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Abstract

Recent studies have started to address the concern of de-
tecting and rejecting the out-of-distribution (OOD) samples
as a major challenge in the safe deployment of deep learn-
ing (DL) models. It is desired that the DL model should
only be confident about the in-distribution (ID) data which
reinforces the driving principle of the OOD detection. In
this paper, we propose a simple yet effective generalized
OOD detection method independent of out-of-distribution
datasets. Our approach relies on self-supervised feature
learning of the training samples, where the embeddings lie
on a compact low-dimensional space. Motivated by the
recent studies that show self-supervised adversarial con-
trastive learning helps robustify the model, we empirically
show that a pre-trained model with self-supervised con-
trastive learning yields a better model for uni-dimensional
feature learning in the latent space. The method pro-
posed in this work, referred to as RODD, outperforms SOTA
detection performance on extensive suite of benchmark
datasets on OOD detection tasks. On the CIFAR-100 bench-
marks, RODD achieves a 26.97 % lower false positive rate
(FPR@95) compared to SOTA methods. Our code is pub-
licly available.1

1. Introduction
In a real-world deployment, machine learning models

are generally exposed to the out-of-distribution (OOD) ob-
jects that they have not experienced during the training.
Detecting such OOD samples is of paramount importance
in safety-critical applications such as health-care and au-
tonomous driving [7]. Therefore, the researchers have
started to address the issue of OOD detection more re-
cently [1, 2, 13–15, 24, 30, 37]. Most of the recent stud-
ies [11, 20, 21, 36] on OOD detection use OOD data for
the model regularization such that some distance metric be-
tween the ID and OOD distributions is maximized. In recent
studies [26, 28], generative models and auto-encoders have

1https://github.com/UmarKhalidcs/RODD

been proposed to tackle OOD detection. However, they re-
quire OOD samples for hyper-parameter tuning. In the real-
world scenarios, OOD detectors are distribution-agnostic.
To overcome this limitation, some other methods that are
independent of OOD data during the training process have
been proposed [6,13,14,29,34,37]. Such methods either use
the membership probabilities [6,13,14,29] or a feature em-
bedding [34, 37] to calculate an uncertainty score. In [34],
the authors proposed to reconstruct the samples to produce
a discriminate feature space. Similarly, [6] proposed syn-
thesizing virtual outliers to regularize the model’s decision
boundary during training. Nevertheless, the performance
of the methods that rely on either reconstruction or gener-
ation [6, 26, 34] degrades on large-scale datasets or video
classification scenarios.

In this work, we claim that if the feature vectors belong-
ing to each known class lie on a low-dimensional subspace,
a representative singular vector can be calculated for each
class that can be used to calculate uncertainty scores [37].
In order to achieve such a compact representation of the fea-
tures belonging to each class, we have leveraged contrastive
learning as a pre-training tool that has improved the perfor-
mance of the proposed robust out-of-distribution detector
(RODD) as it has helped the better feature mapping in the la-
tent space during the downstream fine-tuning stage [17,32].
Self-supervised pre-training, where we use adversaries as a
form of data augmentation, helps to raise the RODD’s per-
formance in the settings with corrupted samples. This con-
cept has been established by [3, 12, 16, 18, 33] that a self-
supervised contrastive adversarial learning can generate an
adversarially robust model during the fine-tuning. The over-
all architecture of the RODD is shown in Fig. 1.

In summary, we make the following contributions in this
study. First, we propose that OOD detection test can be de-
signed using the features extracted by self-supervised con-
trastive learning that reinforce the uni-dimensional projec-
tions of the ID set. Second, we have theoretically proved
that such uni-dimensional projections, boosted by the con-
trastive learning, can be characterized by the prominent first
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Figure 1. Overall architecture of the proposed OOD detection method. (a) In the first step, self-supervised adversarial contrastive learning is performed.
(b) Secondly, the encoder is fine-tuned by freezing the weights (W) of the penultimate layer. The columns of W are initialized to be orthonormal.(c)
Thirdly, employing singular value decomposition (SVD), we calculate the first singular vector of each class using its features. (d) The final step is the OOD
detection, where an uncertainty score is estimated using cosine similarity between the feature vector (Ft) representing the test sample t and first singular
vector of each ID class. Here, BN represents Batch Normalization, L is the number of classes, and δth is the threshold for the uncertainty score.

singular vector that represents its corresponding class at-
tributes. Furthermore, the robustness of the proposed OOD
detector has been evaluated by introducing corruptions in
both OOD and ID datasets. Extensive experiments illus-
trate that the proposed OOD detection method outperforms
the state-of-the-art (SOTA) algorithms.

2. Approach
Our proposed OOD detection approach builds upon em-

ploying a self-supervised training block to extract robust
features from the ID dataset. This is carried out by train-
ing a contrastive loss on ID data as shown in Fig. 1 (a).
Next, we utilize the concept of union of one-dimensional-
embeddings to project the deep features of different classes
onto one-dimensional and mutually orthogonal predefined
vectors representing each class to obtain logits. At the final
layer’s output, we evaluate the cross-entropy between the
logit probability output and the labels to form the supervised
loss as shown in Fig. 1 (b). The uni-dimensional mapping is
carried out to guarantee that intra-class distribution consists
of samples aligning the most with the uni-dimensional vec-
tor characterizing its samples. To this end, the penultimate
layer of the model is modified by using cosine similarity and
introducing a sharpening layer as shown in Fig. 1 (b), where

output logits are calculated as, P (Fn) =
Z(Fn)
G(Fn)

, where

Z(Fn) =
WTFn

∥Fn∥
, G(Fn) = σ(BN(WT

g Fn)) (1)

Here, Fn represents the encoder output for the training
sample n, σ is the sigmoid function, and Wg is the weight
matrix for the sharpening layer, represented by G(Fn),
which essentially maps Fn to a scalar value. In the sharpen-
ing layer, batch normalization (BN) is used for faster con-
vergence as proposed by [13]. It is worth mentioning that
during the fine-tuning stage, we do not calculate the bias
vector for the penultimate and sharpening layers.

The orthogonality comes with wide angles between the
uni-dimensional embeddings of separates classes creating
a large and expanded rejection region for the OOD sam-
ples if they lie in the vast inter-class space. To achieve this,
we initialize the weight matrix W = [wlw2 . . .wl] of the
penultimate layer with orthonormal vectors as in [27] and
then freeze it during the fine-tuning stage. Here, wl rep-
resents the weights of the last fully connected layer corre-
sponding to class l. During fine-tuning, the features are pro-
jected onto the predefined set of orthogonal vectors wl for
l = 1, 2, . . . , L, where L is the number of ID classes.

After training, OOD testing can be done by evaluat-
ing the inner products between the calculated first singular
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vectors (U1,U2, . . . ,UL) representing their correspond-
ing classes as shown in Fig. 1 (c), and the extracted feature
for the sample of interest. To perform OOD inspection on
the test sample t ∈ St, where St is the test set, the uncer-
tainty score is calculated as,

δt = min(arccos

(
FT

t Ul

∥Ft∥

)
), ∀ l ∈ {1, 2, . . . , L} (2)

Here, Ft is the output of the encoder for the test sample
t. The measured uncertainty is then used to calculate the
probability that if t belongs to ID or OOD using the proba-
bility function p(δt ≤ δTh|t ∈ St) as RODD is a probalistic
approach where sampling is performed during the test time.
In an ideal scenario, features of ID class l have to be aligned
with the corresponding wl, where wl is the lth column of
matrix W. In that case, δTh = 0. However, in practice, all
class features are not exactly aligned with their respective
column in W, that further strengthens the idea of using the
first singular vector of each class feature matrix, separately.

Next, we will explain how the contrastive learning pre-
training and sharpening module, G(Fn), boosts the perfor-
mance of our approach. Firstly, contrastive learning has
been beneficial because we do not freeze the weights of
the encoder after the self-supervised learning and keep fine-
tuning them along the training procedure using the cross-
entropy loss. In other words, the features are warm-started
with initialized values derived from the contrastive loss pre-
training, yet the final objective function to optimize is com-
posed of two terms LCL + µLLL, where LCL and LLL de-
note the contrastive and cross-entropy losses, respectively.
In addition, the cross-entropy loss imposes the orthogonal-
ity assumption infused by the choice of orthogonal matrix
containing union of wl ∀ l ∈ {1, 2, . . . , L} each of which
represent one class. By feeding the inner products of fea-
tures with W into LLL, the features are endorsed to get
reshaped to satisfy orthogonality and rotate to align wl.

Furthermore, augmenting the data of each class with the
adversarial perturbations can improve classification perfro-
mance on ID perturbed data while still detecting the OOD
data [3, 18]. Moreover, prior to feeding the optimizer with
the inner products for supervised training, we modify the
uni-dimensional mappings using G(Fn) to optimally bene-
fit from the self-supervised learned features. To compensate
for the uni-dimensional confinement which can downgrade
the classifier’s performance, we use the sharpening concept,
where we enhance the confidence of the obtained logit vec-
tor by scaling the inner products with a factor denoted with
the sharpening function G(Fn) explained above.

2.1. Theoretical Analysis
In this section, we provide theoretical analyses on

how pre-training with contrastive loss promotes the uni-
dimensional embeddings approach utilized in RODD by pro-
moting one prominent singular vector (with a dominant sin-
gular value) in the deep feature extraction layer.

The objective function used in our optimization is com-
posed of a contrastive loss and a softmax cross entropy. For
simplicity, we use a least squared loss measuring the dis-
tance between linear prediction on a sample’s extracted fea-
ture to its label vector ∥WTFn − yn∥22 as a surrogate for
the softmax cross entropy (LLL) 2. This is justified in [32].

Let A = [ai,j ] denote the adjacency matrix for the aug-
mentation graph of training data formally defined as in [32].
In general, two samples are connected through an edge on
this graph if they are believed to be generated from the same
class distribution. Without loss of generality, we assume
that the adjacency matrix is block-diagonal, i.e., different
classes are well-distinguished. Therefore, the problem can
be partitioned into data specific to each class. Let F and
Y denote the matrix of all features and label vectors, i.e.,
Fn and yn, where n denotes the nth sample, respectively.
The training loss including one term for contrastive learning
loss and one for the supervised uni-dimensional embedding
matching can be written as: 3

L(F) = ∥A− FFT ∥2F︸ ︷︷ ︸
LCL(F)

+µ ∥WTF−Y∥2F︸ ︷︷ ︸
LLL(F)

. (3)

Y and A are given matrices, and W is fixed to some or-
thonormal predefined matrix. The optimization variable is
therefore the matrix F. Thus, we the optimization problem
can be written as:

min
F

∥A− FFT ∥2F + µ∥WTF−Y∥2F . (4)

Before bringing the main theorem, two assumptions are
made on the structure of the adjacency matrix arising from
its properties [32]: 1: For a triple of images xi,xj ,xs,
we have ai,j

aj,s
∈ [ 1

1+δ , 1 + δ] for small δ, i.e., samples of
the same class are similar. 2: For a quadruple of images
xi,xj ,xs,xt, where xi,xj are from different classes and
xs,xt are from the same classes, ai,j

as,t
≤ η for small η.

Lemma 1. Let F∗ denote the solution to minF LCL (first
loss term in (4)). Assume F∗ can be decomposed as F∗ =
UΣVT . Under Assumptions 1,2 (above), for F∗ with sin-

gular values σi, we have
∑Nl

i=2 σ
2
i ≤

√
6
(
(1 + δ)

3
2 − 1

)
for some small δ, where σi = Σii, and Nl is the number
training samples of class l.
Proof. In [32], it is shown that

∑Nl

i=2 σ
4
i ≤ 2

(
(1+δ)

3
2−1)

)
.

The proof is straightforward powering
∑Nl

i=2 σ
2
i by two and

applying Cauchy-Schwartz inequality.
Theorem 1. Let F∗ denote the solution to (4). Assume F∗

can be decomposed as F∗ = UΣVT . There exist a µmin

such that, if µ < µmin in P (4).
2The least squared loss (LLL) measures the distance of the final layer

predictions (assuming linear predictor in the deep feature space) from the
one-hot encoded vector (alternatively logits if available)

3It is shown in [8] that the solution to the contrastive learning loss can
be written as the following Cholesky decomposition problem, minF ∥A−
FFT ∥2F , which constitutes the first term of the loss in Eq. (3).
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The purpose is to show that treating corrupted or adver-
sarial ID data vs. OOD data, the uni-dimensional embed-
ding is robust in OOD rejection. This mandates invariance
and stability of the first singular vector for the features ex-
tracted for samples generated from each class. The goal of
this theorem is to show that using the contrastive loss along
certain values of µ regularizing the logit loss, the dominance
of the first eigenvector of the adjacency matrix is also inher-
ited to the first singular vector of the F and this is inline with
the mechanism of proposed approach whose functionality
depends on the stability and dominance of the first singular
vector because we desire most of the information included
in the samples belonging to each class can be reflected in
uni-dimensional projections.

Assuming the dominance is held for the first singular
value of each class data, the contrastive learning can there-
fore split them by summarizing the class-wise data into uni-
dimensional separate representations. The V matrix is used
to orthogonalize and rotate the uni-dimensional vectors ob-
tained by contrastive learning to match the pre-defined or-
thogonal set of vectors wl as much as possible.

Now the proof for the main theorem is provided.
Proof. A is Hermitian. Therefore, it can be decomposed
as A = QΛQT . The solution set to minimize LCL

is S = {QΛ
1
2VT : ∀ orthonormal matrix V}

(λi = Λii = σ2
i ).

Let L1 and L2 be the minima for (4) obtained on the sets
S and Sc, i.e., the complementary set of S. L1 equals
µminF∈S LLL(F) as the first loss is 0 for elements in S.
Now, we consider L2. Sc can be partitioned into two sets
Sc
1 and Sc

2 , where elements in Sc
1 set LLL to zero and ele-

ments in Sc
2 yield non-zero values for LLL. Therefore, L2

is the minimum of the two partition’s minima.
L2 = min

{
min
F∈Sc

1

LCL(F)︸ ︷︷ ︸
LHS

, min
F∈Sc

2

LCL(F)+µLLL(F)︸ ︷︷ ︸
RHS

}
. (5)

It is obvious that for a small enough µ, L2 equals the
RHS above. This can be reasoned as follows. Let the LHS
value be denoted with m1. m1 > 0 since S and Sc

1 are
disjoint sets with no sharing boundaries. The RHS in (5)
is composed of two parts. The first part can be arbitrar-
ily small because although S and Sc

2 are disjoint, they are
connected sets with sharing boundaries. (For instance any
small perturbation in Λ eigenvalues drags a matrix from S
into Sc

2 . However, they are infinitesimally close due to the
continuity property). The second term can also be shrunk
with an arbitrarily small choice of µ = µmin = m1

LLL(F̃)

that guarantees the RHS takes the minimum in Eq. (5),
where F̃ = argmin

F∈Sc
2

LCL(F)
4. Therefore, for µ < µmin,

4(As discussed, F̃ makes the first term arbitrarily approach 0 due to
continuity property holding between S and Sc

2 and there is an element in
Sc
2 arbitrarily close to F̃)

the minimum objective value in Eq. (4) (min{L1, L2}) is,
min

{
minF∈Sc

2
LCL(F)+µLLL(F),minF∈S µLLL(F)

}
.

The final aim is to show that µ can be chosen such that
F∗ inherits the dominance of first eigenvalue from A. This
is straightforward if the solution is RHS in (5) because the
solution lies on S in that case and therefore, can be ex-
pressed as QΛ

1
2VT inheriting the property in Lemma 1.

Thus, we first consider cases where min{L1, L2} is ob-
tained by the RHS by explicitly writing when LHS>RHS.
We assume the minimizers for the RHS and LHS differ in a
matrix R. Let F∗ denote the minimizer for RHS. Then, the
minimizer of LHS is F∗ +R. We have
LHS = ∥A − (F∗ + R)(F∗ + R)T ∥2F + µ∥WTF∗ +
WTR−Y∥2F =
∥A− F∗F∗T︸ ︷︷ ︸

0

− (F∗RT +RF∗T +RRT )︸ ︷︷ ︸
E

∥2F +

µ∥WTF∗ − Y + WTR∥2F = ∥E∥2F + µ∥WTF∗ −
Y∥2F + µ∥WTR∥2F + 2µ⟨WTF∗ −Y,WTR⟩,
where the inner product of two matrices A,B
(⟨A,B⟩) is defined as Tr(ABT ). The RHS
in (5) equates µ∥WTF∗ − Y∥2F since F∗ is its
minimizer and the loss has only the logit loss
term. Thus, the condition LHS > RHS reduces to
∥E∥2F + µ∥WTR∥2F + 2µ⟨WTF∗ −Y,WTR⟩ > 0.
Using the fact that the matrix W is predefined to be an
orthonormal matrix, multiplying it by R does not change
the Frobenius norm. Hence, the condition reduces to
∥E∥2F + µ∥R∥2F > 2µ⟨Y − WTF∗,WTR⟩. To
establish this bound, the Cauchy-Schwartz inequality (C-S)
and the Inequality of Arithmetic and Geometric Means
(AM-GM) are used to obtain the upper bound for the inner
product. The sufficient condition holds true if it is estab-
lished for the obtained upper bound (tighter inequality).
Applying (C-S) and (AM-GM) inequalities we have

⟨Y −WTF∗,WTR⟩
C−S→
≤ ∥Y −WTF∗∥F ∥WTR∥F =

∥Y −WTF∗∥F ∥R∥F
AM−GM→

≤ 1
2
∥Y −WTF∗∥2F + 1

2
∥R∥2F

Substituting this for the inner product to establish a tighter
inequality, we get ∥E∥2F + µ∥R∥2F > µ∥Y−WTF∗∥2F +
µ∥R∥2F reducing to ∥E∥2F > µ∥Y −WTF∗∥2F .

As the matrix of all zeros, i.e., [0] ∈ S , inserting [0]
for F leads to a trivial upper bound for the minimum ob-
tained over F ∈ S, i.e., ∥Y −WTF∗∥2F is upper bounded
with ∥Y∥2F . Finding a condition for ∥E∥2F > µmin∥Y∥2F
guarantees the desired condition is satisfied. If ∥E∥2F >
µmin∥Y∥2F is met, the solution lies in S and RHS obtains
the minimum, validating Lemma 1 for F∗.
Otherwise, if the solution lies in Sc

2 and is attained from
the LHS such that it contravenes the dominance of the first
pricinpal component of A, we will show by contradiction
that the proper choice for µ avoids LHS to be less than the
RHS in (5). To this end, we take a more profound look
into ∥E∥2F . If R is to perturb the solution F∗ such that
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the first principal component is not prominent, for R+F∗,
we shall have

∑Nl

i=2 σ2
i > ∆ + α for some positive α vi-

olating the condition stated in the Theorem. This means
there is at least one singular value of F∗ +R, for which we

have σr >
√

∆+α
Nl−1 =

√
α

Nl−1 + O( 4
√
δ). As F∗ inherits

the square root of eigenvalues of A, according to Lemma
1 and using Taylor series expansion, σr(F

∗) = O( 4
√
δ).

This yields σr(R) >
√

α
Nl−1 + O( 4

√
δ). E is a symmet-

ric matrix and therefore it has eigenvalue decomposition.
∥E∥2F ≥ λ2

r(E) = λ2
r(RRT +RF∗T + F∗RT ) =

λ2
r(RRT ) + O(δ) > α2

(Nl−1)2 + O(δ). Knowing that

∥Y∥2F = N2
l , if µ < α2

N4
l

, the condition for RHS<LHS is
met. According to Lemma 1 and the previous bound found
for µmin, if µmin < min{ α2

N4
l
, m1

LLL(F̃)
}, the solution should

be F∗ = QΛ
1
2VT . Hence, for certain range of values for µ,

the solution takes the form QΛ
1
2V obeying the dominance

of λ1 in A and this concludes the proof.

3. Experiments
In this section, we evaluate our proposed OOD detection

method through extensive experimentation on different ID
and OOD datasets with multiple architectures.

3.1. Datasets and Architecture
In our experiments, we used CIFAR-10 and CIFAR-100

[19] as ID datasets and 7 OOD datasets. OOD datasets
utilized are TinyImageNet-crop (TINc), TinyImageNet-
resize(TINr) [5], LSUN-resize (LSUN-r) [35], Places [39],
Textures [4], SVHN [25] and iSUN [31]. For an architec-
ture, we deployed WideResNet [38] with depth and width
equal to 40 and 2, respectively, as an encoder in our exper-
iments. However, the penultimate layer has been modified
as compared to the baseline architecture as shown in Fig. 1.

3.2. Evaluation Metrics and Inference Criterion
As in [6, 29], the OOD detection performance of RODD

is evaluated using the following metrics: (i) FPR95 indi-
cates the false positive rate (FPR) at 95% true positive rate
(TPR) and (ii) AUROC, which is defined as the Area Un-
der the Receiver Operating Characteristic curve. As RODD
is a probabilistic approach, sampling is preformed on the
ID and OOD data during the test time to ensure the prob-
abilistic settings. We employ Monte Carlo sampling to es-
timate p(δt ≤ δTh) for OOD detection, where δTh is the
uncertainty score threshold calculated using training sam-
ples. During inference, 50 samples are drawn for a given
sample, t. The evaluation metrics are then applied on ID
test data and OOD data using the estimated δTh to calculate
the difference in the feature space.

3.3. Results
We show the performance of RODD in Tables 1 and 2

for CIFAR-10 and CIFAR-100, respectively. Our method
achieves an FPR95 improvement of 21.66%, compared to
the most recently reported SOTA [6], on CIFAR-10. We
obtain similar performance gains for CIFAR-100 dataset as
well. For RODD, the model is first pre-trained using self-
supervised adversarial contrastive learning [16]. We fine-
tune the model following the training settings in [38].

4. Ablation Studies
In this section, we conduct extensive ablation studies to

evaluate the robustness of RODD against corrupted ID and
OOD test samples. Firstly, we apply the 14 corruptions
in [9] on OOD data to generate corrupted OOD (OOD-C).
Corruptions introduced can be benign or destructive based
on thier intensity which is defined by their severity level.
To do comprehensive evaluations, 5 severity levels of the
corruptions are infused. By introducing such corruptions in
OOD datasets, the calculated mean detection error for both
CIFAR-10 and CIFAR-100 is 0%, which highlights the in-
herit property of RODD that it shifts perturbed OOD features
further away from the ID as shown in t-SNE plots in Fig.
2 which shows that perturbing OOD improves the RODD’s
performance. Secondly, we introduced corruptions [9] in
the ID test data while keeping OOD data clean during test-
ing. The performance of RODD on corrupted CIFAR-100
(CIFAR100-C) has been compared with VOS [6] in Table 3.
Lastly, we compared the classification accuracy of our pro-
posed method with the baseline WideResNet model [38] on
clean and corrupted ID test samples in Table 4. RODD has
improved accuracy on corrupted ID test data as compared
to the baseline with a negligible drop on classification accu-
racy of clean ID test data.

5. Conclusion
In this work, we have proposed that in-distribution fea-

tures can be aligned in a narrow region of the latent space
using constrastive pre-training and uni-dimensional feature
mapping. With such compact mapping, a representative first
singular vector can be calculated from the features for each
in-distribution class. The cosine similarity between these
computed singular vectors and an extracted feature vector
of the test sample is then estimated to perform OOD test.
We have shown through extensive experimentation that our
method achieves SOTA OOD detection results on CIFAR-
10 and CIFAR-100 image classification benchmarks.
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Table 1. OOD detection results of RODD and comparison with competitive baselines trained on CIFAR-10 as ID dataset. All values are
shown in percentages. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Methods

OOD Datasets
SVHN iSUN LSUNr TINc TINr Places Textures

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓

MSP [10] 48.49 91.89 56.03 89.83 52.15 91.37 53.15 87.33 54.24 79.35 59.48 88.20 59.28 88.50
ODIN [22] 33.55 91.96 32.05 93.50 26.52 94.57 36.75 89.20 49.15 81.64 57.40 84.49 49.12 84.97
Mahalanobis [21] 12.89 97.62 44.18 92.66 42.62 93.23 42.75 88.85 52.25 80.33 92.38 33.06 15.00 97.33
Energy [23] 35.59 90.96 33.68 92.62 27.58 94.24 35.69 89.05 50.45 81.33 40.14 89.89 52.79 85.22
OE [11] 4.36 98.63 6.32 98.85 5.59 98.94 13.45 96.44 15.67 96.78 19.07 96.16 12.94 97.73
VOS [6] 8.65 98.51 7.56 98.71 14.62 97.18 11.76 97.58 28.08 94.26 37.61 90.42 47.09 86.64
FS [37] 24.71 95.31 17.41 96.61 4.84 96.28 12.45 97.83 9.65 97.95 11.56 96.42 5.55 98.64
RODD (Ours) 1.82 99.63 4.07 99.32 4.49 99.25 10.29 98.10 6.30 99.0 9.59 98.47 3.87 99.43

Table 2. OOD detection results of RODD and comparison with competitive baselines trained on CIFAR-100 as ID dataset. All values are
shown in percentages. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Methods

OOD Datasets
SVHN iSUN LSUNr TINc TINr Places Textures

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓

MSP [10] 84.59 71.44 82.80 75.46 82.42 75.38 69.82 79.77 79.95 72.36 82.84 73.78 83.29 73.34
ODIN [22] 84.66 67.26 68.51 82.69 71.96 81.82 45.55 87.77 57.34 80.88 87.88 71.63 49.12 84.97
Mahalanobis [21] 57.52 86.01 26.10 94.58 21.23 96.00 43.45 86.65 44.45 85.68 88.83 67.87 39.39 90.57
Energy [23] 85.52 73.99 81.04 78.91 79.47 79.23 68.85 78.85 77.65 74.56 40.14 89.89 52.79 85.22
OE [11] 65.91 86.66 72.39 78.61 69.36 79.71 46.75 85.45 78.76 75.89 57.92 85.78 61.11 84.56
VOS [6] 65.56 87.86 74.65 82.12 70.58 83.76 47.16 90.98 73.78 81.58 84.45 72.20 82.43 76.95
FS [37] 22.75 94.33 45.45 85.61 40.52 87.21 11.76 97.58 44.08 86.26 47.61 88.42 47.09 86.64
RODD (Ours) 19.89 95.76 39.79 88.40 36.61 89.73 44.42 85.95 42.56 87.67 41.72 89.10 24.64 94.14

(c)(a) (b)

Figure 2. t-SNE representation of features extracted by introducing Gaussian noise on OOD dataset. 10,000 samples each of TINc and LSUNc while 1,000
sample of each class from ID CIFAR-10 test set are used to generate 2D t-SNE plot. (a) Features extracted from the baseline model with severity level 1.
(b) Features extracted using RODD with corruption severity level 1. (c) Features extracted from the RODD with corruption severity level 5.

Table 3. Evaluation using corrupted ID test samples for CIFAR-100. All values are in % and averaged over 7 OOD datasets discussed in Section 3.1
whereas corruption severity is varied from 1-5 as in [9]. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Dataset Method Clean Noise Blur Weather Digital
Gauss Shot Impulse Defocus Motion Zoom Snow Frost Fog Bright Cont. Elastic Pixel JPEG

↓FPR95 VOS 66.79 72.55 76.95 90.36 84.50 83.62 84.56 87.0 83.34 83.84 86.11 86.67 85.81 89.58 89.25
RODD 39.76 67.91 65.42 65.53 49.51 71.81 55.87 53.92 59.84 52.23 48.39 52.98 57.31 55.42 66.47

↑AUROC VOS 81.9 74.26 72.90 60.00 68.35 69.83 68.55 65.31 68.14 68.50 66.54 66.82 66.98 61.18 62.38
RODD 88.1 77.18 78.40 78.41 84.70 74.64 82.42 83.50 80.60 83.85 85.54 83.44 81.91 83.11 78.19

Table 4. Clean and corruption accuracy (%) of RODD and Baseline on CIFAR10-C and CIFAR100-C.

Dataset Method Clean Noise Blur Weather Digital
Gauss Shot Impulse Defocus Motion Zoom Snow Frost Fog Bright Cont. Elastic Pixel JPEG

CIFAR10-C Baseline 94.52 46.54 57.72 56.45 69.15 62.98 58.85 74.88 72.18 84.26 92.19 75.14 74.31 68.27 77.34
RODD 94.45 49.63 59.89 55.62 69.77 64.81 61.79 78.59 74.48 86.56 93.08 73.37 75.49 70.79 80.12

CIFAR100-C Baseline 72.35 18.80 26.56 25.56 49.80 40.45 39.37 45.38 42.62 56.40 69.14 52.87 48.32 40.70 46.11
RODD 72.20 18.40 27.13 26.25 50.32 41.82 40.40 46.25 43.46 57.13 70.0 51.81 49.05 40.86 47.62
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