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ABSTRACT Deep neural networks are being widely deployed for critical tasks. In many cases, pre-trained
models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors.
These malicious behaviors can be triggered at the adversary’s will, which is a serious security threat.
To verify the integrity of a deep model, we propose a method that captures its fingerprint with adversarial
perturbations. Inserting backdoors into a network alters its decision boundaries which are effectively encoded
by adversarial perturbations. Our proposed Trojan detection network learns features from adversarial patterns
and its properties to encode the unknown trigger shape and deviations in the decision boundaries caused by
backdoors. Our method works completely without or with limited clean samples for improved performance.
Our method also performs anomaly detection to identify the target class of a Trojaned network and is invariant
to the trigger type, trigger size, network architecture and does not require any triggered samples. Experiments
are performed on MNIST, NIST-TrojAl and Odysseus datasets, with 5000 pre-trained models in total, making
this the largest study to date on Trojaned detection and the new state-of-the-art accuracy is achieved.

INDEX TERMS Deep learning, adversarial attack, backdoor detection, computer vision.

I. INTRODUCTION

Deep neural networks (DNNs) are the main driving force
behind the current success of Artificial Intelligence. How-
ever, training DNN models requires enormous amounts of
data and computational resources. Hence, many users pre-
fer to source and deploy pre-trained models in their, often
security critical, applications such as facial recognition,
autonomous driving and surveillance etc. It is well known
that DNNs easily learn any bias that is present in the training
data. Vendors of DNN models with malicious intentions,
can exploit this vulnerability and intentionally inject Trojan
behavior into the network during the training process. This
is generally achieved by inserting a trigger into some of the
data samples and then training the DNN to exhibit mali-
cious behavior for triggered data and normal behavior for
clean data. With full control over the DNN training process,
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the adversary can choose any trigger type such that they
do not appear suspicious to human observers e.g. a yellow
rectangular sticker on a stop sign can be used to trigger a DNN
to classify it as a speed limit sign. Since only the adversary
has knowledge of the trigger, they can initiate malicious
behaviour at will, and with no knowledge of the trigger,
users of pre-trained models may never suspect the presence
of backdoors. This poses a serious threat to the widespread
deployment of pre-trained models.

Trojans are generally inserted into a deep model during
training or transfer learning [5], [8], [22], [23]. A backdoor
is typically inserted into a network [12] to make the CNNs
mis-classify one specific class or many classes. Instead of
poisoning the training data with triggers, another possible
way the adversary can Trojan a network is by modifying the
weights of selected neurons so that the model responds mali-
ciously to a specific trigger [22]. Note that inserting Trojans
into DNNSs is much easier than adversarial attacks on clean
DNNS, since the former has access to the training process
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itself, while the latter only exploits intrinsic vulnerabilities
of neural networks [2], [33], [37]. Trojans are also a more
serious threat since they can transfer better to the physical
world compared to adversarial attacks.

Current challenges for practical Trojan detection are:
1) The accuracy of a Trojan model on clean data is as good as
that of an uninfected benign model. 2) Triggers are unknown
and triggered data is unavailable; usually only limited clean
samples are available. Moreover, no assumptions can be made
since the triggers can be of any shape, size, color and at any
image location. 3) The target class or classes in a Trojan
model are unknown, and it is computationally expensive to
search through all possible target classes when they are in the
hundreds. 4) There is a lack of a generalizable DNN model
trained on a large scale dataset for Trojan detection. We pro-
pose a deep learning based Trojan detector, Cassandra, that
operates in two stages. The first stage outputs the probability
of model being Trojaned and the second stage predicts the
target class(es) of the Trojaned model.

Inserting Trojan behaviour into a network essentially puts
an additional constraint on the model optimization during
the training process. The model must learn to exhibit normal
behavior and achieve an expected high classification accuracy
on clean training/validation samples but exhibit the chosen
malicious behaviour on samples containing a trigger, a local-
ized pattern. This has two important consequences. Firstly,
the decision boundaries of the model must adjust to allow
such a behavior. Secondly, the model must become more
responsive to local patterns (the trigger). Our hypothesis is
that if we can encode these two aspects, we will be able
to detect Trojaned models accurately. By definition, for a
Trojaned network, (nearly) all clean data samples can have
their predictions flipped by changing a small patch with the
underlying trigger. Hence, almost every clean data point lies
within a small Ly-norm distance (equal to number of pixels
in the trigger) of a decision boundary. Note that this is a strict
upper bound, and in practice the shift towards the decision
boundary can be even bigger. Clean models do not suffer from
this constraint, and this is the basis of our hypothesis that
Trojaned models are more vulnerable to adversarial attacks
than clean models. We use universal adversarial perturba-
tions [27] to define a novel measure of model robustness.
Universal perturbations being image agnostic, are not depen-
dent on the number of classes nor are specific to a particular
decision boundary. We hypothesize that Trojaned models are
less robust and more vulnerable to adversarial perturbations
compared to clean models. Secondly, we leverage CNN fea-
tures to encode the localized spatial patterns expected to be
found in the perturbations. Our method capitalizes on these
ideas to detect Trojaned networks and the target class of such
networks.

The key contributions of this work are summarized as
follows. Firstly, we propose a Trojan detector which does
not require access to triggered data or the trigger pattern
used in Trojaned models. Our Trojan detector learns charac-
teristic features of Trojan models from universal adversarial
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perturbations computed in a data-free setting or from a
limited number of clean samples (images) for a dataset of
Trojaned and benign DNN models. Since we utilize Universal
Adversarial perturbations, the computational complexity of
our model is independent of the number of classes in the
model. Secondly, we introduce the notion of attack diffi-
culty (y), ametric based on fooling rate for a query model and
the L1 norm of the perturbation required in order to quantify
the difficulty of attacking a model, and use it as a critical
indicator of the target class or classes of a Trojaned model.
The Trojan detector learns features jointly from the adver-
sarial patterns combined with the attack difficulty to clas-
sify the model as Trojaned or benign. We perform extensive
experiments on the NIST-TrojAl RoundO [30], Round1 [31],
TriggeredMNIST, and Odysseus [7] datasets and report state-
of-the-art accuracy and also demonstrate the generalization of
our Trojan detector to different DNN architectures.

Il. RELATED WORK

Adversarial attacks on CNNs have focused on the phe-
nomenon of noise based adversarial examples [1], [32], which
are visually almost indistinct from the original images, but
can mislead DNN classifiers into making incorrect predic-
tions. Even universal adversarial perturbations (UAPs) [27]
have been discovered that are image agnostic, and when
added to any image of any class, can cause the DNN to
mis-classify them. UAPs can be constructed with very few
images [18] or even without any data [29]. A comprehensive
survey of such methods are reported in [2]. Methods for
defense against adversarial attacks have also been proposed
which generally rely on detecting adversarial images [1], [9],
[11], [15], [20], [24]-[26], [36], [37].

In this paper, instead of defending against adversarial
examples we focus on the problem of detecting Trojan net-
works i.e. networks that contain backdoors. A backdoor can
be inserted maliciously by an adversary by inserting triggers
in some training samples and switching their labels. This
security risk was first investigated in BadNets [12] which
showed that backdoors in Trojaned networks can remain a
threat even after transfer learning. Chen et al. [5] proposed
a backdoor attack algorithm that uses poisoned data to con-
taminate the CNN model. Trojaning attack [22] introduced
a way to generate triggers and maximize the activation of
some specific neurons to insert a backdoor. The embedded
backdoors are stealthy and the unexpected malicious behavior
is activated only by specific triggers, known only to the
adversary, making them extremely challenging to detect with
only clean data.

Several methods for detecting and defending against
Trojan attacks have been proposed. Liu et al. [21] proposed
a pruning and fine-tuning procedure to suppress backdoor
attacks. Chen ef al. [3] proposed an Activation Clustering
method for detecting and removing backdoors. SentiNet [6]
uses the behavior of adversarial misclassification of poisoned
networks. Unlike Cassandara, these methods require access
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to poisoned (triggered) data or the trigger itself which is not
available in practical scenarios.

Neural Cleanse [34] was the first method to detect Trojan
infected models with only clean samples by reverse engi-
neering the trigger. It employs a Median Absolute Devia-
tion (MAD) technique ‘to compute the anomaly in the L;
norm of the reversed triggers to detect Trojaned models.
However, the trigger must be reverse engineered for each
class, which is not scalable in practice for DNNs with thou-
sands of classes. Deeplnspect [4] uses conditional GAN to
reconstruct trigger patterns for Trojan detection. Neuronln-
spect [17] detects backdoor from the output features, such
as sparsity, smoothness, and persistence of saliency maps
obtained from back-propagation of the confidence scores.
Recently, Wang et al. [35] performed Trojan detection using
cosine similarity between the untargeted UAPs and image
specific perturbations targeted for each class, and a high
similarity score indicates the presence of a backdoor. How-
ever, this class of methods [4], [13], [17], [34], [35] rely
on outlier detection for identifying Trojaned models and
require several manually tuned anomaly thresholds to detect
outliers in reverse engineered triggers or similarity scores.
The computational complexity of this class of methods is
proportional to the number of classes in the model, and hence
does not scale well to bigger, more complex datasets. More
importantly, none of these works report Trojan detection or
targeted class(es) prediction results on large scale datasets.
These methods also rely on generating a large number of
adversarial perturbations which comes at an expensive com-
putational cost.

Universal Litmus Patterns [19] is an end-to-end approach
that simultaneously learns diagnostic “‘litmus’” perturbations,
and a Trojan classifier, which operates on feature activations
output by the model being tested when using the litmus
perturbations as input. A potential weakness of this method
is that the litmus perturbations can only be generated dur-
ing training, and will be sensitive to test time distribution
shifts. Our method in contrast uses Universal Adversarial
Perturbations that are generated at test time, and exhibits
generalization under test time distribution shift, in terms of
model architecture and trigger types.

To address these challenges, we propose Cassandra,
a Trojan detection method that exploits universal adversarial
perturbations [27]. Our method does not require triggered
samples or any knowledge of the trigger. We only need
to compute universal adversarial perturbations, which given
their image-agnostic nature can be generated from a very
limited number of clean samples(as few as 5) [18] or even
in the data-free setting [29]. Additionally, the number of
universal adversarial perturbations necessary for our method
does not increase with the number of classes in the dataset and
this holds even if the number of classes is in the thousands.
This is a significant improvement over prior work such as
Neural Cleanse [34], where per class optimization is required
to compute perturbations for each class. In the data free
setting, Cassandra outperforms existing methods on 4 out
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of 6 datasets and using a limited number of clean samples,
it outperforms existing methods on 5 out of 6 datasets while
achieving comparable results on the 6th dataset.
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FIGURE 1. Decision boundary of: (a) Clean model and (b) Trojaned model.
Adding a Trojan backdoor to a clean model shown in (a) results in a
modified decision boundary shown in (b), in order to accommodate the
poisoned training samples (shown by circles). This also makes it easier to
change the class label of a sample (shown by arrows), since the distance
across decision boundary is smaller in (b). (c) L and L, bounded
universal perturbations for Trojaned and benign models from NIST-TrojAl
dataset (from left to right: Trojaned ResNet50, Trojaned DenseNet121,
benign ResNet50, and benign DenseNet121).

Ill. DETECTION OF TROJAN MODELS

During training, a neural network simultaneously learns fea-
ture representation and decision boundaries that partition the
feature space into the respective classes. When a backdoor is
inserted into a network, it alters the decision boundaries. Our
hypothesis is that Trojan infected networks exhibit decision
boundaries that are different from typical, benign models
(see Fig. 1). Let Eanpa denote the magnitude of the smallest
perturbation required to change the label of a sample from
class B to class A across the decision boundary for a benign
model, and vice versa for Eagp. Similarly, Eaap and Eap s/
denote the same for a Trojan infected model. For an infected
model, the decision boundary is changed such that some
backdoors are created close to other classes. Due to these
changes in the decision boundary, we hypothesize that for
most samples, Eaap < Epap and Eapar < Eapa (see
Fig. 1a,b), where Easp is proportional to the magnitude of
AAB and so on.

Universal Adversarial Perturbation (UAP) [27] is image
agnostic and when added to any image, sends it across the
decision boundary to change its label. Hence, UAPs essen-
tially encode the geometry of the decision boundaries [27],
and are expected to be different in character for benign and
Trojan models. Our approach exploits this fact to fingerprint
the inserted triggers and combines it with attack difficulty,
a measure of model robustness, to quantify the magnitude of
the shift in boundary due to the inserted backdoor. Universal
Adversarial perturbations are characterized by their magni-
tude and their fooling rate i.e. the proportion of perturbed
images that are miss-classified. The magnitude of pertur-
bation required to achieve a target fooling rate depends on
the location of the decision boundary, and is reduced in the
presence of artificially inserted backdoors. We define attack
difficulty as the magnitude of an adversarial perturbation
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FIGURE 2. Trojan detection: Employing clean data and the query model, Universal perturbation generator generates perturbations (shown enclosed by
dashed bounding box), which are fed to the pre-trained CNN MobileNetv3 Feature extractor (shown in yellow) to extract features, these features are

concatenated with attack difficulty and fed to Trojan classifier. Multi-batches are used to generate Trojan probabilities, as shown in the colored circles,
and averaged across the batches to generate overall Trojan probability. In the data-free setting, the fast feature fool perturbation generator is used and

the input is a Gaussian noise image.

normalized by its fooling rate as a proxy measure of the
average distance of the decision boundary from clean data
samples. We train a classifier over the CNN features of the
UAP fingerprints and the computed attack difficulty to clas-
sify a query network as benign or Trojaned.

A. BACKDOORED DECISION BOUNDARIES

The first component of our strategy to identify backdoored
decision boundaries in NN classifiers is to define the notion
of attack difficulty, a measure of model robustness which is
distinctively affected by Trojan backdoors. Symbolically, let
f denote a NN model and p (in R?) the distribution of a
dataset containing images x; with corresponding ground-truth
labels y;. A standard definition of local model robustness in
the standard data-dependent adversarial attack setting [28] is
the minimum possible magnitude of the perturbation required
to flip the model’s prediction

Robustness(x;; f)= rrAlin| [Ax||p, subject to f(x;+ Ax)Fy;.
X
(D

The data-independent robustness of the classifier f can
then be defined by averaging over the data as
Robustness(f) = Ey,~y M. 2)
[xillp
We develop an analogous definition of robustness for
the universal perturbation setting. For any desired threshold
value § in (0, 1), we can obtain an universal perturbation Ax
such that the perturbation achieves a minimum fooling rate of
1 — & over the entire dataset, while its magnitude is bounded
by a L, norm constraint €:

x,]fju{f(x,‘ +Ax) #yi} = 1-68 st ||Axll, =€, (3)
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where the minimum threshold 1 — § ensures that the pertur-
bation is able to reach the decision boundary for a significant
fraction of the dataset. In practice, the achieved fooling rate
n(Ax) can go much higher than the minimum.

Wang et al. [34] used the magnitude norm of targeted class
specific perturbations to identify Trojan models. We find that
using perturbation norm alone is sub-optimal since model
robustness, in the universal perturbation setting (Equation 3),
can only be characterized jointly by the perturbation norm
combined with the fooling rate. We call this notion of model
robustness attack difficulty (y) defined as
[|Ax]lp
n(Ax)’
which acts as a proxy measure of the average distance
between the clean data points and the decision boundaries and
hence serves as a discriminative feature for Trojan detection.
We use L1-norm for computing || Ax||,, however, some other
Ly,-norms can also be used.

The value of attack difficulty as a feature for detecting
Trojaned models can be observed from the behaviour of
a handful of models randomly selected from the Odysseus
dataset in Figure 3. The fooling rate and L1 norm of the
universal perturbation increases over the iterations of the per-
turbation generator, and do not strongly differentiate between
Trojan and Clean models. Whereas attack difficulty clearly
distinguishes between the two classes for models of different
architectures within a couple of iterations, which shows the
attack difficulty helps our Trojan detection not only in the
generalizability but also efficiency.

A broader look at the distribution of fooling rates and
perturbation magnitudes for the whole Odysseus-MNIST and
NIST-Roundl datasets is provided in Figure 4. The extent
of overlap between the clusters representing the Trojan and

y(f) = 4
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FIGURE 3. (a) Fooling rate and (b) L1 norm of the universal perturbation
are not individually sufficient to distinguish Trojan models from clean
ones, however our proposed (c) Attack difficulty is able to clearly
separate Trojaned and clean models.
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FIGURE 4. L1 norm of universal perturbation vs. fooling rate for
(a) Odysseus-MNIST and (b) NIST-TrojAl round 1 datasets.

Clean models underscores the difficulty of Trojan detection
on the NIST Datasets.

Our second hypothesis relies on the observation that over
a certain fooling rate 1, UAPs of clean and Trojan infected
models are visually distinguishable, as shown in Figure Ic.
The perturbations for Trojan models have characteristic local-
ized spatial patterns characterizing the trigger used to poison
the training data to insert a backdoor. We use an ImageNet
pre-trained CNN model to extract features from these pertur-
bations and combine them with the attack difficulty to train a
classifier.

IV. TROJAN DETECTOR

Figure 2 shows the schematic overview of our proposed
Trojan detector, Cassandra. The query model, along with a
few clean labelled training samples, are used to generate
UAPs bounded by either Lo, or L, norms. Note that we do
not assume the presence of triggered images in the training
data, since triggers are unknown in a realistic scenario. In fact,
none of our training samples contain a trigger. The attack
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difficulty for each perturbation is computed using its mag-
nitude normalized by the fooling rate it achieved, whereas
the spatial patterns are captured by a CNN pre-trained on
ImageNet. These features are used to train the Trojan clas-
sifier with binary cross-entropy loss. To capture properties
of the complex decision boundaries, multi-batch perturba-
tions are used. The training data is divided into 10 batches
to obtain 10 different universal perturbations and hence
10 Trojan probabilities. Classifier outputs for the multiple
batches and perturbation types are averaged like an ensemble
of models. To further improve the prediction, the final Trojan
probability is computed from an ensemble of two networks
which are trained with Ly, and L, norm-bounded universal
perturbations respectively.

A. PERTURBATION GENERATOR

In Cassandra, Universal Adversarial Perturbations (Eq. 3) [27]
are computed with the DeepFool [28] kernel. UAPs have
many advantages over using image specific perturbations.
Firstly, since UAPs are image-agnostic, we don’t need to
compute class or data-specific perturbations, which allows
easier scaling to bigger datasets. Secondly, UAPs can be
generated by a data independent algorithm [29], which allows
Cassandra to operate in Data-Free setting. Finally, UAPs
achieve high fooling rate quickly with a small number of iter-
ations [27], which makes our algorithm fast during training
and inference.

B. FEATURE EXTRACTOR

A MobilenetV3-Large CNN [16] pre-trained on ImageNet
is used to extract features to represent the spatial patterns
found in the perturbations. The 1280-dimensional embedding
output from the penultimate layer is used as a feature for
the Trojan classifier. The network parameters are finetuned
throughout training.

C. TROJAN CLASSIFIER

The output of the feature extractor module (1280-D) is con-
catenated with attack difficulty (1-D), and fed to the Trojan
classifier, which is a fully connected network. The probability
of the query model being Trojan infected is obtained by
applying the sigmoid activation to the output.

D. DATA-FREE CASSANDRA

In practical settings, a few clean samples are always available.
Moreover, UAPs can be generated in a data independent
way [29]. Hence, Cassandra can also work in a data-free
setting for Trojan detection. UAPs are computed independent
of data with the Fast Feature Fool [29] algorithm which gener-
ates universal perturbations by iteratively updating an initial
image consisting of sampled Gaussian noise with a feature
space loss function. The loss function focuses on fooling
the features learned at multiple layers of the network, hence
disrupting the classification performance of the network. For
a given classifier f with K layers, the loss function maximizes
the product of mean activations of the model across layers
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produced by the input perturbation:

K
I(f, Ax) = — log(nﬁ(Ax)) such that | Ax|l, <€, (5)

i=1

where f; is the mean activation of layer i of the model.

V. TARGETED CLASS PREDICTION

In a Trojaned model, the class(es) targeted for the poison-
ing attack are easier to launch an adversarial attack against,
compared to the normal unaffected classes. For the purpose
of target class prediction, we extend the notion of attack
difficulty introduced in Section III-A to the case of targeted
adversarial perturbations, by substituting the attack success
rate for the fooling rate. For a given class c; the attack success
rate is the fraction of the dataset belonging to class ¢; (|¢;l
is the cardinality of the class) for which label is successfully
changed to some other class under targeted adversarial attack:

D xiulyi=e; W (i + Ax(c))) # ci}
l¢jl
and hence the class attack difficulty for ¢; can be defined as

l|Ax(cpllp

S (Cj)

We finalize our target class prediction in two stages. The
first stage is our Trojan detection network which outputs the
probability of the model being infected with a Trojan. Given a
Trojaned model from the first stage, we use the Fast Gradient
Sign Method (FGSM) [10] to compute targeted adversarial
perturbations for each class label. Class Attack difficulty
(Equation 7) is then calculated for each class-specific per-
turbation. We chose FGSM because of its fast execution
time, since generating targeted perturbations for each poten-
tial targeted class label is compute intensive. We use outlier
detection on the computed class attack difficulty to identify
the class label targeted by the Trojan backdoor. We adopt
the Median Absolute Deviation (MAD) [14], [34] method
for outlier detection. An anomaly index is computed for each
class as the absolute deviation of the attack difficulty from
the median across classes, followed by normalization by the
median to account for the dispersion of the data distribution.
We select the label(s) with anomaly index value above a set
threshold as the predicted targeted class(es).

S(cj) = ; (6)

y(f.c) = @)

VI. EXPERIMENTS

Implementation Details: For trojan detection, 500 clean
image samples are used for each model to generate universal
perturbations. In Eqn. 3, § is set to 0.2 to quantify the desired
fooling rate. The trojan detector is trained using the SGD
optimizer with a learning rate of 0.001, the training converges
within 200 epochs for all datasets. Learning rate and batch
size were tuned using grid search with 5-fold cross validation.
Four learning rates 0.001, 0.005, 0.0001, 0.00001 and 3 batch
sizes 16, 32, 40 were tested. To predict the targeted label(s)
using anomaly detection on attack difficulty we follow prior

VOLUME 9, 2021

work [34] and assume the underlying distribution to be nor-
mal. Hence setting the constant estimator for the MAD outlier
detector to 1.4826 means that under the normal distribution
assumption, any data sample with anomaly index larger than
2 has > 95% probability of being an outlier. We adopt the
anomaly index threshold of 2 and class labels with anomaly
index larger than 2 are considered targeted class(es).

Since Universal Litmus Patterns [19] does not report
results on NIST/Odysseus datasets, for comparison we train it
using the reference code. The learning rate for litmus pattern
generation and trojan classifier optimizers are set to 0.001
and 0.0001 and 500 training epochs are carried out. For
comparison with Neural Cleanse [34], we utilize the reference
code, whereas for Odyssey [7] we use results reported in the
paper.

We repeat all experiments at least three times and report
the average results along with standard deviation. To avoid
constant repetition, henceforth results for NIST and Odysseus
datasets are presented in the following fixed order in all
sections: NIST-Round0, NIST-Roundl, Odysseus-MNIST,
Odysseus-FMNIST and Odysseus-CIFAR10.

A. DATASETS

We evaluate our proposed approach on three datasets, our own
dataset of Trojaned & clean models for MNIST image clas-
sification (henceforth referred to as “Triggered MNIST”),
the public NIST-TrojAI (Rounds O and 1) datasets and the
newly released Odysseus datasets. Code to generate the Trig-
gered MNIST was used from the TrojAl GitHub repo.,!
the NIST datasets were obtained from the TrojAl challenge
website. 2 and the Odysseus datasets were obtained from the
project website. > Further details about the datasets can be
found in the supplementary material.

B. RESULTS

1) TROJAN DETECTION

Table 1 shows results of our method on the Triggered MNIST,
NIST-TrojAl and Odyssesus datasets and compares them
to prior work: Neural Cleanse [34], Universal Litmus Pat-
terns [19] and Odyssey [7]. NIST datasets are more chal-
lenging compared to Triggered MNIST, not only in terms
of trigger types, color and size of the data used to train
the infected models, but also due to the fact that the NIST
models are much deeper. Our proposed method, Cassandra,
outperforms all previous methods on five datasets including
the two public NIST challenge datasets, and achieves com-
parable results on the sixth, Odysseus-CIFAR10 dataset. Our
Data-Free Cassandra does not use any training samples and
still outperforms previous methods on four datasets including
the two public NITS challenge datasets. The performance of
our Data-Free Cassandra is close to Cassandra on all datasets
even though it operates in a very restrictive setting.

1 https://github.com/trojai
2https :/Ipages.NIST.gov/trojai/docs/data.html#download-links
3 https://lcwn-lab.github.io/Odyssey/
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TABLE 1. Trojan detection accuracy on Triggered MNIST, NIST-TrojAl and Odysseus datasets. Cassandra uses a limited number of clean data samples from
the original dataset, whereas Data-Free Cassandra only needs access to the potentially Trojaned model. Best results for each dataset are in bold (99.9)

and second-best are italicized (99.9).

Dataset Method
Neural Cleanse [34] | Odyssey [7] [ ULPs[19] [ Cassandra (Ours) [ Data-Free Cassandra (Ours)

Triggered MNIST 76.6 £ 1.2 - 92.7 £ 1.7 944+1.2 93.5+ 2.0
NIST-Round( [30] 62.5 +2.4 85.0 + 3.8 60.6 £ 2.2 925+1.1 90.6 £ 1.9
NIST-Round1 [31] 68.0+ 1.9 83.4+ 0.8 70.0+ 1.4 89.7+1.3 89.0+ 1.4
Odysseus-MNIST [7] 79.8 £2.5 86.4+ 1.1 96.6 £ 0.4 98.2 4+ 0.7 96.3 + 1.5
Odysseus-FashionMNIST [7] 60.7 £ 1.8 85.83+ 2.2 71.3 £ 0.8 86.2 +2.1 825+ 1.7
Odysseus-CIFAR10 [7] 77.0+1.9 98.7 £ 0.6 85.7+0.7 96.8 £ 0.5 96.1 £ 0.8

E-E-
VS AGMEER

a) Poisoned MNIST Data (b) Poisoned MNIST Data
(Trigger Type I) (Trigger Type Il)

ﬂﬂﬂﬂﬂll!llﬂ

c) Poisoned FashionMNIST Data (Odysseus)

ﬂl'ﬁllﬁ x &)

d) Poisoned CIFAR-10 Data (Odysseus)

Class2  Class 3 Class 4
(e) Clean NIST-TrojAl Data

Class 1

Class 0

(f) Sample Trigger

FIGURE 5. Data samples from TriggeredMNIST, Odysseus and NIST-TrojAl.
Triggered MNIST dataset samples containing Type I triggers (a) and Type Il
triggers (b). Triggered samples from the Odysseus-FashionMNIST (c) and
0Odysseus-CIFAR10 (d). Clean image samples of 5 classes (e) and one
illustrative trigger sample (f) from the NIST datasets. Triggers in the NIST
dataset are of random sizes, shape and colors. Apart from (f), triggers and
triggered images are not provided in the TrojAl dataset.

Triggered MNIST NIST-Round0 NIST-Round1

T
i : T

L1 Norm

Clean Targeted Clean Targeted Clean Targeted
z [
3 L]
=
[a]
i~
S
£
<

[}
Clean  Targeted Clean  Targeted Clean  Targeted

FIGURE 6. Effectiveness of attack difficulty (second row) over L; norm
(first row) at classifying unaffected and targeted classes in Trojaned
models. Attack difficulty and L; norm are computed for targeted
class-specific FGSM perturbation. Box plots show min/max, mean and
quartile values.

2) TARGETED CLASS PREDICTION
Table 2 shows results for our targeted class prediction
method. The proposed two stage prediction algorithm based
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TABLE 2. Targeted class prediction accuracy significantly increases when
the result of Trojan detection (P(Trojan)) is already known. All Trojan
models tested here are any-to-one i.e. one targeted class per model.

Triggered NIST NIST
P(Trojan) MNIST Round0 Roundl
None 76.1+15 | 725£25 | 70.0x£1.0
Predicted 90.0+1.0 | 94.7£1.7 | 88.1+0.7
Ground truth | 95.0+ 1.3 | 98.8+1.4 | 91.7£1.5

TABLE 3. Generalization across trigger Types: Cassandra achieves good
trojan detection results on the triggered MNIST dataset even when
trained and tested on different type of trigger.

[ # Train/Test Models | Train/Test Trigger | Accuracy(%) |

240/ 60 I/1 93.3+1.6
240/ 60 /1 91.7+ 1.7
240/ 60 I/11 90.0+ 1.2
240/ 60 /1 91.7+1.1
480/ 120 LII/L IO 94.44+1.2

on the attack difficulty and predicted P(Trojan) improves
the classification accuracy significantly over the base-
line (without P(Trojan)) from 76.1%, 72.5%, 70.0% to
90.0%, 94.7%, 88.1% on Triggered MNIST, NIST-Round0
and NIST-Roundl datasets respectively. Using ground
truth P(Trojan) further improves classification accuracy
which demonstrates attack difficulty is a critical indi-
cator of targeted class label(s), independent of Trojan
detection.

Figure 6 shows that the proposed attack difficulty is able to
correctly identify targeted classes of Trojaned models from
the unaffected ones for the three datasets. Note that the sim-
ple L1 norm used for Trojaned model detection in Neural
Cleanse [34] fails to detect the targeted class.

C. GENERALIZATION

1) TRIGGER TYPE

We investigate the generalization capability of Cassandra
Trojan detector across trigger types on the TriggeredMNIST
dataset. Table 3 shows that the classification accuracy is
consistently high when both test and train models are infected
with the same type of triggers (93.3% for Typel and 91.7%
for Type II). However, even when training and test models
are infected by different types of triggers, the algorithm still
retains a comparable high classification accuracy of 91.7%
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TABLE 4. Generalization across architectures: Trojan detection accuracy
when test models have different architectures compared to the training
models. D, I, R, G and V stand for DenseNet, Inceptionv3, ResNet,
GoogleNet and VGG19 respectively. MNISTNet I, 11, 11l and IV are shallow
CNN architectures designed for MNIST classification.

Architecture(s) NIST-TrojAI Datasets
Train [ Test Round0 [ Roundl
D, I R 78.7+£3.1 | 86.84+0.4
D,R 1 81.3+1.0 | 81.5+04
LR D 78.6£1.1 | 81.54+0.3
Architecture(s) Odysseus Datasets
Train [ Test | FMNIST [ CIFARI0
G,R,V D 75.9+1.3 | 84.9+1.2
D,R,V G 68.0+£0.8 | 76.7+ 1.1
D,G,V R 774+1.1 | 88.54+0.7
D,G,R \Y 64.6 £0.9 | 87.0+ 1.1
Train Test Odysseus-MNIST

1L III, IV I 82.4+1.6

LI IV 11 94.6 £ 0.6

LIL IV 1T 95.9+0.8

L II, IIT v 83.9+1.2

(Type I to Type I transfer) or 90% (Type I to Type Il transfer),
which demonstrates that our method is able to generalize
across trigger types. We achieve the best result of 94.4%
performance when both trigger types are present, in equal
proportions, in the training and test sets, indicating that diver-
sity in trigger types during training helps the model generalize
even better.

2) MODEL ARCHITECTURES

We test the generalization ability of Cassandra across dif-
ferent model architectures and report the results in Table 4.
We observe that even when training and test model archi-
tectures are different, Cassandra still maintains relatively
high classification accuracy. On average, we observe 13%,
6.4%, 9.0%, 14.7% and 12.5% (median = 12.5%) drop
in accuracy relative to the mixed architectures setting when
using the NIST and Odysseus datasets respectively in the
cross-architecture setting.

D. COMPUTATIONAL COST

Since Cassandra uses class-agnostic universal perturbations
for Trojan detection, its computation cost is independent of
the number of classes of the query model. Hence, Cassandra’s
complexity is O(N), where N is the batch size for computing
universal perturbations. This is superior to methods like Neu-
ral Cleanse, which must perform O(NK?) optimizations for
a query model with K classes, since it launches class spe-
cific targeted attacks. Cassandra’s inference time per query
model on a single 2080 Ti GPU is much faster compared to
Neural-Cleanse: ~ 15 to 25 versus 180 to 240 seconds on the
Odysseus dataset, and the inference times per model on the
NIST dataset are 300, 216 and 1432 seconds for Cassandra,
Data-Free Cassandra and Neural Cleanse respectively. Note
that the times are larger than Odysseus models, since NIST
models are more complex.
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TABLE 5. Effect of using multi-batch perturbations and attack difficulty.
Trojan detection accuracy on the NIST and Odysseus datasets improves
significantly with multiple perturbations (n = 10) from different batches
of training data. Employing both L., and L, norm-bounded perturbations
further improves the accuracy. Adding attack difficulty (y) leads to
improvements across datasets.

Classification Accuracy
NIST-Round0 NIST-Round1

UAP Type wioy ] w/ v wioy ] w/
Lo (single) | 77.3+2.1 | 822+14 | 795+1.5 | 83.2+£1.7
Lo 85.3+1.8 | 90.0+1.8 | 87.3+1.9 | 89.0+1.4
Lo 83.7+1.1 | 90.6+1.5 | 83.9+1.4 | 87.8+2.3
Loo & Lo 859+14 | 925+1.1 | 86.5+1.6 | 89.7+ 1.7

Odysseus-MNIST Odysseus-CIFAR10
UAP Type wioy [ wiy wloy [ wiy
Lo (single) | 81.6 £2.0 | 93.9+2.1 | 8.4+1.9 | 90.3+1.7
Loo 93.5+1.2 | 97.44+0.2 | 926 +0.8 | 94.3+1.3
Lo 94.1+09 | 972406 | 93.24+09 | 96.5+0.3
Loo & Lo 96.6 £0.7 | 98.24+0.7 | 93.3+0.5 | 96.8+0.5

TABLE 6. Perturbation generator hyper-parameters do not significantly
affect Trojan detection accuracy. However, using higher number of
iterations to refine perturbations and imposing a higher ceiling on
perturbation magnitude have a small positive impact.

Loo Perturbation Magnitude (e /255)
€2/255 =10, # Lo iterations = 10
# Tterations 01 | 02 | 04 [ 08 ] 1
5 87.5 + 2.7|87.6 & 1.4]90.0 + 1.6]/90.2 £ 1.4(90.0 £ 2.1

10 87.9+1.7/90.7 £1.1{92.5 £ 1.4{92.5 £1.2{92.5 £ 1.1
15 90.4 £2.1190.6 £ 1.390.6 £ 1.3]92.5 £ 2.1{92.5 £ 1.2

Lo Perturbation Magnitude (e2/255)
€00/255 = 1, # L iterations = 10
# Tterations 5 [ 10 T 20 [ 30 [ 40

5 87.5 +1.8(90.4 +1.4/90.2 £+ 1.8|90.0 £ 1.2{90.0 £ 1.4
10 90.3 +1.4(92.5 +1.1|190.7 £ 1.4|92.0 £ 1.8{92.5 £ 1.1
15 90.7 +1.2(92.5 +1.1|192.5 £ 1.2|90.2 £ 1.3{92.5 £ 1.2

E. ABLATION STUDY

1) MULTI-BATCH PERTURBATIONS AND ATTACK DIFFICULTY
We performed a thorough ablation study and present the
results in Table 5. Using only a single Lo, UAP per model
computed from the complete training data, we achieve 77.3%,
79.5%, 81.6% and 88.4% classification accuracy for NIST
and Odysseus datasets respectively. After using multi-batch
perturbations that divide the training data into 10 batches
to compute multiple perturbations, the accuracy improves
by 8.0%, 7.8%, 11.9% and 4.2% (median = 8%) over the
single perturbation baseline. Adding attack difficulty as a
feature for the classifier further improves the accuracy in
all cases. Cassandra achieves the best results in the multi-
batch, two stream ensemble setting, reaching trojan detection
accuracy exceeding or closely matching the state of the art in
all datasets.

2) PERTURBATION GENERATOR HYPERPARAMETERS

Our experiments show (in Table 6) that Cassandra’s trojan
detection performance is robust to the choice of perturba-
tion generator parameters. On comparing mean classification

135863



IEEE Access

X. Zhang et al.: Cassandra: Detecting Trojaned Networks From Adversarial Perturbations

accuracy achieved using different number of iterations and Ly
and L, norm bounds for universal adversarial perturbations,
we find only a slight variation in Trojan detection accuracy.

VII. CONCLUSION

We proposed Cassandra, a method for detecting Trojan
infected models using only few (or no) clean data sam-
ples, which sets the new state-of-art on multiple large scale
datasets. Cassandra relies on detecting characteristic finger-
prints left on model decision boundaries by Trojan backdoors,
through CNN features of Universal Adversarial Perturbations
and our proposed metric of model robustness: attack diffi-
culty. Secondly, we demonstrate that Cassandra can general-
ize to unknown architectures and trigger types. In addition,
for the first time in the literature, we propose a method
which can identify the class(es) targeted by the Trojan attack.
This provides further information on the type of malicious
behaviour embedded in a Trojan infected model, e.g. which
identity is being impersonated in a Trojaned face recogni-
tion model. We also demonstrate that Cassandra is able to
generalize across model architectures (in Table 4) trained on
the same dataset. Future work can focus on further removing
the constraints of Cassandra and developing domain-agnostic
Trojan detectors which can generalize across datasets as well.

APPENDIX A

TARGETED CLASS DETECTION ALGORITHM

The procedure for targeted class prediction is given in
Algorithm 1.

Algorithm 1: Two-Stage Method to Detect a Trojan
Infected Model and Predict Its Target Class Using Only
Clean Image Samples

Data: Query model

Result: P(Trojan) and TargetedClass

Stage One: Use Trojan Detection network to get
P(Trojan);

if P(Trojan) > 0.5 then

for C; < 0to C do
use FGSM to generate targeted adversarial

perturbations with C; as the target class;

compute attack difficulty (y; = %) for
perturbation;
end for

TargetedClass = perform outlier detection over the
attack difficulties y;s;
output P(Trojan) and target class prediction;

else
| output P(Trojan) and target class(None);
end if

APPENDIX B

TRIGGEREDMNIST DATASET GENERATION

A. CLEAN MODEL GENERATION

The data is split into training set: 60,000 images (6,000 per
class), and test set: 10,000 images (1,000 per class). The clean
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data are used for training 300 benign/clean models with
three architecture types (ModdedBadnet, Badnet and Mod-
dedLenet5net), each with 100 models (see Table 7).

B. TROJANED MODEL GENERATION

1) CLEAN DATA

The MNIST dataset has 10 classes with 70,000 clean images
(without triggers).

2) TRIGGERED DATA
Two types of triggers, Type I and Type II (see Figure in the
main paper) were inserted into images of MNIST dataset.
The Triggered MNIST data was combined with clean data
to generate Trojaned models. The following three data splits
were used in our experiments:

Data split 1: training: 60,000 (triggered data: 10%),
testing: 10,000 (triggered data: 10%).

Data split 2: training: 60,000 (triggered data: 15%),
testing: 10,000 (triggered data: 15%).

Data split 3: training: 60,000 (triggered data: 20%),
testing: 10,000 (triggered data: 20%).

3) MODELS

In addition to the 300 benign models, another 600 Trojaned
models of the same three architectures (ModdedBadnet, Bad-
net and ModdedLenet5net) were generated. Trojaned mod-
els were trained by the Triggered MNIST data and clean
data where the proportion of triggered data varied as 10%,
15% and 20%. Table 7 shows the details of both clean and
infected models trained for any-to-any Trojan attack. Any-to-
one attack models were generated similar to any-to-any mod-
els. 300 Trojaned models were trained by any-to-any targeted
attack, and another 300 were trained for any-to-one targeted
attack.

Evaluations of ModdedBadnet, Badnet and Mod-
dedLeNet5 models are shown in Table 8 for any-to-any attack
and in Table 9 for any-to-one targeted attack. The clean mod-
els and Trojaned models both have high classification accu-
racy when the test data is clean. The clean models also have
high classification accuracy when the test data is triggered.
Since there is no Trojan in the clean model, the triggered
image samples are correctly classified. However, for the
Trojaned models, the classification accuracy (100 — Attack
Success Rate) for triggered data is low since the triggered
images are misclassified. The tables show Attack Success
Rates only for the triggered data which is very high. These
results imply that the Trojan (backdoor) was successfully
inserted into the models.

APPENDIX C

NIST ROUNDO AND NIST ROUND1 DATASETS

The NIST datasets consist of CNN classification models for
traffic sign signals. Half of the models are benign models
and half are Trojaned models. The models have three archi-
tectures namely, Inception-v3, DenseNet-121, and ResNet50.
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TABLE 7. Types of models included in the Triggered MNIST dataset. Half the models are for any-to-any attack and half are for any-to-one attack. For the
latter case each model only has one targeted class.

[ Model name [ Model Architecture | Trigger | Triggered data | # |
ModdedBadNet | 2 Conv + 1 Dense Type I II | 10%, 15% and 20% | 100+100
BadNet 2 Conv + 2 Dense Type I II | 10%, 15% and 20% | 100+100
ModdedLeNet5 3 Conv + 2 Dense Type I, I 10%, 15% and 20% 100+100

TABLE 8. Attack success rate and classification accuracy for three types of trojaned models (any-to-any attack) for triggered MNIST dataset. Success rate

is the proportion of images for which predictions by the Trojaned model is changed to an incorrect label.

Trojaned Model | Clean Model
Attack Success Rate Classification Accuracy
Model Type Trigger I | Trigger IT | Trigger I | Trigger II |
BadNet 98.7 98.7 98.9 99.0 99.1
ModdedBadNet 97.3 97.6 97.2 96.5 98.8
ModdedLeNetSnet 97.8 98.6 98.0 97.3 98.7

TABLE 9. Attack success rate and classification accuracy for three types of trojaned models (any-to-one targeted attack) on the Triggered MNIST dataset.
Success rate is the proportion of images that changed label to the target class for Trojaned model.

Trojaned Model

Classification Accuracy

Trigger I | Trigger IT

Attack Success Rate
Model Type Trigger I [ Trigger I
Badnet 99.1
ModdedBadnet 98.5
ModdedLenet5net 98.8

99.0 98.8 98.9
98.3 97.6 97.4
98.4 98.0 97.5

TABLE 10. Attack success rate (for Trojan trigger infused data) and top-1 classification accuracy (for clean data) for NIST-Round0 dataset. Success rate is
the proportion of images for which the prediction changes to the target label in Trojaned models.

[ Trojan Infected Model [ Clean Model |
| Model Type | Attack Success Rate [ Classification Accuracy | # models |
DenseNet-121 99.82 99.76 99.90 3
Inception-v3 99.87 99.69 99.75 69
ResNet50 99.80 99.68 99.76 68
# models 100 100 200

TABLE 11. Attack success rate (for Trojan trigger infused data) and top-1 classification accuracy (for clean data) for three types of Trojaned and clean
models from the NIST-Round1 dataset. Success rate is the proportion of images for which the prediction changes to the targeted label in Trojaned models.

\ [ Trojan Infected Model | Clean Model |

| Model Type | Attack Success Rate [ Classification Accuracy | # models |
DenseNet-121 99.88 99.81 99.88 313
Inception-v3 99.84 99.85 99.89 250
ResNet50 99.58 99.81 99.83 437
# models 500 500 1000

The models were trained on synthetically created image data
of artificial traffic signs superimposed on road background
scenes. The Trojaned models have been poisoned with trig-
gers of different color, size and shape. Round( dataset con-
sists of 200 models, while Round1 dataset has 1,000 models.
NIST also holds a sequestered test dataset to evaluate
models.

Table 10 and Table 11 show the model details and the
performance of the three architecture types present in the
NIST Round0 and Roundl datasets. Notice that the Trojan
infected models have accuracy at par with the clean models
and yet they have a very high attack success rate on the
triggered data. Fig.7 shows the trigger fraction distribution for
NIST datasets. NIST-Round0 and NIST-Round1 datasets
are both from the same distribution, the main difference is
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that RoundO consists of 200 models, while Round1 dataset
has 1,000 models.

APPENDIX D

ODYSSEUS DATASET

Odysseus [7] is comprised of three sub-datasets, Odysseus-
MNIST, Odysseus-FashionMNIST and Odysseus-CIFAR10.
It contains over 3000 models, with 4 different architectures
being used in each sub-dataset. The triggers used to train
the Trojaned model are of different sizes (1% - 3% of the
clean image) and color, and were added to several differ-
ent locations of the clean image. The Trojaned models of
Odysseus are trained with many-to-one and many-to-many
target attacks with the proportion of poisoned data being
around 15% to 20%.
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