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Abstract—Along with the success of deep neural network (DNN) models, rise the threats to the integrity of these models. A recent
threat is the Trojan attack where an attacker interferes with the training pipeline by inserting triggers into some of the training samples
and trains the model to act maliciously only for samples that contain the trigger. Since the knowledge of triggers is privy to the attacker,
detection of Trojan networks is challenging. Existing Trojan detectors make strong assumptions about the types of triggers and attacks.
We propose a detector that is based on the analysis of the intrinsic DNN properties; that are affected due to the Trojan insertion
process. For a comprehensive analysis, we develop Odyssey, the most diverse dataset to date with over 3,000 clean and Trojan
models. Odyssey covers a large spectrum of attacks; generated by leveraging the versatility in trigger designs and source to target
class mappings. Our analysis results show that Trojan attacks affect the classifier margin and shape of decision boundary around the
manifold of clean data. Exploiting these two factors, we propose an efficient Trojan detector that operates without any knowledge of the
attack and significantly outperforms existing methods. Through a comprehensive set of experiments we demonstrate the efficacy of the

detector on cross model architectures, unseen Triggers and regularized models.

Index Terms—Trojan attack, Trojan model, Trojan detection, Trojan Dataset, Model properties.

1 INTRODUCTION

EURAL networks (NNs) have become the primary
Nchoice for tasks like image recognition [1], [2], [3],
image enhancement [4], [5], speech recognition [6], [7],
reinforcement learning [8], [9], defense against cyber-attacks
and malware [10], [11] and so on [12], [13]. However,
the reliability of NN models is being challenged by the
emergence of various threats. One of the most recent at-
tacks involves the insertion of Trojan behaviour, through
the training pipeline, into an NN model [14], [15]. This
type of attack, also known as the Trojan attack, results in
a Trojan model that behaves normally for clean inputs but
misclassifies inputs that contain a trigger [16], [17], [18],
[19]; where the knowledge of the trigger and incorrect target
label is securely guarded by the attacker.

Efforts have been made to detect and defend against
Trojan attacks. Early works [20] for detection assume access
to training data, both clean and triggered. Furthermore,
attempts such as [21], [22], [23] try to estimate the trigger
or the distribution of triggers for a model. The common
assumption among these studies is that the trigger size is
known, which is not pragmatic in real-world scenarios. A
major bottleneck in this line of research is the lack of a large-
scale benchmark dataset, consisting of clean and Trojan
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models. Creating such a dataset is challenging because each
data sample must be a high performance trained model and
each model must be trained from scratch to avoid dataset
bias. Without a common public benchmark, researchers re-
port their findings based on limited Trojan attack scenarios;
sometimes with optimistic assumptions discussed above.

In this paper, we introduce Odyssey1 , the most diverse
public dataset to date that contains over 3,000 clean and
Trojan models. To generate this dataset, various types of
triggers and mappings (source to target class) have been
used. Odyssey contains a total of 3,460 models, over 1,000
models each trained on MNIST, FashionMNIST, and CI-
FAR10 image datasets.

Our second contribution can be attributed to a compre-
hensive study of various factors involved in launching a
successful attack along with analysing the effect of Trojan
insertion on the intrinsic properties of neural networks. We
employ both NIST TrojAl [24] challenge dataset and the
proposed Odyssey dataset for this analysis. Our analysis
shows that the Trojan insertion process can affect the av-
erage classifier margin and also modifies the shape of the
decision boundary around the manifold of clean samples.
The insertion of Trojan creates a dominant direction in the
perturbation space such that perturbing the images along
that direction causes misclassification. In Figure 1b, we
show the schematic of decision boundary B of a non-linear
binary classifier for clean and Trojan models with different
label mappings. For a clean model to misclassify, different
samples need to be perturbed in different directions in R? as
shown by the dotted arrows. As for a Trojan model, samples
can be perturbed along the x axis (dominant direction) to
project them on to the decision boundary for misclassifica-
tion.

1. https:/ / github.com /LCWN-Lab/Odyssey
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Fig. 1. a-left) Creating a Trojan model involves poisoning P% training samples with a trigger and changing their corresponding ground truth to target
label, known as label mapping. a-right) After training, misclassification is activated only by the triggered samples. b) The Trojan insertion process
also changes the shape of decision boundary, B around the data manifold by creating a dominant direction in the perturbation space. To misclassify
the samples in the clean model, samples should be perturbed on x-y plane in different directions. For the Trojan models, regardless of the label
mapping type (Many-to-One(M20) or Many-to-Many (M2M)), perturbing along x direction leads to misclassification for most of the samples. In M20
mapping, samples of all classes with the trigger are mapped to one target class, while in M2M mapping, samples of different classes are mapped

to multiple target classes. Triggered samples are marked with red circle.

As our third contribution, we propose a detector that
determines whether a DNN model is Trojan or not. For
a given model, our Trojan detector tries to estimate the
dominant perturbation direction by considering the align-
ment of perturbations. These perturbations send a small
set of clean samples, taken from the validation set, to the
best representative linear decision boundary for the clas-
sifier. Perturbing the rest of the validation samples along
that (dominant) direction, with a small magnitude, leads
to higher misclassification rate for Trojan model compared
to a clean one. Therefore, by setting a threshold for the
misclassification rate of perturbed validation samples, we
can easily differentiate between clean and Trojan models.
Since our detector evaluates each model independently, it is
highly effective in cross architecture scenarios; without any
knowledge of the attack settings.

2 RELATED WORK

The vulnerability of DNN models, at inference stage is a well
studied topic. Challenges like out of distribution samples
[25], [26], adversarial attacks [27], [28], [29] and incremental
learning [30] have been studied in detail by researchers.
Various scenarios of white box [31], black box [32], [33], [34],
targeted [35], [36] and untargeted adversarial attacks [37],
[38] have been proposed. Moreover, people have developed
effective defenses such as adversarial training [39], [40],
and their variants [41], [42], [43], [44], [45], against these
attacks. However, DNNs are also susceptible to attack that
happens at the training phase, known as backdoor or Trojan
attacks [14], [15], [16], [46]. These attacks can occur in many
different ways [47], [48], [49], [50], [51], [52], [53], mostly
through data poisoning. And there is a growing interest
among researchers in defending these attacks [20], [21], [54],
[55], [56], [57].

Methods such as Activation Clustering (AC) [58], STRIP
[54], SentiNet [59] and Spectral Signature (SS) [20] analyze
the training data for possible presence of Trojan. To distin-
guish between poisoned and clean data, AC [58] applies a
two-class clustering over the feature vector of the training
data. STRIP [54] is an online method that assumes Trojan
models are input agnostic and decides whether the input
contains a trigger based on the uncertainty of the model

prediction on perturbed inputs. SentiNet [59] looks for the
trigger pattern by finding the salient parts in the image. SS
[20] computes a signature for each input data removing
the ones showing Trojan behavior. However, all of these
methods require full access to the training data which is
not a practical assumption.

ABS [57] uses a scanning method to identify the affected
neurons that respond to the trigger in the input data.
However, searching over all neurons for finding the com-
promised ones seems to be an exhaustive process. Authors
of [21], [22], [60] use optimization based method to find
possible triggers that will identify the Trojan behavior in
a model. Neural Cleanse (NC) [21] tries to calculate the
minimum modification required to misclassify any input to
a fixed target class. It then finds such modifications/triggers
for all possible target classes. The class with significantly
smaller trigger than all other classes, is believed to be the
Trojan label of the backdoor attack. However, NC requires
a lot of input samples and small size triggers to work
effectively. Deeplnspect [61] proposes a blackbox detector
that combines model inversion techniques and the power of
GAN framework to model the distribution of triggers. Then
the actual detection problem is modeled as an outlier de-
tection. NeuronInspect [62] tries to classify clean and Trojan
models based on the heat-map of the output layer. However,
the effectiveness of these methods is only evaluated on the
limited attack scenarios of triggers and model architectures.
[23] benefits from MESA sampling free generative method
to recover the distribution of triggers. This method works
on localized triggers and known trigger size, which is not
always the case in Trojan attacks.

There are several recent training based methods [63],
[64], [65] that have been developed for the purpose of back-
door detection. [63] designs a one-pixel signature represen-
tation for characterizing the nature of a DNN model. ULP
[64] optimizes for universal litmus patterns that functions
as an indicator whether a model is clean or Trojan. MNTD
[65] trains a meta classifier for detecting Trojans in DNN.
However, they all require a large number of clean and Trojan
models for their method to work. Training these models
could be computationally intensive and time-consuming.
Moreover, these methods lack powerful generalizability for
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Fig. 2. Different types of mappings used in creating Trojan models covering the most likely possibilities. Mixed mapping is a combination of the

others.

test models other than their own created ones.

In contrast to these detectors, our proposed detector
requires neither a lot of models nor model training data to
work effectively. We have evaluated our detection method
in different attack scenarios, e.g. variable trigger size and
location, model architecture, mapping etc. Furthermore, it
is free from any impractical assumption and has proved
its efficacy by setting a high accuracy for multiple public
datasets, including the one we proposed.

3 OVERVIEW

Suppose a user outsources the training of a deep model and
the vendor trains the model based on user specifications
such as data type, architecture, required accuracy, etc. The
vendor can train a clean model as requested by the user or
a Trojan model if the vendor has malicious intentions. In
the latter case, the vendor/attacker® needs to follow specific
steps to create a good Trojan model that is not easily de-
tectable. In this section, we give an overview of Trojan model
creation process and scrutinized different components to
launch a successful backdoored model.

3.1 Threat Model

For a clear understanding, we first present the threat model
from the Adversary (Vendor) and also the Defender (End-User)
perspectives and establish the terminology used in the rest
of the paper.

Adversary/ (Attacker): Consider the scenario where an at-
tacker trains a deep neural network (DNN), M, based on
a training dataset D = {(x;,y;)}, where z; is a training
sample and y; € [1,2,...,c] is the corresponding ground
truth label. Let M; denote the classifier’s output correspond-
ing to class j. Now, the attacker injects triggers into P% of
the samples and alters their ground-truth labels. Formally
speaking, the attacker takes a small subset D' c D and
creates triggered samples

D, = {(a;,y;)|w; = Ay(ist), y; = A1), Y(zi, 1) € D'}

where A;(.) is a function that defines the transformation of
a clean sample, x;, to its triggered counterpart, x,. Similarly,
A;(.) stands for the mapping of the ground truth, y;, to the

2. The terms vendor, attacker and adversary are used interchangeably

target label, y;, set by the attacker. The model M (z;w) is
trained by minimizing the loss function given by:

loss = Z L(M(zi;w),y:)+
(2i,y:)€D\D’
Z LM (z;;w),y;),
(z3,9;)€D;

where L is the cross entropy loss and D\D' is the set of
clean samples, D, is the set of triggered samples, and w is
the trainable parameters. An attack is considered successful,
if the trained model M (;, w') employing the above loss, has
high fooling rate, which means it achieves high classification
performance on triggered samples; while the validation
accuracy on clean samples is still on a par with the clean
model, M (z; w*).

Generally speaking, there are three factors that define an
attack:

(i) Data Poisoning Ratio defined as P = |D;|/|D|

(ii) Trigger properties

(iii) Label Poisoning: defines True label to Target label
mapping.

Section 4 explains these factors in detail. Unlike [16],

[66], full control over the training process is the key to
the attacker’s success in creating a Trojan model. Figure
la summarizes the process of creating a Trojan model by
an adversary. The adversary has access to the training data
and insert triggers into P% of training samples and also
changes the true label to the target label. The adversary is
also responsible for training the model based on poisonous
training data. It is worth noting that upon training the Trojan
model, the adversary cannot make any changes to the model
once it is being deployed.
Defender: The defender (end-user) receives the trained
model M with parameters w’, which are possibly different
from the optimal parameters, w*. The user has a held-out
validation dataset, D,, to verify whether the model is clean
or Trojan. For an unsuspecting user, good accuracy on the
validation set may be sufficient to trust the model.

Hence, the attacker’s goal is to train a Trojan model that
is undetectable—has high accuracy on clean samples, and
has high attack success or fooling rate on triggered samples.
Whereas the defender’s goal is to verify if a given model is
Trojan or clean by devising a method that operates without
knowledge of the trigger, target class or the data used to
train the model. Therefore, it requires a large numbers of
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Fig. 3. (left:) Some patch-type trigger patterns used for CIFAR10 (9 out of 47 are shown). (right:) A Trojan model should obtain same level of
validation accuracy as a clean model. In Odyssey, the average validation accuracy of Trojan models and clean models are almost the same. We
verify this phenomenon for all Trojan models created out of each image datasets.

clean and Trojan models to investigate their discriminative
features. This motivates us to develop a new dataset, re-
ferred to as Odyssey.

4 ODYSSEY DATASET

Odyssey is the most diverse dataset of its kind to date
comprising over 3,400 benign and Trojan models. First, we
focus on the elements that are necessary to create triggered
images and then briefly describe the policy for creating a
good Trojan model.

4.1

Trigger is a vital element in creating a Trojan model. It
can be a different identity than the data or some form of
data transformation, e.g. filtering. Sometimes, triggers are
unnoticeable by the human observer and appear to be a
natural part of the image, such as a hat worn by a person or
graffiti done on an object [22], [67]. Effective triggers must
never or rarely appear in the operating environment giving
the attacker full control over when to deploy them. This is to
ensure that the Trojan is not accidentally discovered by the
user and does not get triggered unless explicitly intended
by the attacker. This ability of control makes a Trojan attack
distinguishable from an adversarial attack [68]; where the
attacker does not have full control over the visual scene.

In this work, we categorize the Trojan models based on
the trigger insertion mechanism. First category of Trojan
models uses patch type trigger that will be stamped to
the clean image. However, patch-based triggers needs to be
crafted with care for the attack to be successful. Therefore,
while designing them, the factors one should take into
consideration are-

Trigger Color: Generally, deep models employed for
image classification tasks deal with images of different col-
ors. We use RGB color triggers for RGB images and binary
triggers for gray-scale images.

Trigger Size: we set the area of the trigger to be 1% to 3%
of the full image area. However, we also use larger triggers
than this for some of the models, for detection purpose.

Trigger Location: Apart from size and color, the location
of the trigger plays an important role in designing an Trojan
attack. In our work, the trigger can be located anywhere on
the image. We prefer random location because if the triggers
are always at the same pixel location in all samples then the

Trigger Properties
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Fig. 4. Color filters used as triggers for creating Trojan models. We
employ 4 of them in our dataset.

model may end up memorizing that location rather than the
trigger pattern itself. Moreover, if triggers appear at random
locations in the image, this would cause more variations
within the input data that must be learned by the model.
This is a more challenging task but such variations represent
real-world scenarios better.

Trigger Shape and Orientation: As for the trigger shape
and orientation, there are no specific rules. Some triggers
can be more stealthy, e.g hard to detect, than others due to
their shapes and/or orientations. Therefore, the attacker can
choose these two factors based on their stealthiness, as the
network will eventually learn them. Note that after training
the model, neither trigger shape nor its orientation should
be changed as it downgrades the attack fooling rate.

Based on above properties, we create 47 different types
of trigger patterns in our dataset. Some of these patch-based
triggers are shown in Fig. 3.

The second category of Trojan models are based on dif-
ferent color filters. These filters modify the whole image ; so
the orientation factor doesn’t matter; in contrast to triggers
that are stamped to the clean image . Fig. 4 shows the type
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Fig. 5. (left:) Data poisoning ratio vs classification success rate. For a Trojan model, higher data poisoning ratio yields an increase in attack success
rate while decreasing the success rate for clean samples or validation accuracy. (right:) Based on the mapping A;(.), trigger size affects the fooling
rate differently. Larger trigger tends to increase the fooling rate for M20 attack and decrease the rate for Mixed and M2M attacks.

of filters we employed in our dataset- Nasville, Gotham,
Lomo and Kelvin filters. Learning from filter-based triggers
could be tricky as they heavily augment the clean image.
Therefore, it is harder to obtain high validation accuracy
on clean samples. In our experiment, we observed a slight
decrease in validation accuracy for filter-based triggers in
contrast to patch-based triggers.

4.2 Data and Label Poisoning

In label-poisoning attack, along with the data poisoning
using triggers, it is also required to modify the label of the
triggered data.

4.2.1 Label Poisoning or Mapping, A;(.)

There exists different types of attacks based on the true label
to target label mapping. It is a significant part of the Trojan
insertion process as it embodies the objective of an attacker.
Moreover, inspection of a model sometimes heavily depends
on the mapping type that was used during training. For
instance, the Trojan detector proposed by [64] only works for
Many-to-One label mapping. The mappings incorporated in
creating Trojan models of Odyssey are depicted in Fig. 2. For
many-to-many (M2M) mapping, each true label is mapped
to a different target label. A simpler mapping, many-to-one
(M20), changes all true labels of the triggered data to a fixed
target label. Another type of mapping we introduce is Mixed,
a combination of M2M, M20 and clean. That means some
of the classes are not attacked at all, i.e. “class 1” in Fig. 2.
In contrast to our dataset, previous works [58] related to
Trojan or backdoor attack only focus on the M20 mapping
and it’s variations such as one-to-one mapping. Generally,
M20 attacks result in higher fooling rate compared to other
type of attacks. Given the randomized nature of those two
attacks, it may require more triggered samples to achieve a
high fooling rate.

4.2.2 Data Poisoning Ratio, P

How well a model learns each mapping often depends on
the size of D;. We use three image datasets, CIFAR10 [69],
Fashion MNIST [70], and MNIST [71]. From the train and
test set of each dataset, only P% of the clean samples are

poisoned with trigger, where P stands for data poisoning
ratio. Setting the value of P is a trade off between good
performance on clean samples and high fooling rate. Figure
5 shows the effect of data poisoning ratio on fooling rate.
As we increase the data poisoning ratio, it results in higher
success rate. However, the size of D is fixed, there are fewer
clean samples available to learn from. This in turn poses
another challenge in achieving high validation accuracy. For
example, we obtain an attack success rate of 93.78% for a
data poisoning ratio of 0.4 . For the same ratio, the drop in
validation accuracy is close to 1%. On the other hand, if P
is very small (e.g. < 0.1), the fooling rate gets affected due
to insufficient number of triggered samples for a successful
attack. Compared to attack success rate, the steeper slope
of validation accuracy curve suggests that higher value of
P leads to larger drop in validation accuracy than gain in
attack success rate. Therefore, we set the value of P in the
range of 15% and 20%.

4.3 Effect of Trigger Size

There is another factor that affects the fooling rate. To
demonstrate this effect, we conduct experiments with dif-
ferent sized triggers. We only consider patch-based triggers
as the filter-based triggers covers the whole image anyway.
Fig. 5 shows the relationship between trigger size and attack
success rate or fooling rate. Here, we present the fooling
rate for different ratio of trigger area to the whole image
area (% of whole image). Note that, a ratio of 0% indicates
that there is no trigger in the image. Therefore, we exclude
the comparison for this ratio. We also consider individual
mapping type separately as averaging over them may lead
to wrong direction. In case of M2M and Mixed type of
attacks, larger trigger size reduces the fooling rate of a Trojan
model which follows our expectation. Due to the random
trigger locations, the model must learn joint features form
the trigger and the object. As the trigger size increases, it
covers a larger area of the main object and the learned
features for the triered samples are more biased toward
trigger, features which is shared among all classes. This in
turns reduces the fooling rate of the attack. On the other
hand, M20 type attack benefits from larger trigger size since



all classes are mapped to the same target class and larger
trigger creates a more prominent feature for the model to
learn.

4.4 Model Creation and Validation

We use four well-known architectures namely DenseNet [72],
GoogleNet [73], VGG19 [74], and ResNet18 [75] for CIFAR-
10 and Fashion-MNIST datasets and four shallow custom
designed CNN models for MNIST dataset. We have created
a total of 3,460 models in Odyssey, where roughly half of
the models are clean. The average validation accuracy (VA)
of clean and Trojan models are shown in Fig. 3-right; the
accuracies are similar as expected. We consider a Trojan
model to be invalid if its VA is not close (e.g. 2% difference)
to the VA of a clean model. Details of the architectures
and training process hyper parameters are presented in the
supplementary material.

Besides Odyssey, there are only two other recently re-
leased public Trojan datasets. The first one is the NIST
TrojAl [24]- [76] challenge dataset that has four subparts.
The Round-0 and Round-1 parts contain 1200 clean and
Trojan models for 5 class image classification. Round-2
includes a more diverse set of 1000 clean and Trojan models
with number of classes in the 5 to 25 range. NIST Round-
3 models are similar to Round-2 except that the models
are trained based on the adversarial training strategies.
All rounds only cover many-to-one type of label mapping
and it’s variations i.e. one-to-one and two-to-one mappings.
The second dataset is the publicly available portion of the
Universal Litmus Pattern (ULP) [64] dataset which contains
3600 clean and Trojan models trained on CIFAR10 and
Tiny-ImageNet datasets. ULP dataset only contains a single
model architecture and only one-to-one mapping.

We also would like to emphasize that for other modali-
ties and applications like sentiment classification or speech
recognition the Trojan insertion process might be achieved
by changing some of the neurons in a pre-trained model
rather than training a model from scratch. We leave the
study of successful Trojan attack to other application as our
future research.

5 TROJAN INSERTION ANALYSIS

We believe that insinuating a back door into a neural
network would leave some specific patterns, irrespective
of factors such as trigger properties, dataset, and model
architecture. In this section, we aim to analyze the effect of
Trojan insertion on some of the intrinsic NN properties, such
as classifier margin and shape of decision boundary around the
manifold of clean data. Our findings reveal distinctive but
shared features among Trojan models, which are the key to
our proposed Trojan detector.

5.1 Classifier Margin

Classifier margin has been used as an indicator of model
robustness and it is well established that a maximum margin
classifier is less sensitive to the worst case model or input
perturbation [77]. The margin of a classifier M (x;w) is
defined as follows:

Margin(M) = Ex~Quara [ Tx]l2 @

6

where the expectation is over the samples, x, from the
manifold of training data, Q4qatq; and || Tx||2 is the distance
of the sample x from its nearest point on the decision
boundary of M.

Let M(x) = wlx + b be an affine binary classifier with
the decision boundary B defined as

B = {x|M(x;w) = 0}, @

Tx can be computed by orthogonally projecting x onto
the hyperplane B. The orthogonal projection problem has
a closed-form solution and the projected point x¢ can be
computed as: x¢ = x + Tyx. Where Ty is defined as
T, = —ﬁ% . Here, the first ratio indicates the
opposite direction of the normal to the decision boundary,
along which sample x should move, whereas the second
term is the distance to the decision boundary. For non-
linear cases, there is no exact solution for Ty. However, we
employ the iterative process, proposed by DeepFool [37],
to approximate the minimum perturbation that sends an
image x to the nearest decision boundary.

In case of a non-linear binary differentiable classifier, Tx
can be estimated by iteratively perturbing the sample x until
it falls over the decisions boundary. In each iteration 3, the
non-linear classifier is linearized by the tangent hyperplane
to the classifier at the point x;. This makes the problem
solvable by the orthogonal projection of sample x; onto the
tangent hyperplane. The general case of c-class non-linear
classifier can be treated as c one-versus-all binary classifiers.
Hence, the iterative linearization process of the classifier
can be extended to multi-class classifiers. The linearized
decision boundary at the point x; with the predicted label
k(x;) = arg max M;(x;) can be defined as:

J

Blinearized = U ij Bj = (3)
j=1,j#k
{x|M;(x;) — Mr(x;) + VMj(xi)Tx - VMk(xi)Tx =0},

where M;(.) is the output score of the classifier for the class
j and B; is the decision hyperplane between class k and j.
Now the nearest decision boundary to the point x; can be
found by solving the following minimization problem

l(x;) = arg min [ ;
J#k(xo) Ml
n; = VMJ(Xl) — VMk(xo)(Xi),
mj = M;(x;) — Mp(xp) (Xi)-

)

And the perturbation that maps the x; onto the I(x;)th’
linearized decision boundary is defined as

]

©)

R
The iterative process continues as long as the predicted
label for the perturbed sample x; + ty, is still the same
as the original sample xq, i.e, k(x;41) = k(xg). Finally,
the projection vector that maps x to the nearest decision
boundary can be computed as

Tx = Z tx, (6)

3. We refer to I(x;) as  for brevity.



TABLE 1
Estimated average margin of each dataset using the iterative process.

Dataset Clean M20 M2M Mixed
NIST R-0 [24] 5.73 3.44 - -
MNIST 1.06 0.8460 0.8957 0.8828
CIFAR10 09183 0.8936 0.9743 0.9733
FashionMNIST  0.2692  0.2433 0.2845 0.27

It is worth noting that the vector T« can be considered as
normal to the decision boundary of the classifier at point
x + Ty.

We employ this iterative process to compute the aver-
age margin for the NIST R-0, Odyssey datasets using the
complete validation set for each model. Table 1 summa-
rizes the average margin for the both of these datasets.
Trojan models with M20 mapping type consistently have
lower average margins than clean models. Considering the
type of label mapping, M2M and Mixed mappings lead to
slightly higher average margins compared to M20. The
same phenomenon is observed for Odyssey-CIFAR10 and
Odyssey-FashionMNIST, except in this case the M2M and
Mixed mappings have higher margins even compared to
clean models. The reason for this exception is clarified in
the next section.

5.2 Model Complexity

We investigate the complexity of Trojan models by analyz-
ing the changes, caused by Trojaning, in the non-linearity of
decision boundary around the manifold of clean samples. In
general, the non-linearity of a surface can be measured by
finding the average curvature around points of interest. The
closer this value is to zero, the more linearized the surface is.
Formally, for the twice differentiable hyper-surface decision
boundary B of a model M, this measure is defined as

KB = ExnQuare Fxs (7)

where kx is the first principle curvature of B at point
x; which is also defined as the first singular value of
the Hessian(B(x)). However, finding kx can be compu-
tationally intensive due to the complex nature of required
operations. To bypass this problem, we devise a proxy to
estimate the shape of the decision boundary by exploiting
the correlation among the normal vectors to B(x) around
the manifold of clean samples and analyzing the properties
of the perturbation space S that contains the normal vectors.

For a sample x € R¢, where d is the dimension of input
image, the vector Ty € R? as defined in Eq. (6) is the normal
vector to B at point x 4+ Tx. To find the basis of the space S,
first we compute Tx for n samples from @) gq:, and define
the matrix S with normal vectors as its columns:

Txl Txn
[Txillz T,

Note that it is preferred that the number of samples n, to be
at least equal to the dimension d. The dimensionality and
the scaling of the space along each coordinate axis can be
found from the non-zero elements of matrix X (the singular
values of S). There are two extreme cases. (1) When all

normal vectors H{TI‘7xH2 are parallel, 3 has only one non-zero

S = .
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Fig. 6. The first 100 singular values of matrix S scaled by the first
singular value o; /o1.

singular value, so the energy of the space S is concentrated
in one direction hence, the decision boundary is linear.

(2) When matrix X is close to identity which means that
T, are completely independent and the energy of the
space S is distributed uniformly in all directions, So B has
the maximum non-linearity around manifold of clean data.

For the cases in between, the more concentrated energy
is in the few directions, the more similar the decision bound-
ary would be to a linear decision boundary.

We create matrix S for all of the clean and Trojan models
of Odyssey-CIFAR10 and Odyssey-FashoinMNIST datasets
using 600 and 300 samples per class from the validation set,
respectively.

Figure 6 shows the distribution of the first 100 singular
values based on the label mapping averaged over all of
the CIFAR-10 models. For ease of comparison, we scale all
singular values with the first one. Now, each singular value
represents the importance of that coordinate axis compared
to the first coordinate axis. The analysis of the distribu-
tion of singular values reveals the following findings: (I):
The space S has a significantly lower dimension than d
ie. dim(S) < d I): The first few singular values have
a similar energy pattern in all type of models. However,
in the Trojan models regardless of the mapping type, the
contribution of the remaining singular values in the total
energy of the space S decreases more rapidly compared to
clean models. Note that in Figure 6 the red (Many-to-Many
mapping) and blue (Many-to-One mapping) curves are con-
sistently below the curve of clean models. This suggests that
for the Trojan models, the normal vectors are more aligned
with each other and also if we orthogonally project them
onto the subspace S " created by the basis correspond to the
dominant singular values of .S, the projected vector are also
aligned. In other words, Trojan insertion creates a dominant
direction from samples toward decision boundary B in S Figure
7 shows the schematic representation of normal vectors to
the decision boundary B € R? along with the corresponding
subspace S for Many-to-One (M20) and Many-to-Many
(M2M) mappings. In M20 mapping, the subspace S "is the
x-y plane with x-axis as the dominant direction toward the
decision boundary. For M2M mapping, the subspace S is
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Fig. 7. Top: Decision boundary B of a Trojan model with M20 label
mapping. The normal vectors to B (solid arrows) are aligned with the
subspace S’ with the dominant direction along x-axis. Bottom: Decision
boundary B of a Trojan model with M2M label mapping. The subspace
S is along the z-axis with normal vectors parallel to it. In both cases,
the non-linear B can be replaced with linear 13; with dominant direction
inS” as its normal.

along the z-axis and the normals are parallel to it. The B; is
a linear decision boundary that can replace the B with the
dominant direction in S as its normal vector.

III): Trojan insertion can affect the non-linearity of de-
cision boundary differently based on the type of attack
one uses. For M20 mapping, the first 100 singular values
cover 2% less energy compared to that of clean models that
suggests this type of mapping slightly increases the non-
linearity of B. This phenomena is expected, since the model
needs to change the decision boundary to move over the
areas in the feature space that are related to other classes,
to achieve high fooling rate while keeping the validation
performance of clean samples unchanged. However, in
M2M mapping the first 100 singular values covering 3%
more energy compared to clean models. This observation
suggests that this type of mapping slightly decreases the
non-linearity of the decision boundary. We believe that,
since each True label only maps to one Target label and the
poisoning ratio is small, 15% — 20%, the triggered samples
act like hard negative samples during training and increases
the margin as reported in Table 1.

To verify this, we also visualize the output logits of 40
clean samples per class for models CIFAR-10 dataset based
on different source to target label mappings on 3D space.
Figure 8c shows distinctive clusters for each class compared
to a clean model in Figure 8a and Figure 8b shows the
samples of target class 7 are spread over a larger space even
in 3D space. In the next chapter, we use these findings as the
basis of the proposed Trojan detector.

6 TROJAN DETECTOR

The detector is inspired by our finding in Section 5 that
Trojan insertion can create a dominant direction in the
perturbation space around the manifold of clean data.This
finding implies that the non-linear decision boundary, 5,
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can be better represented by a linearized one, 3;, around
Qdata With the dominant direction in the perturbation space
as its normal vector. Since the perturbation directions Ty,
that project samples x; to the closest point on the non-linear
decision boundary are more aligned, the normal direction
to B; can be found by considering the directions of few
samples for a Trojan model. Now, if we perturb samples
along the normal direction of B; with a certain magnitude,
since it is close to the shortest path from samples to the
decision boundary for Trojan models, it causes a higher
misclassification rate for Trojan models compared to clean
models.

Our Trojan detector consists of two components. The first
one is responsible for finding the normal vector to the best
representative linearized decision boundary around a small
batch of samples X € (Q4qtq, that is scaled to a given magni-
tude, £. The output of first step is the detector perturbation
vector rx that maps X to the linearized decision boundary
of M. In the second step, all the samples in the held-out val-
idation set D, \X are perturbed with the detector perturba-
tion rx as D, = {(x; +rx,y:)|(Xi,yi) € D,\X}.The detec-
tor considers the Error rate of the model M on samples of D;,
denoted as Err(M(D,)), to differentiate between clean and
Trojan models. The detector function Detector(M) labels
the model M as Trojan if Err(M(D,)) > 6, and label it as
clean otherwise. Here, § denotes the performance threshold
of the detector and decides the sensitivity of the detector.
The proposed Trojan detector is presented in Algorithm 1.

Algorithm 1 Trojan Detector

1: Input: Validation set D,,, classifier M, magnitude of the
perturbation , threshold of error rate for perturbed in-
put batch p, maximum iteration J, performance thresh-
old §

: Output: Detector decision (Clean / Trojan)

Step 1:

: Select image batch X randomly from D,

: Initialize t < 0, 7 < 0, rx < 0

: while j < Jand Err(M(X +rx)) < pdo

for each image x; € X do

compute tx,r, using Eq. (5) <« Perturbation that
projects x; + rx onto the nearest point on Biineqrized Eq-
(©)

9:  end for

10: rx < rx + Z

1 rx <Ry

magnitude £

122 j4+j+1

13: end while

14: Step 2:

15: Create perturbed validation set: D, = {D,\X} + rx

16: if Err(M(D,)) > § then

17:  return Trojan

18: else

19:  return Clean

20: end if

txi +rx

L ATX L g normal vector to B
? ‘ltxi‘Frx‘l?

< scale the normal vector to

Note that the detector perturbation procedure in Al-
gorithm 1 is similar to universal adversarial perturbation
(UAP) [78] in the sense that both aim to compute a direction
in the perturbation space based on a batch of data, X, that



Clean

Many to One

Many to Many

Fig. 8. 3D visualization of output logits for 40 clean samples per class for models from CIFAR-10 dataset. Here, ci — j indicates the True label, 7,
to Target label, 7, mapping. a) Clean model, b) A M20 Trojan model with Target class 7. ¢c) A M2M Trojan model.

TABLE 2
Accuracy of the proposed Trojan detectors on Odyssey for different true
label to target label mappings.

Dataset Clean M20 M2M Mixed
MNIST 80.24+2.8  91.845.1 927428 96.4+4.7
FashionMNIST 100+ 0 81.6+7.8 747469  71.0+£8.3
CIFAR10 99.54+0.5 96.14+2.2 99.441.08 97.8+3.0

causes the misclassification for all the samples. However,
our method is inherently different in how they compute
the direction. UAP finds the direction sequentially by ag-
gregating the minimal perturbations that sends the current
sample x; that has been perturbed by UAP perturbation v
to the decision boundary of the classifier. While Algorithm
1 tries to find the normal to the linear decision boundary B;
by emphasizing on the alignment of normal vectors to the
classifier decision boundary B in Trojan models. Since this
feature is more prominent in Trojan models, the detector
perturbation becomes a stronger attack to Trojan models
and leads to larger drop in the accuracy compared to clean
models.

7 EXPERIMENTS

In this section, we evaluate the quality of the Odyssey
dataset followed by the performance and generalizability
of the proposed Trojan detector. We also evaluate the effect
of each of hyper-parameters on the performance of the
proposed Trojan model detector through a comprehensive
set of ablative experiments.

7.1 Performance on Odyssey

In the first set of experiments we evaluate the performance
of the proposed Trojan detector on our Odyssey dataset. The
5-fold cross validation accuracy of the detector for clean and
different label mapping is reported in Table 2. For all parts
of Odyssey, we set the error rate threshold p = 0.5 and the
maximum iteration J = 10. The magnitude of perturbation
£ is set to 5 for gray-scale images of MNIST and Fashion-
MNIST and 10 for CIFAR10. Finally, rx is computed based
on 40 samples per class with performance threshold of
0 = 0.5. As it can be seen, the proposed Trojan detector

TABLE 3
Performance of the proposed Trojan detector.

Dataset Precision Recall Accuracy(%)
NIST R-0 [24] 0.851£0.05  0.928+0.02 85.00+£3.78
NIST R-1 [79] 0.924+0.02  0.753+0.02 83.40+0.80
NIST R-2 [80] 0.79+7.73 0.730+0.04 72.96+4.37
CIFAR10 1.000+£0.00  0.976+0.01 98.73+0.58
MNIST 0.818+0.01 0.936+0.01  86.36+1.11
FashionMNIST 1.000+0.00  0.715+0.04 85.29+2.23
ULP-TinyImageNet  0.790£ 0.09  0.690+0.02 75.61+1.38
TABLE 4

Performance of SOTA Trojan detectors on Odyssey-CIFAR10.

Method Precision Recall Accuracy(%)
ULP [64] 0.780+0.33 0.518+0.36 68.63 +1.49
STRIP [54]  0.958+0.02 0.360+0.01 67.32+1.31
MNTD [65]  1.000+0.00 0.850+0.01 92.50+0.16
NC [21] 0.85440.02 0.408+0.01 66.83+1.76
Ours 1.000+-0.00 0.976+0.01 98.7310.58

sets a high baseline on Odyssey even with almost fixed set
of hyperparameters.

To benchmark the complexity of our new dataset, we
compare the performance of the sate of the art (SOTA) Trojan
detectors on the Odyssey-CIFAR10 in Table 4. The Uni-
versal Litmus Pattern (ULP) [64] and Meta-Neural Trojan
Detection (MNTD) [65] are training-based detection meth-
ods that train a classifier based on the features extracted
from clean and Trojan models. MNTD is a blackbox method
that requires many shadow benign and Trojan models to
learn the decision boundary of the target model. For a fair
comparison with other methods, we use it as a whitebox
detector. We use 80% of data for training and evaluate on
the rest. We believe that the poor performance of ULP;
even after considering 10 litmus patterns; is due to its
weakness in finding ULP patterns for cross architecture
models. MNTD performs significantly better than ULP as
a whitebox detector. It's 92.50% accuracy is the second best
to our method. Applying MNTD as its original blackbox
detection mode drops its performance to 64.16%. Strong
Intentional Perturbation (STRIP) [54] is an online defensive
method and assumes that Trojan models are input agnostic



in the presence of a trigger.The reason for the poor per-
formance of STRIP is that the image agnostic assumption
only holds for fixed trigger position Trojan models. While in
Odyssey, the Trojan models are trained based on random
trigger positions. Neural Cleanse (NC) uses optimization to
generate a minimal trigger pattern for each label. In Table 8,
we compare the performance of these methods along with
our proposed detector on other datasets.

7.2 Ablation Study

In this section, we analyse the effect of each one of the
hyper-parameters in the Trojan detector on its performance.
These parameters are namely, “performance threshold 6”,
“magnitude of perturbation £” and “error rate threshold p”.

In the first set of experiments we study the effect of per-
formance threshold § on the detector while other parameters
are set to £ = 10 and p = 0.5 with the maximum iteration
J = 10 and the batch size of 40 samples to compute the per-
turbation rx. Table 5 summarizes the study. Large values
for § negatively affect recall while small values decreases
the precision drastically. For models with more than 0.95
accuracy, 0.4< § <0.6 leads to a good performance. This
range is the margin of accuracy drop between clean and
Trojan models. The wide range shows that our detector is
not overly sensitive to the chosen values.

TABLE 5
Effect of 4 on the final performance of the proposed Trojan detector for
Odyssey-CIFAR10 dataset

0 Precision Recall Accuracy%
0.8 1.0040.00 0.7214+0.04  84.85+2.57
0.7 1.0040.00 0.823+0.03  90.38 £2.06
0.6 1.0040.00 0.91340.01 95.2440.99
0.5 1.000£0.00  0.97640.01 98.7340.58
0.4 0.984+0.014  0.98+0.016  98.05+0.75
0.3 0.845+0.011  0.98£0.009  89.51£0.38
0.2 0.559+0.018  0.996+0.004  57.08+1.67

To analysis the effect of magnitude of perturbation £ on
the detector, we set the performance threshold § = 0.5 and
the error rate to p = 0.5 and the rest of the parameters
are the same as previous experiments. If { is set to a large
value the performance of both clean and Trojan models on
the validation set would drop drastically so it is hard to
differentiate between clean and Trojan models. On the other
hand, for the small values of £, the performance of both
clean and Trojan models on the validation set would not
change that much which causes a similar miss-classification
rate for both groups. The performance of the detector based
on various values of ¢ is presented in the Table 6.

TABLE 6
Effect of £ on the final performance of the proposed Trojan detector for
Odyssey-CIFAR10 dataset

13 Precision Recall Accuracy%
5 1.00+£0.00 0.30+0.05 63.76+3.04
7.5 0.97+0.01 0.543+£0.04 76.05 £2.89
10 1.0004+0.00  0.97640.01  98.73+0.58
125  0.67£0.029  0.76+0.05 69.44+0.68
15 0.59+0.07  0.80£0.033  60.7442.59
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Finally, we evaluate the effect of error rate threshold p
on the detector. Table 7 compares the performance of the
proposed detector for various values of p while £ = 10,
0 = 0.5, J = 10 and the batch consists of 40 samples. Setting
p to a small error rate; p < 0.5; decreases the performance
more significantly than setting it to the large one; p > 0.5.
Since the Trojan models would still have high performance
on the perturbed validation set D;, the detector labels them
as clean models. The random performance; 53%; of the
detector with very low recall rate of 0.09% for p = 0.3
indicates this phenomena.

TABLE 7
Effect of p on the final performance of the proposed Trojan detector for
Odyssey-CIFAR10 dataset

P Precision Recall Accuracy%
0.7 0.84+0.025 0.896+0.02  86.51+1.87
0.6 0.85+£0.01  0.894+0.02  86.6 +1.51

0.5 1.0004£0.00  0.976+0.01  98.73+0.58
0.4 0.92+0.07 0.25+0.047  60.91+1.10
0.3 0.91£0.07  0.094+0.044 53.39+1.37

From these experiments we conclude that while fine
tuning these parameters would lead to the best performance
of the detector, but it is not hyper-sensitive to the hyper-
parameters values, since the reported results on Odyssey
dataset in Table 2 are based on the almost fixed set of
hyper parameters. So the detector performs well without
meticulous hyper parameters tuning.

7.3 Performance on Other Datasets

We also evaluate the effectiveness of the proposed Trojan
detector on the two other public datasets namely NIST [24]-
[76] and ULP [64]. For the NIST round-0 and round-1, we
used 40 samples per class to compute the perturbation with
maximum number of iteration J = 10. The rest of the
hyper parameters is the same as Odyssey-CIFAR10. For the
NIST round-2 dataset, since the dataset provides limited
validation set for each model, we used 5 samples per class to
compute the perturbation and set the performance threshold
0 = 15. The reported performance in Table 3 demonstrate
the effectiveness of the proposed Trojan detector as it suc-
cessfully detects Trojan models regardless of the dataset. The
best performance is achieved on Odyssey-CIFAR10 with
close to 99% accuracy in detection. We believe the scarce
number of limitation set for NIST R-2 is the reason for drop
in the accuracy compared to other datasets.

7.4 Unseen Scenarios

Finally we compare the performance of Trojan detectors
against three complicated unseen scenarios, namely new
triggers, regularized models and adversarially trained models.
For new triggers, we train 12 Trojan models per mapping
with various filters as Trigger (Fig. 4) for CIFAR10 dataset.
For regularized models, we trained in total 160 clean and
Trojan models with noise as the regularizer to make them
robust against random perturbations. We also test the de-
tectors against adversarially robust models of NIST-R3 [76]
dataset.



TABLE 8
Detection Accuracy (%) of SOTA Trojan detectors on various datasets.
STRIP is not applicable to NIST datasets since there is no triggered
samples available for them. For TinylmageNet, performance of the ULP
is reported based on our re-run.

Method NISTR-0 NISTR-1 NISTR-2 TinylmageNet
ULP [64] 62.51 56.87 54.00 96.50
STRIP [54] N/A N/A N/A 48.18
MNTD [65] 65.14 57.50 49.00 53.40
NC [21] 65.02 57.71 57.07 67.64
Ours 85 83.40 72.96 75.61
TABLE 9

Accuracy (%) of the proposed Trojan detector on new scenarios. We
employ different type of color filters as triggers for CIFAR10-Filter
models. For CIFAR10-Noise, noise has been used as regularizer

during training. NIST-R3 [76] models are adverserally trained.

Method CIFAR10-Filter =~ CIFAR10-Noise = NIST R-3 [76]
ULP [64] 62.854+2.19 60.931+4.41 53.3943.54
MNTD [65] 61.42+1.41 71.87+3.05 46.60+0.38
Ours 96.9243.76 84.60+6.80 61.09+4.01

Table 9 reports the performance for each scenarios. The
proposed detector shows higher generalizability compare
to other methods in all scenarios and performs well on
new triggers with less than 2% drops in accuracy compared
to known triggers. The worst performance of our detector
is against adversarially trained models of NIST-R3 [76]
dataset. Considering the small-sized validation set of each
model, we could only use 5 samples per class to find the
dominant perturbation direction which is not enough to
recover the correct direction. Furthermore, we believe that
the degradation of performance, in both regularized models
and adversarially trained models, is related to their effect on
the shape of decision boundary.

8 DISCUSSION

Now that we have introduced Odyssey and evaluated the
performance of the proposed Trojan detector on it and other
datasets, in this section we discuss the limitation of both
Odyssey and the Trojan model detector and map our future
research direction.While Odyssey is a breakthrough, there
are still many aspects of Trojan models that needs further
investigation.

There is another type of Trojan attack that only modifies
the data without changing its label, known as clean label
attack. To create these models, attacker considers triggers
that are hidden in the pixel space and operates in the feature
space [81]. In addition, a natural trigger is the refection
trigger [47] that better represents natural phenomena of
Trojan attack, e.g. on detection or classification system in
an autonomous car. This type of Trojan models also should
be added to Odyssey.

Another direction that needs further investigation is
the effect of data augmentation methods, regularizers and
adversarially robust training techniques, on the success of
Trojan attacks and also on the intrinsic properties of Trojan
models. We also noticed the reduction in the performance
of the Trojan detector on the adversarially robust models
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which indicates that Trojan insertion process might not lead
to a dominant perturbation direction for these models in the
same way as non-robust Trojan models. It is worth noting
that detecting adversarially robust Trojan models is one
of the current challenges in the field that requires careful
investigation.

9 CONCLUSION

We proposed Odyssey, the most diverse public Trojan dataset
with more than 3000 models. Our analysis on this dataset
shows that increasing the Trigger’s size adversely affects
fooling rate of Trojan models with M2M and Mix label
mapping. In addition, analysis of the intrinsic properties of
Trojan models revealed that (M20O) mapping consistently
reduces the average margin and Trojan insertion process
creates a dominant direction in the perturbation space.
Taking these two properties into consideration, we proposed
a Trojan detector that works without any information about
the attack or training data and sets a high baseline accuracy;
for Odyssey.
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