical channel mea-
surement campaigns. Further, the measurements campaigns
show that the stronger cluster in sub-6 GHz tends to be the
strongest in mmWave band as well [27], [30], [36]. Therefore,
if we can train a model to learn the strongest path in sub-
6 GHz, then we would also know the strongest path in the
mmWave channel, which then can be mapped to the optimal
mmWave beam. In this work, we propose a ADADP transfor-
mation of the CSI, which enables semantic representation of
the LOS and NLOS path clusters. While the ADADP enables
us to identify the strongest path cluster, the mapping from the
path cluster to the optimal mmWave beam is best achieved
through the training our proposed CNN model, as discussed in
Section VI. Other than the scattering, blockage also results in
path cluster creation with very weak DMCs. Path blockage at
sub-6 GHz results in 15-25 dB loss and refraction [27], leading
to DMC creations. At mmWave bands, blockage causes even
higher loss, rendering the path completely blocked. This work
focuses on propagation paths with significant energy between
the BS and UE, and thus we will not consider blocked paths
for comparing the communication channel at mmWave and
sub-6 GHz bands.

III. MASSIVE MIMO CHANNEL MODELING AND
PROBLEM FORMULATION

The antenna configuration at the BS and the UE has a direct
impact on how meticulously the BS and the UE can estimate
and then utilize the channel. Discussing the channel estimation
mechanism for massive MIMO orthogonal frequency-division
multiplexing (OFDM) systems, we will explain how massive
MIMO provides information about the angular characteristics
of the propagation paths and OFDM provides information
about the delay of the propagation paths.

A. Channel Modeling at Sub-6 GHz

Let us consider a sub-6 GHz MIMO-OFDM wireless system
in which both the BS and the UE are equipped with an antenna
array with NB and NU elements, respectively; and they
use OFDM signaling with Nc subcarriers and Bc subcarrier
spacing. The received signal at the UE antenna array at the
lth subcarrier in the frequency domain can be written as

y[l] = h[l]s[l] + n[l] , (1)

where y[l] ∈ CNU×1 denotes the received signal, h[l] ∈
CNU×NB denotes the channel matrix, s[l] ∈ CNB×1 denotes
the transmitted signal at the BS, and n[l] ∼ NC(0, σ

2I)
denotes the receiver noise. We assume there are C dis-
tinguishable path clusters between the BS and the UE.
Moreover, each cluster constitutes RC distinguishable paths.
Each path can be characterized by a delay τ

(k)
m , k ∈

{1, . . . , C},m ∈ {1, . . . , RC}, an (azimuth, elevation) AOD
from the BS’s antenna characterized by (θ

(t)(k)
m , ϕ

(t)(k)
m ), an

(azimuth, elevation) AOA to the UE’s antenna characterized
by (θ

(r)(k)
m , ϕ

(r)(k)
m ) and a complex gain α

(k)
m [37]. The path

geometry does not change depending on weather the channel
is an uplink or downlink. This means that the AOD and
AOA at the UE are equivalent and the same is true for the
BS. Therefore, AOD and AOA can be used interchangeably
throughout this paper. Given a wide-band OFDM system,
τ
(k)
m = n

(k)
m Ts, where Ts and n

(k)
m denote the sampling

duration and the sampled delay belonging to the path m of
the cluster k, respectively [38]. With Nyquist rate of sampling,
Ts = 1

B , where B = NcBc is the total bandwidth of the
system and Bc represents the subcarrier spacing. Therefore,
channel frequency response (CFR) for each subcarrier l can
be written as

h[l] =

C∑
k=1

RC∑
m=1

α(k)
m (em

(r) ⊗ em
(t))e

−j2π
l n

(k)
m

Nc , (2)

such that
em

(r) = e(r)
(
θ(r)(k)m , ϕ(r)(k)

m

)
(3)

em
(t) = e(t)

(
θ(t)(k)m , ϕ(t)(k)

m

)
(4)

where em
(r) ∈ CNU×1 and em

(t) ∈ CNB×1 denote the array
response vector of the BS and the UE, respectively [39]. The
overall CFR matrix of the channel between the BS and the UE
can be expressed as H = [h[1] h[2] . . . h[Nc]]. In literature,
this matrix is commonly referred to as CSI. As (2) shows, the
AOA and AOD of each path is indirectly preserved in array
response vectors (em(r) and em

(t))), and delay of the path

is preserved in the subcarrier phase shift (e−j2π
l n

(k)
m

Nc ). CSI
is directly measurable via MIMO-OFDM systems equipped
with fully digital beamforming which is essential for the
wireless communication systems to gain understanding about
the channel.

B. mmWave Channel Model and CSI Estimation

Let us consider a mmWave MIMO-OFDM wireless system
in which the BS is equipped with an antenna array with
Nmm

B elements and the UE is equipped with an antenna
array with Nmm

U elements and use OFDM signaling with
Nmm

C subcarriers and Bmm
C subcarrier spacing. One profound

difference between mmWave band and sub-6 GHz band is that
digital beamforming is not accessible at mmWave bands due
to hardware limitations. This means that CSI is not directly
measurable at mmWave band. MmWave MIMO-OFDM sys-
tems are typically equipped with analog beamforming. Thus,
the received signal at the UE antenna array at the lth subcarrier
turns out to be [40]

ymm[l] = qhmm[l]wsmm[l] + nmm[l] , (5)

where smm[l] ∈ C denotes the signal, hmm[l] ∈ CNmm
U ×Nmm

B

denotes the mmWave channel response, q ∈ C1×Nmm
U is the

combining vector at the UE, w ∈ CNmm
B ×1 is the precoder

vector at the BS and nmm[l] ∈ N (0, (σmm)2) is the noise.
So instead of measuring a high-dimensional channel response
matrix hmm[l] ∈ CNmm

U ×Nmm
B , we can only measure a

one dimensional qhmm[l]w due to the lack of fully digital
beamforming at mmWave.
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CSI Estimation: Obtaining CSI in 6-GHz band is feasible
and cost effective due to availability of fully digital transceiver
chain and several techniques have been proposed to perform
the task [41]–[43]. On the other hand, mmWave channel
estimation is a challenging task due to high power consump-
tion of base band mix signal components, small SNR before
beamforming, and greater number of antennas [44]. Thus,
mmWave massive MIMO channel estimation has remained
under extensive research [45]–[47]. Since, only analog receiver
chain with digital phase shifters has been feasible for mmWave
implementation thus far, mmWave massive MIMO systems
are only able to shape beams based on predefined beam
codebooks. This puts a huge constraint on beamforming ability
of mmWave MIMO systems in comparison to their sub-6 GHz
counterparts equipped with fully digital transceivers [6].

Beam Selection Problem: Let the set of all precoders at the
BS be denoted by W (precoder codebook) and the set of all
combiners at the UE be denoted by Q (combiner codebook).
The achievable rate for a mmWave channel Hmm and a given
pair of precoder/combiner q,w is derived as [15]

R(Hmm, q,w) =

Nmm
C∑
l=1

log2

(
1 + SNRl |qhmm[l]w|2

)
, (6)

where SNRl =
E(|smm[l]|2)

(σmm)2 denotes the per subcarrier SNR,
E(.) shows the expectation operator, and |.| represents the
absolute value. For beam selection, we find the optimal
precoder/combiner that maximize the rate as

(w∗, q∗) = argmax
w∈W,q∈Q

R(Hmm, q,w) . (7)

Any given precoder/combinber pair (beam pair) points the
antenna beam of BS/UE in a specific direction. Since the BS
and the UE have no knowledge of neither CSI nor their relative
direction, they should conduct a search on predefined sets
of precoders and combiners to find the best beam pair with
the highest rate. The beam selection of (7) is a non-convex
optimization problem and hence should be solved by an
exhaustive search on all possible precoder/combiner pairs. We
define beam space as the set of all possible precoder/combiner
pairs and beam space search as the exhaustive search on all
possible beam pairs. The exhaustive search method checks
for all q and w combinations the to find the representative
combination that results in the largest gain at the receiver.
Let Nmm

B × Gtx matrix W = [w1,w2, ...,wGtx
] denote the

transmitter codebook consisting of Gtx precoding vectors and
Nmm

u ×Grx matrix Q = [q1, q2, ..., qGrx
] denote the receiver

codebook, consisting of Grx combining vectors. In the beam
training phase, the BS uses a precoding vector wm ∈ W and
the UE uses a combining vector qn ∈ Q. The BS transmits
the training OFDM blocks on Gtx precoding vectors. For each
precoding vector, the UE uses Grx distinct combining vectors.
The number of total training blocks is Grx × Gtx. The UE
determines the best precoder-combiner pair that generates the
largest |ynm[l]| for n = 1, ..., Grx,m = 1, ..., Gtx, and feeds
back this information to the BS. The beam space search results
in a huge overhead for the system which leads to higher
latency and lower throughput. To reduce the overhead and

latency of exhaustive search, various multi-resolution beam
alignment techniques have been proposed [48], [49]. Multi-
resolution beam alignment techniques involve transmitting
and receiving signals at different resolutions to efficiently
search for the best beam alignment. The alignment process is
typically divided into two stages: coarse and fine alignment.
In coarse alignment, the transmitter and receiver use relatively
wide beamwidths to search for each other’s signal. Once the
coarse alignment is established, the fine alignment stage uses
narrower beamwidths to refine the alignment and optimize the
signal quality.

IV. LEARNING THE TRANSFORMATION FROM SUB-6 GHZ
CSI TO MMWAVE BEAM SPACE

The CSI model of (2) holds for both mmWave and sub-6
GHz bands. However, the parameters C, RC , and ∥α(k)

m ∥ typ-
ically are smaller at the mmWave band. Unlike the mmWave
band, the digital beamforming is easily accessible at sub-6
GHz band and therefore, CSI is available. Moreover, as we
discussed in Section II, the geometry of propagation paths at
mmWave and sub-6 GHz bands are very similar. Thus, given
we have co-located sub-6 GHz and mmWave antennas at the
BS and the UE, we can take advantage of sub-6 GHz CSI to
mitigate the beam space search at mmWave band. In other
words, since beam space search looks for the propagation
path with the highest rate, we can extract the directions of
propagation paths from sub-6 GHz CSI. Then, we can utilize
this knowledge to reduce the beam space search only to
those directions with an existing propagation path. As we
discussed in Section III, the information about the geometry of
propagation paths is hidden in sub-6 GHz CSI. If we can train
a DNN to extract the geometrical information of propagation
paths from the CSI and then transform this knowledge to
find the optimal precoder/combiner pairs at mmWave, we can
drastically mitigate the beam space search overhead.

In [15], the authors train a FCNN to learn the transformation
between the sub-6 GHz CSI and the best beam pair for
mmWave communication. To train the FCNN, the authors form
a dataset of sub-6 GHz CSIs tagged by the best mmWave beam
pair. Furthermore, they assume that the mapping from the
position of the UE to the sub-6 GHz CSI is a bijective function.
The importance of the bijectiveness is that it guarantees the
existence of an inverse function that maps the sub-6 GHz
channel to the corresponding location. Under this condition,
the authors prove that there exists a mapping between the
sub-6 GHz channel and optimal mmWave beam. Despite
the existence of this mapping, the mapping is very hard to
characterize analytically. Therefore, they propose utilizing DL
to learn these non-trivial mapping functions. However, their
approach is purely data driven and does not take into account
the physical similarities between angular-delay distribution of
propagation paths at different frequency bands. In Section
VII, we empirically demonstrate that in fact the FCNN does
not learn to extract the required information from CSI and
therefore cannot generalize well beyond the training dataset.
However, in our proposed method, we first perform feature
engineering to convert the raw CSI into a more informative
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ADADP feature. Then, we apply a DL model to map the path
clusters in the sub-6 GHz ADADP to the optimal mmWave
beam. While the mapping from the path clusters to optimal
beam can be performed using classical (non-ML) methods,
we demonstrate by simulations that the best performance is
achieved by training our proposed CNN model.

V. EXTRACTING PROPAGATION PATHS INFORMATION
FROM SUB-6 GHZ CSI

Herein, we investigate a transformation of the CSI that
reveals the geometrical information of propagation paths in
a semantic representation learnable by deep networks. For
the ease of exposition, let us assume that the massive MIMO
system can perfectly separate between two propagation paths
in the angular domain which means (assuming infinite number
of antennas at the UE and the BS [8])

vec
(
e1

(r) ⊗ e2
(t))

)H

.vec
(
e1

′(r) ⊗ e2
′(t)

)
= δ(θ1 − θ′1, ϕ1 − ϕ′

1, θ2 − θ′2, ϕ1 − ϕ′
1) (8)

where vec(.) denotes an operator that concatenates columns
of a matrix (M × N ) into a vector (MN × 1), (.) denotes
inner product, and θ and ϕ values denote the azimuth and
the elevation angles. Thus for subcarrier l and the path
associated with AOA and AOD equal to

(
θ
(r)(k)
m , ϕ

(r)(k)
m

)
and(

θ
(t)(k)
m , ϕ

(t)(k)
m

)
, respectively. We define r(l) as

r(l) = vec
(
em

(r) ⊗ em
(t)
)H

.h[l] = α(k)
m e−j2π

l n
(k)
m

Nc δ(0) .

(9)
Let us concatenate r(l) for all subcarriers to get

r = α(k)
m δ(0)[1 e−j2π

n
(k)
m

Nc . . . e−j2π
(Nc−1) n

(k)
m

Nc ] (10)

= α(k)
m δ(0)[1 e−j2π

τ
(k)
m

TsNc . . . e−j2π
(Nc−1) τ

(k)
m

TsNc ] ,

where r ∈ C1×Nc . Therefore, α(k)
m and n

(k)
m ( mod NC) can

be estimated by applying Fourier transform on r. For now
assume that we have an ideal system with infinite bandwidth
(B → ∞, Ts → 0), infinite number of subcarriers (NC → ∞)
, and limited subcarrier spacing ( 1

Bc
= TsNC → τ̇c < ∞)

where τ̇c is larger than the maximum delay of the propagation
paths. Defining t(τ) = 1√

Nc
[1 ej2π

τ
τ̇c . . . ej2π

(Nc−1) τ
τ̇c ]T ∈

CNc×1; 0 ⩽ τ ⩽ τ̇c, we have

rt(τ) =
α
(k)
m δ(0)√
Nc

Nc−1∑
i=0

e−i j2π
(τ−τ

(k)
m )

τ̇c

=
α
(k)
m δ(0)√
Nc

sin(πNc
(τ−τ(k)

m )
τ̇c

)

sin(π (τ−τ
(k)
m )

τ̇c
)

⇒ lim
Nc→∞

rt(τ) = α(k)
m δ(0)δ(τ − τ (k)m ) (11)

which gives us the gain and delay of the path. To summarize
the whole process of transforming CSI to the paths’ geomet-
rical information in a linear transformation process, let us
redefine H as

Ḣ = [vec(h[1]) vec(h[2]) . . . vec(h[N ]) . . . ] . (12)

(a)

(b)

Fig. 2: (a) shows the original DADP introduced in [8] and (b) shows the
ADADP introduced in this paper. The DADP is a blurred version of the
ADADP. The position of path clusters in angular-delay domain are labeled as
LOS and NLOS.

Next, we define the angular-delay transformation of CSI as

Q
(
θ(r), ϕ(r), θ(t), ϕ(t), τ

)
= vec

(
e(r) ⊗ e(t)

)H

Ḣt(τ) . (13)
Assuming the condition of (8) and infinite bandwidth, we have

Q
(
θ(r), ϕ(r), θ(t), ϕ(t), τ

)
=

C∑
k=1

RC∑
m=1

α(k)
m δ

(
∆θr,∆ϕr,∆θt,∆ϕt,∆τ

)
. (14)

where ∆θr = θ(r) − θ
(r)(k)
m ,∆θt = θ(t) − θ

(t)(k)
m ,∆ϕr =

ϕ(r) − ϕ
(r)(k)
m ,∆ϕt = ϕ(t) − ϕ

(t)(k)
m , and ∆τ = τ − τ (t)(k).

We call (14) the continuous angular-delay profile (CADP)
of CSI. CADP is a linear transformation of CSI, ideally reveals
all the geometrical attributes of all propagation paths with
infinite resolution. The condition of (8) needs infinite number
of antenna elements at both the BS and the UE. Moreover,
obtaining (14) requires infinite bandwidth. Such conditions
are not accessible in a practical setup. In a real-world system
with finite angular resolution and limited bandwidth the trans-
formation of (14) still holds yet the angular-delay resolution
of the transformation is limited. In the next two subsections,
we will discuss the angular-delay transformations for systems
equipped by uniform linear array (ULA) antennas with finite
number of antennas.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3324916

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on December 14,2023 at 18:33:06 UTC from IEEE Xplore.  Restrictions apply. 



7

A. Discrete Angular-Delay Profile

Herein, we use the discrete angular-delay profile (DADP)
as defined in [8] for a single-antenna UE when the BS is
equipped with a ULA antenna with half-wavelength antenna
spacing. A ULA with N elements has an array response

e(θ) =
1√
N

[1, e−jπcos(θ), . . . , e−(N−1)(jπcos(θ))]T , (15)

where e(θ) has the characteristics of a discrete Fourier
Transform (DFT) vector. The authors define the DFT matrix
V ∈ CNB×NB as

[V ] z,q
∆
=

1√
NB

e
−j2π

(z(q−NB
2

))
NB ,

and F ∈ CNc×Nc as

[F ] z,q
∆
=

1√
Nc

e−j2π zq
Nc .

Then DADP matrix G ∈ CNB×NC is defined as [38]

G = V HHF . (16)

Then, authors in [8] prove that the [G] z,q denote the power
of path associated with the angle θq = arccos ( 2q−NB

NB
) and

delay τz = zTs. In other words, DADP is a sampled version
of CADP at angles equal to θq = arccos ( 2q−NB

NB
), q =

0, . . . , NB−1 and delays equal to τz = zTs, z = 0, . . . , NC−
1. Fig. 2 (a) shows a sample of DADP. As the figure shows,
path clusters appear with + like shape in DADP which
conforms our understanding of path clusters that DMCs have
slightly different angles and delays with respect to the SC.
Authors in [38], discuss that due to the semantic nature of
DADP and similar patterns of path clusters in DADP, the
DADP can transform a localization problem to an image
processing problem. Furthermore, authors in [37] demonstrate
that the problem of localization in highly dynamic scenarios
can be transformed to a video prediction problem using DADP
time series.

B. Augmented Discrete Angular-Delay Profile

One significant issue with DADP is that, the size of DADP
of (16) equals to the size of CSI matrix, which can be
problematic since the number of antennas and the bandwidth
of a sub-6 GHz system is much less than those of the co-
located mmWave system. Since the wavelength of mmWave
systems is one order of magnitude lower than that of sub-
6 GHz and the available bandwidth at mmWave is orders of
magnitude higher than bandwidth at sub-6 GHz, the size of
CSI at sub-6 GHz is much less than the size of mmWave
CSI. Thus the angular-delay information of propagation paths
available via sub-6 GHz CSI tends to be less than the angular-
delay information available via mmWave CSI. In Section
VII, we will show this asymmetry between sub-6 GHz and
mmWave CSI weakens the generalization capability of DNNs.

To tackle this issue we propose to use the augmented DADP
(ADADP), which can be arbitrarily large in size. In our previ-
ous work [50], we briefly introduced the concept of ADADP
and used it in the context of the fingerprinting localization

problem. We define the Vandermonde matrix V̇ ∈ CNB×NBB

as
[V̇ ] z,q

∆
=

1√
NB

e
−jπz cos( qπ

NBB
)
,

and Ḟ ∈ CNc×Ncc as

[Ḟ ] z,q
∆
=

1√
Nc

e−j2πz q
Ncc .

Then the ADADP matrix Ġ ∈ CNBB×NCC can be defined as

Ġ = V̇
H
HḞ , (17)

where NBB and NCC can be arbitrarily large integers.
ADADP is a sampled version of CADP at angles equal to
θq = qπ

NBB
, q = 0, . . . , NBB − 1 and delays equal to τq =

qNCTs

NCC
, q = 0, . . . , NCC − 1. Since ADADP can be sampled

arbitrarily more dense compared to DADP, it can potentially
provide more collective information about the angular-delay
aspects of the propagation paths and drastically improve the
generalization ability of DNNs. Fig. 2 illustrates that both
representations can reveal the path cluster parameters in the
angular-delay domain. However, ADADP produces a clearer
image compared to DADP.

C. Sub-6 GHz and mmWave Discrete Angular-Delay Profile

The similarities between the mmWave DADP and sub-6
GHz ADADP of the co-located antennas are illustrated in
Fig. 3. The CSIs used to generate the ADADPs are collected
at the same time instance. While the sub-6 GHz ADADP
may have more NLOS path clusters, it is clear that clusters
in the mmWave DADP appear in the approximately same
location as the clusters in sub-6 GHz ADADP, hence we can
map the sub-6 GHz ADADP to the optimal mmWave beam
using our proposed PARAMOUNT approach. Furthermore,
that the strongest path cluster appears in approximately the
same location in both ADADPs. Specifically, position of the
strongest path cluster (LOS) in angular-delay domain shows
up in the same location for sub-6 GHz and mmWave, which
in this case is around 82◦. There is also another NLOS path
around 85◦ in both ADADPs.

VI. DNN STRUCTURE AND GENERALIZATION

Instead of inputting CSI and using a purely data-driven
approach unlike many previous works [15], we propose to
combine the data-driven model with the knowledge of the
channel model. We attain this by converting an ambiguous
representation of the channel model (raw CSI data), into an
explicit representation of angle and delay distribution of the
propagation paths (ADADP). In addition, the transformation
of the dense CSI matrix into a sparse representation simplifies
the CNN learning process by exploiting the sparsity of the
ADADP. This technique has been shown to enhance the
generalizability of models, as reported in [51]. Conversely,
using dense matrix inputs like CSI requires a deeper NN that
increases model complexity. Although it may be feasible to
learn to correlate the geometric path propagation characteris-
tics to the beam from raw CSI data, it would necessitate a
more intricate model and significantly more data for training.
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Fig. 3: a) LOS and NLOS path clusters in the mmWave DADP, b) LOS and
NLOS path clusters in the sub-6 GHz ADADP. Data from the same user at
the same time instance via the collocated mmWave and sub-6 GHz MIMO
antennas.

Our proposal is to feed ADADP into a CNN, which utilizes
multiple kernel filters at each layer and performs convolution
on the previous layer’s output. Because ADADP is a semantic
and interpretable image, the CNN can learn the visual patterns
of path clusters and their variations, separating the paths, and
transforming them into mmWave beam space. The CNN can
also learn the spatial correlations of the path clusters in the
ADADP input.

In this way, by only inputting ADADP, the CNN can bring
out all useful angular-delay information about path clusters
from sub-6 GHz CSI. This way, even if we input a CSI
outside the training dataset, the CNN will be able to separate
path clusters, find the best path cluster at mmWave band
for communication and output the best beam pair, hence
generalize beyond the training dataset. The proposed structure
for the CNN is illustrated in Fig. 4. Since the path clusters
only appear with +-like shapes in ADADPs, we propose a
CNN with only 3 convolutional layers. The proposed structure
consists of an input layer, and convolutional layers followed
by batch normalization [52], ReLU, and dropout. The next
two convolutional layers have the same structure as the first
layer and they are followed by a fully-connected layer and
Softmax for classification [53]. We refer to our proposed
algorithm with the proposed CNN and the ADADP input as
PARAMOUNT. Specifically, we expect that the CNN learns
the kernels matched to the path cluster patterns, thus separate
them. The CNN can identify spatial correlations of the path

clusters even if the patterns are shifted, scaled or distorted,
while the FCNN is generally not invariant to translations or
local distortions with respect to the inputs [54]. This enables
the CNN to learn the visual pattern of the path clusters in
the ADADP image even if they are shifted [55] and extend
learned pattern features beyond the training dataset.

In [15], the authors introduce an FCNN which takes the sub-
6 GHz CSI as the input and outputs the best beam with highest
SNR at mmWave. Since FCNN can only take 1D inputs and
CSI has a 2D structure, they first vectorize the CSI and then
feed it to the FCNN. Since the FCNN is not regularized
for the task at hand, we have no guarantee that the FCNN
learns to extract angular-delay attributes of propagation paths,
neither can generalize beyond the training dataset. Moreover,
from the channel model described in Section II, we know
that each path cluster has an angular-delay spread, while the
FCNN structure does not have any internal mechanism to
extract correlative dependencies between nearby angles and
delays. Moreover, the number of trainable parameters, which
includes both weights and biases, in the FCNN model far
exceeds the number in the CNN model. Specifically, the FCNN
model has 17,442,880 trainable parameters, while the CNN
model has only trainable 340,368 parameters. Since FCNN is
prone to overfitting data due to its large number of learnable
parameters, it may memorize a dataset instead of learning the
latent representation in the data, thus perform pretty well only
when the input coming from the seen dataset, while it is unable
to generalize beyond it.

VII. SIMULATION RESULTS

In this section, we examine the generalization capability of
the proposed CNN structure and compare it with the FCNN
structure proposed in [15]. The common technique for training
and testing a DNN is to take a given dataset measured within
an environment, randomly separating the dataset to a test and a
train dataset and then examine the performance of the trained
DNN on the test dataset. In addition to that, to examine the
generalization capability of the DNNs, we test the performance
of the techniques in scenarios where the test dataset is coming
from an unseen scenario.

A. Outdoor scenario

TABLE I: DeepMIMO Outdoor Dataset Parameters

Parameters Sub-6 GHz Dataset mmWave Dataset
Scenario name O1 3p5 O1 28
Antenna Type ULA ULA

Number of BS Antennas 4 64
Antenna Spacing (wavelength) 0.5 0.5

Bandwidth(GHz) 0.08 0.5
Number of OFDM subcarriers 64 512

OFDM sampling factor 1 1
OFDM limit 64 64

Number of paths 15 5

Unseen Test Scenarios: For the sake of the testing, we use
the traditional testing/training dataset separation which we call
the seen test dataset. Moreover, we examine the performance
of the trained DNN on two categories of unseen datasets:
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Fig. 4: The proposed CNN structure for extracting path clusters’ information from ADADP.

Fig. 5: Bird’s-eye view of the DeepMIMO outdoor scenario. White rect-
angles illustrate buildings and black ribbons are streets. The training dataset
is generated for the user grid around the active BS3. The LOS and NLOS
blockage scenarios are generated for the same user grid. Two other test
datasets are generated assuming BS8 and BS9 are active, respectively. The
red bounding boxes show the user grid for each dataset.

• Path Blockage: in a real world setup, due to movement
of the objects within an environment, it is very probable
that some of the propagation paths get blocked. In path
blockage scenarios, we assume that the BS3 is active and
while propagation paths in the test dataset are subject to
one of the following changes:

– LOS Blockage: In this scenario, we assume that the
strongest path cluster between the BS and the UE
gets blocked for all the CSIs of the dataset.

– NLOS Blockage: We assume that the second
strongest path cluster between the BS and the UE
gets blocked for all the CSIs of the dataset.

• Unseen Base Stations: As we explained in Section
VII-A, for generating the train dataset we assume that
BS3 is active. For testing we assume two additional
unseen LOS scenarios:

– BS8: We assume the BS8 is active and we generate
the test detaset for rows R1500 to R2000. All other
parameters from the training scenario remain the
same.

– BS9: We assume the BS9 is active and we generate
the test detaset for rows R2000 to R2500. All other
parameters from the training scenario remain the
same.

Dataset Generation Using DeepMIMO [56]: For the sake
of training and testing, we use the DeepMIMO framework for

outdoor scenarios which simulates wireless channel within a
dense urban scenario of an intersection of two streets using
ray-tracing. Fig. 5 illustrates the bird’s-eye view map of
the whole scenario. There are 18 different BSs around the
environment. For training, we assume that only BS3 is active.
We generate a dataset of CSIs tagged by locations for the
grid of users from row R700 to R1300 (collectively 108,600
datapoints). We assume that there are two co-located antennas
at BS3, one operating at 3.5 GHz (sub-6 GHz band) and
the other one at 28 GHz (mmWave band). The parameters
for the sub-6 GHz and mmWave systems can be found in
TABLE I. We assume that at both bands, the UE is equipped
with one antenna. The DeepMIMO dataset provides us with
the CSI at both bands. To find the best beam at mmWave
band, we form a codebook at mmWave band consisting of
Nmm

U precoding vectors. The ith codeword is defined as
w(i) = e( πi

Nmm
U

), i = 0, . . . , Nmm
U − 1, where e is the

ULA array response of (15). Using the mmWave CSI and
the codebook, a DNN classifier finds the best beam class with
highest rate. We tag each sub-6 GHz CSI with the mmWave
beam class to form the dataset. To reproduce the scenario and
benchmark the output, the training dataset and the mmWave
dataset is exactly the same as the training dataset used in [15].

B. Performance Evaluation Metrics

For the purpose of comparison and benchmarking, we pick
the top-n metric which is defined as the probability of the
best beam being among the top-n beams suggested by the
classifier. We also calculate the achievable rate of the mmWave
communication system based on top-n beams. The top-n
achievable rate is defined as the rate achieved using the best
performing beam in the top-n classifier output.

C. Neural Network Training and Testing

For DNNs training, we split the training dataset to 80
percent training and 20 percent testing. For comparison, we
train the FCNN network and the CNN network on the same
training dataset. We train the CNN both on DADP (denoted
by DADP + CNN) and ADADP (denoted by PARAMOUNT).
To generate ADADPs, we set NBB = NCC = 64. The
FCNN training hyperparameters are equal to the parameters
introduced in [15]. For CNN training we use ADAM solver
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[57], and learning rate equals to 10−4, other hyperparameters
are the same as the ones for FCNN’s. For testing, we randomly
pick 40,000 datapoints from the mentioned unseen training
datasets and average the results on them. All the simula-
tions are conducted in MATLAB and running on a machine
equipped with an RTX 3060 GPU and 64 GB of RAM. The
codes for the simulations can be accessed in [58].

Noisy Channel Measurements: In all experiments, for test-
ing, we assume noisy CSI measurements at sub-6 GHz. We
assume the SNR changes from -5 dB to 20 dB. For calculating
the achievable rate at mmWave, we assume the same SNR at
mmWave as the sub-6 GHz band.

For training, in [15], the authors retrain the FCNN for each
SNR level they use for experimentation at the testing dataset.
This retraining approach is not practical. We do not have the
luxury of network retraining for each SNR level in a real-
world application. Instead of that, we add a noise with random
SNR level between -5 dB and 20 dB to each training sample
and train the DNNs (both the CNN and FCNN) once on the
noisy dataset. In practice, we can make such a training dataset
by measuring CSI at a high SNR level only once and then
randomly adding noise to the measurements.

D. Beam Selection Generalization Performance Evaluation

1) Generalization Performance for Path Blockage Datasets:
In the first simulation, we compare the performance of CSI
+ FCNN proposed in [15], DADP + CNN, and ADADP +
PEAK SEARCH to the proposed PARAMOUNT (ADADP +
CNN). Since the novelty of PARAMOUNT consists of two
components, the CNN architecture and the ADADP formula-
tion, we demonstrate the performance of models with only one
of these novelties. The DADP + CNN model only considers
the architecture novelty, while the ADADP + PEAK SEARCH
focuses on the ADADP formulation. Furthermore, the DNNs
(FCNN, DADP + CNN, and PARAMOUNT) are trained on
dataset generated from the parameters in TABLE I. The DNNs
are trained on LOS scenario datasets, and tested on both seen
LOS scenario, and unseen LOS blockage and NLOS blockage
scenarios.

TABLE II shows the performance of all the discussed
methods in the 3 mentioned scenarios. As the results demon-
strate, when the test scenario and the train scenario are the
same (i.e. LOS Scenario), FCNN performs with higher top-
1 and top-3 accuracy than the two other DNNs for SNRs
greater than 0 dB. While for SNRs equals or less than 0
dB, PARAMOUNT shows the best performance among the
DNNs. On the other hand, in the two unseen scenarios, LOS
and NLOS blockage scenarios, the accuracy of FCNN drops
sharply while PARAMOUNT shows a robust performance. In
particular, PARAMOUNT overall performs 20% better than
the CSI + FCNN in top-1 accuracy and 30-40% better in
top-3 accuracy. The outstanding performance of CSI + FCNN
in the seen scenario and its poor performance in the unseen
scenarios, show that the FCNN has overfitted to the seen
scenario and fails to generalize to the unseen scenarios. The
FCNN appears to memorize the CSI to beam relationship
without taking into account any knowledge of the wireless

channel. Therefore, when the CSI input is altered by a LOS
or NLOS blockage, the FCNN cannot match it to the correct
beam. On the other hand, PARAMOUNT shows a very robust
performance in all scenarios specifically when we consider the
top-3 metric. The results prove that, as expected, the FCNN
falls short of extracting propagation paths information from
CSI while PARAMOUNT can extract the information from
the ADADP.

Please note that the ADADP + PEAK SEARCH approach
shows a slightly better performance in NLOS blockage sce-
nario because this scenario is specifically in favor of the
ADADP + PEAK SEARCH approach. This scenario refers to
the case were the second strongest path cluster is blocked in
mmWave. The second strongest path is the most problematic
for the ADADP + PEAK SEARCH method as it can be
mistakenly taken by ADADP + PEAK SEARCH as the
one leading to the best mmWave beam. When the second
strongest path is blocked, there is no such ambiguity for peak
selection, hence leading to an exceptionally good performance
for ADADP + PEAK SEARCH. The NLOS blockage is
actually a very special case of the LOS scenario with a
small probability of occurrence which is included to show
robustness of PARAMOUNT in various scenarios. TABLE
II shows that even in this exceptional scenario that is very
much in favor of ADADP + PEAK SEARCH, our proposed
PARAMOUNT approach outperforms it by 10% in top-1
accuracy. Since our main goal is to avoid any beam search
at all, we care mostly about the top-1 performance. In other
words, it is our significant improvement in the top-1 accuracy
that enables mmWave connection establishment without any
beam search at all. Using the values in TABLE II, an estimate
of the top-1 accuracy of ADADP + PEAK SEARCH over
PARAMOUNT for various SNR values, can be calculated
30+36+37+38+37+37
19+39+61+72+76+76 = 62.7% and 25+29+30+30+30+30

18+38+49+51+51+53 =
66.9% for the LOS and NLOS scenarios, respectively. Con-
sidering the overall accuracy, we get a significant gain by
PARAMOUNT in comparison with a simple ADADP + PEAK
SEARCH.

2) Ablation Study: The innovations in PARAMOUNT are
two fold: 1) our proposed ADADP transform that not only
provides good generalization performance, but also partially
boosts the beam selection accuracy, and 2) our proposed
efficient CNN-based classifier applied on top of the ADADP
to further improve the beam selection accuracy. We use the
results in TABLE II to assess the relative effectiveness of
each individual innovation in PARAMOUNT. A performance
comparison between DADP + CNN with PARAMOUNT
(ADADP + CNN) allows us to asses the relative effectiveness
of CNN. Comparing DADP + CNN with PARAMOUNT,
we observe that PARAMOUNT consistently exceeds the per-
formance in all instances. In top-1 for SNR greater than
0 dB, the PARAMOUNT outperforms DADP + CNN by
20% or more. This confirms that our proposed ADADP is
partially boosting the beam selection accuracy, i.e. the CNN
architecture alone does not achieve a high accuracy. Next, let
us compare PARAMOUNT (ADADP + CNN) with ADADP
+ PEAK SEARCH to get insights on the performance of the
CNN. As mentioned in previously, when averaged over various
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TABLE II: Beam selection top-1 and 3 accuracy metrics for one seen and two unseen scenarios. The training LOS scenario is the LOS dataset around BS3
parameterized in Fig. 5. In the two unseen test scenarios, the LOS and the NLOS blockage scenarios, the user grid is the same as LOS scenario, however,
we assume that the strongest path cluster and the second strongest path cluster gets blocked, respectively. To compare the generalization performance of the
DNNs, we list the accuracy of DNNs for the scenario where the test dataset is seen (LOS scenario), as well as the two unseen scenarios.

Top-1 Accuracy Top-3 Accuracy

SNR(dB) -5 0 5 10 15 20 -5 0 5 10 15 20

LOS
Scenario

CSI + FCNN 11% 38% 66% 81% 87% 89% 30% 72% 94% 99% 99% 99%
DADP + CNN 6% 17% 38% 52% 55% 55% 14% 44% 80% 90% 91% 91%

ADADP + PEAK SEARCH 30% 36% 37% 38% 37% 37% 71% 82% 87% 89% 90% 90%
PARAMOUNT (ADADP + CNN) 19% 39% 61% 72% 76% 76% 47% 79% 93% 96% 97% 97%

NLOS
Blockage

CSI + FCNN 10% 24% 33% 34% 35% 35% 31% 59% 65% 64% 63% 63%
DADP + CNN 5% 12% 22% 27% 29% 29% 14% 31% 52% 66% 70% 71%

ADADP + PEAK SEARCH 32% 40% 43% 43% 43% 43% 77% 89% 95% 98% 98% 99%
PARAMOUNT (ADADP + CNN) 17% 41% 50% 50% 52% 54% 44% 82% 92% 93% 93% 94%

LOS
Blockage

CSI + FCNN 7% 16% 21% 22% 22% 23% 21% 41% 48% 49% 49% 48%
DADP + CNN 5% 10% 15% 17% 19% 19% 12% 26% 42% 52% 56% 57%

ADADP + PEAK SEARCH 25% 29% 30% 30% 30% 30% 64% 73% 78% 80% 81% 81%
PARAMOUNT (ADADP + CNN) 18% 38% 49% 51% 51% 53% 43% 74% 84% 86% 87% 87%

SNR values, ADADP + PEAK SEARCH achieves only 62.7%
and 66.9% top-1 accuracy of PARAMOUNT for LOS and
NLOS, respectively. Thereby, it is obvious that proper use of
CNN as proposed in PARAMOUNT significantly improves the
top-1 beam selection accuracy which is considerably desirable
as it fully omits the beam search overheads. Furthermore,
ADADP + PEAK SEARCH method identifies the sub-6 GHz
ADADP index corresponding to the strongest path’s direction.
This is achieved by upsampling the ADADP to 64 in the
angular domain, where each sample corresponds to a beam
index. As per Section II, the propagation paths at sub-6 GHz
and mmWave bands share similar geometry. Therefore, it is
possible to predict the mmWave band’s beam using ADADP
+ PEAK SEARCH on the sub-6 GHz ADADP. The advantage
of ADADP + PEAK SEARCH is its low complexity since
it does not require any DNN training. For top-1 accuracy,
PARAMOUNT outperforms ADADP + PEAK SEARCH any-
where between 7% and 23% in blockage scenarios and more
than 20% on in LOS scenario when SNR is greater than 0
dB. For top-3 accuracy, PARAMOUNT outperforms ADADP
+ PEAK SEARCH by 6% or more in LOS blockage scenarios
and more than 9% on in LOS scenario.

Although using DNN-based beam selection requires a train-
ing phase, it alleviates the need to send pilot signals on
different beams to find the best (i.e. beam sweeping). With
DNNs, we spend some computation resources (mostly for to
training) to save the communication resources spent on beam
search. Considering the technology trend which is quickly
moving towards considerably cheaper computation and ex-
tremely expensive communication resources, NN-based beam
selection seems to be definitely part of future wireless. It
is already under study by 3GPP RAN1 for Release 18, 5G
Advanced: AI/ML for NR Air Interface [59]. Additionally,
collection of the dataset for training DNNs in a realistic
scenario is not expensive either. Presently, these datasets
are readily accessible at the BS within the current wireless
networks. This is because the sub-6 GHz channel is estimated
regularly in the current wireless protocols using periodic pilot
transmissions to enable efficient communications. Similarly,
the mmWave beam selection is also routinely performed using
the conventional methods (beam sweeping, multi-resolution
beam search, etc.) in the current wireless protocols. Therefore,

by simply recording these sub-6 GHz channel estimates (i.e.
input features to PARAMOUNT) and the corresponding opti-
mal mmWave beams (i.e. output labels) during regular network
operations, the training dataset is automatically generated
given a specific period of time has passed since the BS was
powered on. Consequently, the main idea in PARAMOUNT
is to exploit the existing wealth of sub-6 GHz CSI and the
corresponding optimal beam estimates to train a CNN that
can later omit/reduce the mmWave beam search overheads.

One may also notice the poor performance of the ADADP
+ PEAK SEARCH in LOS scenario. This is due to the small
number of sub-6 GHz antennas and large upsampling factor
in the ADADP formulation. In Section II, we demonstrate
that the strongest path cluster in the sub-6 GHz channel
tends to be the strongest cluster in the mmWave channel.
However, the number of sub-6 GHz antenna array elements
(NB) is significantly less than the number of array elements
on the mmWave antenna. The resolution of the CSI matrix
and consequently the DADP matrix is proportional to NB as
is evident from the formulation in (16). The sub-6 GHz DADP
can be enlarged into a ADADP matrix using (17) to match
the size of the mmWave DADP. The discrepancy between
the peak in the sub-6 GHz ADADP and the mmWave DADP
results from the upsampling error in the ADADP. The larger
the upsampling factor, the lower the performance of ADADP
+ PEAK SEARCH. In case of the results in Table II, the sub-6
GHz antenna has only 4 elements while the mmWave antenna
has 64. Therefore, the ADADP is enlarged 16 times which
impacts the accuracy. We get a low top-1 accuracy of 37% with
ADADP + PEAK SEARCH in the LOS case, and the accuracy
further drops to 30% in the NLOS scenario. We would like to
add that the role of the CNN in the proposed PARAMOUNT
approach is enhancement of the ADADP resolution to counter
the adverse effects of upsampling. One motivation of using
CNNs in PARAMOUNT was their demonstrated success in
image super-resolution [60]. In PARAMOUNT, the CNN
extracts the local correlation patterns in ADADP and uses
information from the entire path cluster to make the beam
prediction, rather than focusing on a single peak. The subtle
non-linear correlations between the path clusters and optimal
beams is best captured using a CNN model. This ablation
study demonstrates that using ADADP is a necessary but

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3324916

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on December 14,2023 at 18:33:06 UTC from IEEE Xplore.  Restrictions apply. 



12

not sufficient condition for achieving the best beam selection
performance. We show that by combining the ADADP with
the CNN network in PARAMOUNT, we can achieve superior
results, especially in the top-1 accuracy.

Additionally, the ADADP + PEAK SEARCH reaches its
best performance for SNR greater than 0 dB and further
increasing SNR does improve the performance as shown in
Table II. As long as the signal power is higher than the noise
level (positive SNR), the peak (maximum) in the ADADP will
always be located on the same ADADP matrix element. Hence,
further increasing SNR will not improve the ADADP + PEAK
SEARCH performance.

3) Generalization Performance For Unseen LOS Datasets:
In the next simulation, we test the trained DNNs in unseen
LOS datasets of BS8 and BS9 as described in Section VII-A.
Here the test and train datasets are both LOS, but the test
datasets originate from totally different scenarios. Fig. 6 shows
the achievable spectral efficiency (SE) using PARAMOUNT
and CSI + FCNN in three scenarios. SE and beam alignment
are closely related and interdependent. The purpose of beam
alignment is to maximize the SE. By leveraging beamforming
techniques and precise beam alignment, mmWave MIMO sys-
tems can achieve higher data rates and improved overall per-
formance. Fig. 6(a) shows that both PARAMOUNT and CSI
+ FCNN top-3 rate approach the upper bound for SNR higher
than 5 dB, while the CSI + FCNN top-1 rate shows a slightly
higher performance in comparison with PARAMOUNT. The
upper bound is obtained by an exhaustive search for optimal
solution of (7). These outcomes are in agreement with the
previous simulation results, in which we concluded that FCNN
overfitted to the train dataset. On the other hand, when we
look at the performance of the CSI + FCNN at the two
unseen datasets (Fig. 6 (b) and (c)), we observe a significant
performance drop in CSI + FCNN output. Particularly, in
both cases, the CSI + FCNN top-3 rate can achieve the level
of 85% of the upper bound, and the top-1 rate declined to
65% of the upper bound of the achievable rate, while in the
seen scenario it comes very close to the achievable rate upper
bound. On the other hand, PARAMOUNT shows a much more
robust performance in both unseen scenarios and the top-3 rate
can achieve more that 99% of the upper bound. The results
show that in the case of the unseen LOS scenarios, CSI +
FCNN fails to generalize properly to unknown inputs, while
PARAMOUNT shows a strong generalization capability.

4) Effect of Training Dataset Size: In the next simulation,
we explore the effect that the training dataset size has on the
generalization performance of the DNNs. In this simulation,
we assume that the dataset is the LOS blockage dataset (where
both models have the poorest performance among all the test
datasets). On the other hand, we vary the training dataset size
as summarized in TABLE III. Referring to Fig. 7, the top-1 and
top-3 accuracy of PARAMOUNT increase by 20% and 16%,
respectively, when the training dataset size increases from 0.8
to 1.4 of the original dataset. The top-1 and top-3 accuracy
of CSI + FCNN increase only 6% and 7%, respectively
which shows that CSI + FCNN fails to take advantage of
the increased size to improve its generalization capabilities.
On the other hand, PARAMOUNT generalization performance
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Fig. 6: The achievable rates using CSI + FCNN and PARAMOUNT are
studied at three scenarios: (a) the test and train datasets come from the same
environment around the active BS3. (b) the test scenario is different than the
train scenario; for the test dataset we assume BS8 is active and the data is
gathered around it (c) we assume BS9 is active and the test data is gathered
around it.

significantly improves as the training dataset size increases.
5) Effect of the Number of Sub-6 GHz Antennas: In the

next simulation, we study the effect of sub-6 GHz antenna
array size on the generalization ability of the DNNs. So far,
we have assumed that the number of antenna elements at the
sub-6 GHz band is 4. In the following simulation, we change
the number of antennas at sub-6 GHz to 8, 16, and 32. This
way, the measured sub-6 GHz CSI provides us with more
accurate information about the angles of path clusters as we
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TABLE III: To make different training datasets, we only change the user
grid rows and keep all other parameters defined TABLE I the same.

Change Dataset Size -20% -10% 0% 10% 20% 30% 40%
User Grid Start Row 760 730 700 670 640 610 580
User Grid End Row 1240 1270 1300 1330 1360 1390 1420

-20 -10 0 10 20 30 40

Relative Dataset (%)

0

10

20

30

40

50

60

70

80

90

A
c
c
u

ra
c
y
 (

%
)

CSI + FCNN Top-1

CSI + FCNN Top-3

PARAMOUNT Top-1

PARAMOUNT Top-3

Fig. 7: shows the effect of changing the size of the training dataset on the
classification accuracy of PARAMOUNT and CSI + FCNN. Here, the testing
dataset is the LOS blocked dataset. Increasing the size of training dataset
shows more impact on the generalization performance of PARAMOUNT in
comparison with CSI + FCNN.

discussed in Section V. Based on the previous simulations,
both DNNs have their poorest performance when the test
dataset is the LOS blocked dataset. Therefore, we take this
dataset for testing. In this simulation, we assume that the
parameters described in Section VII-A remain the same except
for the number of antennas at sub-6 GHz.

Fig. 8(a) shows the top-1 accuracy of PARAMOUNT and
CSI + FCNN for different antenna sizes. As expected, ADADP
shows a solid superior performance compared to CSI +
FCNN. Furthermore, a significant performance improvement
is observed when the number of antennas increases from 8 to
16 using the CNN technique. On the other hand, when the
number of antennas increases from 16 to 32, we only observe
performance improvements for SNRs less than 5 dB. This
means that the antenna with 32 elements only provide the
CNN with more SNR gain in comparison with 16 elements
antenna, while the angular information provided by the latter
is sufficient to separate the path clusters in the angular-delay
domain. Thus, we can conclude that increasing the number
of sub-6 GHz antennas from 16 to 32 is only required in
low SNRs scenarios, while it does not provide us with any
additional angular information about the propagation paths.

Looking at Fig. 8(b), we observe that with the 3 antenna
configurations, PARAMOUNT shows almost similar perfor-
mance for SNR larger than -5 dB. This observation has
profound implications in showing the effectiveness of data
augmentation for improving the performance of the DNN
technique. As we discussed in Section V, ADADP can fun-
damentally improve the angular resolution of the antenna,
while it provides us with more collective information of
paths clusters angular-delay attributes. The results of Fig.8(b)
show that the information provided by ADADP with only
8 antennas is enough to find the top 3 beam candidates
and increasing the number of antennas will not significantly
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Fig. 8: In this experiment the testing dataset in the LOS blocked dataset.
(a) shows the top-1 accuracy for different sub-6 GHz antenna size for
PARAMOUNT and CSI + FCNN. (b) shows the top-3 accuracy.

improve the performance of the CNN. According to the
previous simulations, similarly we observe a pretty solid
generalization performance when we consider the top-3 beams,
which demonstrate the strong impact of data augmentation for
the system performance.

E. Comparison with CS-based Beam Selection

In this simulation, we compare the performance of
PARAMOUNT to the widely-adopted CS-based benchmark
that uses a modified OMP algorithm called logit weighted
- OMP (LW-OMP) [12] to predict the beam. We perform
the simulations on the dataset from BS8 and BS9 for two
different SNRs, namely 5 dB and 15 dB as shown in Fig.
9. To highlight the importance of our propose method, both
PARAMOUNT and ADADP + PEAK SEARCH do not require
any measurement; therefore, the results in Fig. 9 are for zero
measurements. We spend some computation resources (mostly
for training) to save the communication resources spent on
beam search. From BS8 results in Fig. 9(a), we observe
that LW-OMP requires more than 5 measurements to exceed
the SE of ADADP + PEAK SEARCH and more than 15
measurements to exceed PARAMOUNT for both SNRs. In
Fig. 9(b), we observe that LW-OMP requires more than 5
measurements to exceed the SE of ADADP + PEAK SEARCH
on the BS9 dataset for both SNRs. Furthermore, we observe
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Fig. 9: (a) Comparison between PARAMOUNT, LW-OMP, and ADADP
+ PEAK SEARCH for two different SNRs on BS8 dataset. (b) Comparison
between PARAMOUNT, LW-OMP, and ADADP + PEAK SEARCH for two
different SNRs on BS9 dataset.

that even with 20 measurements LW-OMP cannot exceed the
SE of PARAMOUNT for neither SNRs.

F. Training Time
All training and experiments were performed using MAT-

LAB. The simulations were carried out on a workstation
equipped with 64 GB RAM, AMD Ryzen 9 5950X 16-cores
and 32 logical processors CPU, and a NVIDIA GeForce RTX
3060 TI GPU. Fig. 10 shows the training duration of the CNN
models for different input dimensions. The first four bars show
the training time for the DADP + CNN with 4, 8, 16, and 32
sub-6 GHz antennas corresponding to DADP inputs of 4×64,
8× 64, 16× 64, and 32× 64, respectively. The last bar shows
the ADADP of size 64×64. The 4×64 DADP takes about 412
seconds to train while the 64x64 ADADP takes 1373 seconds
which is approximately three times longer. However, since
all training is performed offline, does not require frequent re-
training, and is sufficiently generalizable, the training time is
less of a concern.
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Fig. 10: The effect of enlarging the size of the input matrix with respect
the training time.

G. Extension to Mobility Scenarios
The mobility scenario can be considered an extension of

the dynamic scenarios simulated in Section VII-D as LOS and
NLOS blockage scenarios. However, instead of predicting the
current beam, the model tries to predict the future beams for a
moving UE. The mobility scenarios are particularly important
for vehicular communication networks (VCNs). Recurrent
neural networks (RNNs) such as gate recurrent units (GRU)
[61] and long-term short-term memory (LSTM) [62], [63]
have shown promising results in beam prediction and beam
tracking in VCNs. Specifically, this work can be extended to
a mobility scenario by adding a RNN model that first predicts
the sub-6 GHz ADADP at the next time stamp similar to
the RNN model proposed in [37]. Then, the predicted sub-6
GHz ADADP can be used with the proposed PARAMOUNT
framework to predict the mmWave beam. This implementation
may be explored in future work. Additionally, an interesting
extension to the mobility scenario is to transform the channel
to a delay-Doppler-angle domain, following a similar approach
to the DADP transformation.

VIII. CONCLUSION

In this paper, we first discuss the fundamental problem
of generalization in using deep learning (DL) for wireless
communication applications. We discuss that a solid history
of well-developed model-based literature in wireless com-
munication has provided us with exceptional performance in
practical applications so far. On the other hand, the novel DL
paradigms have been proved to be highly data-dependent and
thus fall short of generalization beyond the training dataset.
To make this matter worse, we discussed that very little effort
has been devoted to study the generalization performance of
DL techniques in wireless communication. We discussed that
to be able to come up with generalization in DL, we need
to incorporate the solid background knowledge in wireless
communication with neural networks (NN). To this end, we
took the problem of mmWave beam selection using sub-6
GHz CSI and discussed in details the physical aspects of
electromagnetic wave scattering at mmWave and sub-6 GHz
bands. From there, we have discussed that, to provide general-
ization, the NN needs to extract path clusters information from
sub-6 GHz CSI and transform this information to mmWave
band. To make sure that the NN can extract the required
data, we introduce a novel augmented discrete angular-delay
profile (ADADP) technique which provides us with a high
resolution semantic image of the path clusters in angular delay
domain. Due to the visual nature of the ADADP, we introduce
a convolutional NN (CNN) for beam selection. To study the
generalization capability, we train the CNN on a line-of-sight
(LOS) dataset and test it on unseen datasets. Our simulation
results show that the introduced data augmentation and the NN
can secure generalization ability for the technique. We showed
improved generalization capability for our proposed approach
in comparison with previously proposed CSI + FCNN model.

REFERENCES

[1] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE communications
magazine, vol. 52, no. 2, pp. 74–80, 2014.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3324916

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Central Florida. Downloaded on December 14,2023 at 18:33:06 UTC from IEEE Xplore.  Restrictions apply. 



15

[2] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless
networks: A comprehensive survey,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016.

[3] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE access,
vol. 1, pp. 335–349, 2013.

[4] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal,
A. Alkhateeb, and G. C. Trichopoulos, “Wireless communications and
applications above 100 GHz: Opportunities and challenges for 6G and
beyond,” IEEE access, vol. 7, pp. 78 729–78 757, 2019.

[5] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and
J. C. Widmer, “IEEE 802.11 ad: directional 60 GHz communication
for multi-gigabit-per-second wi-fi,” IEEE Communications Magazine,
vol. 52, no. 12, pp. 132–141, 2014.

[6] M. Giordani, M. Mezzavilla, and M. Zorzi, “Initial access in 5G
mmWave cellular networks,” IEEE communications Magazine, vol. 54,
no. 11, pp. 40–47, 2016.

[7] A. N. Uwaechia and N. M. Mahyuddin, “A comprehensive survey on
millimeter wave communications for fifth-generation wireless networks:
Feasibility and challenges,” IEEE Access, vol. 8, pp. 62 367–62 414,
2020.

[8] X. Sun, X. Gao, G. Y. Li, and W. Han, “Single-site localization based
on a new type of fingerprint for massive MIMO-OFDM systems,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6134–6145,
2018.

[9] A. Alkhateeb, G. Leus, and R. W. Heath, “Compressed sensing based
multi-user millimeter wave systems: How many measurements are
needed?” in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2015, pp. 2909–2913.

[10] C.-R. Tsai and A.-Y. Wu, “Structured random compressed channel sens-
ing for millimeter-wave large-scale antenna systems,” IEEE Transactions
on Signal Processing, vol. 66, no. 19, pp. 5096–5110, 2018.

[11] X. Song, S. Haghighatshoar, and G. Caire, “A scalable and statistically
robust beam alignment technique for millimeter-wave systems,” IEEE
Transactions on Wireless Communications, vol. 17, no. 7, pp. 4792–
4805, 2018.
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[21] A. Klautau, N. González-Prelcic, and R. W. Heath, “LIDAR data for
deep learning-based mmWave beam-selection,” IEEE Wireless Commu-
nications Letters, vol. 8, no. 3, pp. 909–912, 2019.

[22] M. B. Mashhadi, M. Jankowski, T.-Y. Tung, S. Kobus, and D. Gündüz,
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