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Abstract

The goal of out-of-distribution (OOD) detection is to han-

dle the situations where the test samples are drawn from a

different distribution than the training data. In this paper,

we argue that OOD samples can be detected more easily if

the training data is embedded into a low-dimensional space,

such that the embedded training samples lie on a union of

1-dimensional subspaces. We show that such embedding of

the in-distribution (ID) samples provides us with two main

advantages. First, due to compact representation in the fea-

ture space, OOD samples are less likely to occupy the same

region as the known classes. Second, the first singular vector

of ID samples belonging to a 1-dimensional subspace can

be used as their robust representative. Motivated by these

observations, we train a deep neural network such that the

ID samples are embedded onto a union of 1-dimensional

subspaces. At the test time, employing sampling techniques

used for approximate Bayesian inference in deep learning,

input samples are detected as OOD if they occupy the re-

gion corresponding to the ID samples with probability 0.

Spectral components of the ID samples are used as robust

representative of this region. Our method does not have any

hyperparameter to be tuned using extra information and it

can be applied on different modalities with minimal change.

The effectiveness of the proposed method is demonstrated on

different benchmark datasets, both in the image and video

classification domains.

1. Introduction
Many classification methods are designed and deployed

under the assumption that training data contains samples
from all the possible classes that the classifier will encounter
during testing. Of course, such assumption does not hold in
many applications; as it may not be possible to cover every
potential input class in the training set. Thus, it is desir-

able to detect out-of-distribution (OOD) samples; the input
instances that do not belong to any of the training classes.
In general, OOD detection techniques try to either use the
class membership probabilities as a measure of uncertainty
[12, 21, 36, 39, 14], or define a measure of similarity be-
tween the input samples and the training dataset in a feature
space [2, 40, 20, 28]. As discussed in [20], the features
extracted from a conventional softmax classifier follow a
class-conditional Gaussian distribution. However, general
class-conditional Gaussian embeddings are not particularly
appropriate for outlier detection, as they are not easily dis-
tinguishable in the feature space.

In this work, we claim that we can improve the OOD
detection performance by constraining the representation of
in-distribution (ID) samples in the feature space. Particularly,
if we embed the training samples such that the feature vec-
tors belonging to each known class lie on a 1-dimensional
subspace, OOD samples can be detected more robustly
with higher probability, compared to a class-conditional
non-degenerate Gaussian embeddings. Such a union of 1-

dimensional subspaces representation provides us with two
main advantages. First, due to compact representation in
the feature space, OOD samples are less likely to occupy
the same region as the known classes. In other words, a
random vector in a high-dimensional space lies on a specific
1-dimensional line with probability 0. Second, we show
that the first singular vector of a 1-dimensional subspace
is a robust representative of its samples. We exploit these
two desirable features and reject samples as OOD, if they
occupy the region corresponding to the training samples
with probability 0. This region is identified by the set of the
first singular vectors of the training classes. To estimate the
probability, we use Monte Carlo sampling techniques used
in Bayesian deep learning such as [25, 8].

Our work is primarily motivated by the rich literature of
spectral methods in signal processing and machine learning.
Spectral techniques have been proven to be very effective



for different tasks such as robust estimation [6], learning
mixture models [29], representative selection [43], and de-
fense against backdoor attacks [35]. We are also inspired by
the OOD detection method proposed in [20], in which au-
thors use the ID feature vectors to estimate their distribution
and to detect OOD samples. In contrast, we engineer the
distribution of ID feature vectors to minimize the error prob-
ability, without knowing the distributions of OOD samples,
and enforce our desired distribution on the feature vectors.
Our proposed method does not need extra information or
a subset of OOD examples for hyperparameter tuning or
validation. This is in contrast to many existing methods
that use some subset of the OOD samples, either during
validation [21, 36, 20, 28], or even during training [13, 42].
Despite improving the results, the availability of such extra
information is questionable in many real-world applications.
Furthermore, our technique can be easily deployed on many
existing frameworks and different modalities, e.g. images,
videos, etc. In summary, this paper makes the following
contributions:

• We demonstrate that if feature vectors lie on a union of
1-dimensional subspaces, the OOD samples can be robustly
detected with high probability and we show how we can
impose such constraint on the ID feature vectors (Section 3);

• We propose a new OOD detection test, which exploits
the first singular vector of the feature vectors extracted from
the training set, in conjunction with MC sampling (Section
4);

• Our framework does not have hyperparameters, does
not need extra information, and can be easily applied to
existing methods with minimal change. Furthermore, the
proposed method can be applied to different domains. Here,
we introduce a new baseline for OOD detection for human
action classification in videos.

2. Related Work
The problem of detecting outliers and anomalies in the

data has been extensively studied in machine learning and
signal processing communities and is closely related to out-
lier detection, a topic that has been greatly studied both in the
supervised [9] and unsupervised [38] settings. The literature
in this area is sizable. Thus, we mainly focus on the recent
deep learning approaches. These methods either estimate the
distribution of ID samples [20, 28] or use a distance metric
between the test samples and ID samples to detect OOD
samples [21, 12].

Many of the existing approaches employ the OOD
datasets during training [42, 13] or validation steps [21, 36,
20, 28, 19, 30]. For instance, in [42], the network is fine-
tuned during the training to increase the distance between
ID and OOD distributions. Other interesting methods, such

as [21, 36, 20], apply a perturbation on each sample at test
time to exploit the robustness of their network in detecting
ID samples. However, they use part of the OOD samples
to fine-tune the perturbation parameters. On the other hand,
methods that rely on generative models or autoencoders,
such as [28], also require hyperparameter tuning for loss
terms, regularization terms, and/or latent space size. Authors
in [32] propose to use extra supervision, in particular several
word embeddings, to construct a better latent space and to
detect OOD samples more accurately. A table summariz-
ing the prior work and how they leverage extra information
is provided in the supplementary material. Having access
to extra information certainly helps with the performance.
However, it can be argued that OOD detectors should be
completely agnostic of unknown distributions, which is a
more realistic scenario in the wild. On the other hand, only a
few approaches, such as [12, 27, 40, 24, 14], do not require
the OOD samples neither during training nor validation. For
instance, Hendricks and Gimpel [12] show how the softmax
layer can be used to detect OOD samples, when its predic-
tion score is below a threshold. In [40], the authors rely
on reconstructing the samples to produce a discriminative
feature space. However, methods that rely on either recon-
struction or generation [27, 40, 28] do not perform well in
scenarios where sample generation or reconstruction is more
difficult, such as large-scale datasets or video classification.
While the problem of detecting OOD samples in image clas-
sification has been subject of many studies, in the human
action classification domain the focus has been on zero-shot
and few shot learning [26]. To the best of our knowledge,
this work is the first one to benchmark OOD results on two
different modalities, i.e. image classification and human
action recognition in videos.

3. Union of 1-dimensional Subspaces for Out-
of-Distribution Detection

Given a training dataset consisting of N sample-label
pairs belonging to L known classes, our goal is to train a
neural network such that at the test time it can be determined
if an unlabeled sample is an out-of-distribution sample (not
belonging to any of the L known classes) or not. We are
particularly interested in the scenarios where OOD samples
are not available. Thus, we do not use OOD samples during
training or validation. We argue that OOD detection perfor-
mance can be improved if the feature vectors from the known
classes lie on a union of 1-dimensional subspaces. In short,
such embedding has two main properties that we can take
advantage for OOD detection: (i) Due to the compactness
of ID samples in the feature space, OOD samples can be
detected with higher probability, compared to conventional
class-conditional non-degenerate Gaussian embeddings, and
(ii) First singular vector of the samples in each class can be
used as a robust representative of that class and can be ef-



fectively employed to distinguish between the ID and OOD
samples. Below, we discuss each of these advantages in
more details.

Distribution-agnostic minimization of error probability:
Computing the error probability for OOD detection is a diffi-
cult task to carry out. This is due to the fact that, by defini-
tion, we do not have much information about the probability
distribution of the OOD samples. However, it can be shown
that the probability of error can be minimized by making
the distribution of the known classes as compact as possible.
Specifically, consider the binary classification problem of
distinguishing between the OOD samples and samples from
one of the known classes, following multivariate Gaussian
distributions with different means and covariance matrices
N (µo,⌃o) and N (µi,⌃i), respectively. It has been shown
[7] that the classification error probability pe can be upper
bounded by: pe  p

pipoe�B , where pi and po are the
probability of samples belonging to the known class and
OOD samples, respectively. B is the Bhattacharyya distance
defined as:

B =
1
8
�T (

⌃i +⌃o

2
)�1�+

1
2
ln(

det(⌃i+⌃o
2 )

p
det(⌃i) det(⌃o)

),

where � = µi � µo is the distance between the means
of the two distributions. The first term in B represents the
Mahalanobis distance between µi and µo, using ⌃i+⌃o

2 as
the covariance matrix. The second term is a measure of
compactness of the distributions. The larger the det(⌃i) is,
the more its corresponding samples are spread out. Thus,
even without any knowledge about µo, ⌃o, pi, and po, one
can increase B by making N (µi,⌃i) as compact as possible.
In the extreme case, where the samples lie on a perfect 1-
dimensional subspace, error probability will be 0, unless the
OOD feature vectors have the exact same distribution as the
known class. To demonstrate this in further details, consider
the following toy examples:

Example 1: Let ⌃o =


1 0
0 1

�
and ⌃i =


1 0
0 ✏2

�
, ✏ ⌧

1, meaning that the ID samples occupy an almost 1-
dimensional subspace of the 2-dimensional space. In this ex-
ample, the second term in above equation becomes ln( 1+✏2

2✏ ),
which approaches infinity as ✏ ! 0, making pe very small.
This is true even if µi = µo.

Example 2: Let ⌃o = ⌃i =


1 0
0 ✏2

�
, ✏ ⌧ 1,µi =


µi1

µi2

�
,µo =


µo1

µo2

�
, i.e., ID and OOD samples have the same

degenerate covariance matrix. In this case, the second term
becomes 0, but the first term, which is the Mahalanobis dis-
tance between the mean vectors, is 1

8 [(µi1�µo1)2+
1
✏2 (µi2�

µo2)2]. If ✏ ! 0, pe approaches 0, unless (µi2 � µo2)2 ! 0
as well. This means that if the means of the distribution have
some mismatch along the degenerate direction, even though

very small, OOD samples can be detected with very small
pe.

Thus, by enforcing the ID feature vectors to lie on 1-
dimensional subspaces, we can detect slight mismatches
between the distribution of the OOD samples in feature
space and the distribution of ID samples, which leads to
better OOD detection.

First singular vector as a robust representative: In the
context of robust statistics, the first singular vector has been
shown to be a great tool to define robust mean and covari-
ance estimators [6]. In addition, the first singular vector
has been used to select the representatives of the class[43].
It can be shown that the first singular vector is robust to
perturbations and noise. Let X l denote an M ⇥N matrix
containing N M -dimensional feature vectors belonging to
class l. Furthermore, consider the autocorrelation matrix of
the class l defined as Cl = X lX

T
l . Eigenvectors and eigen-

values of Cl are the left singular vectors and the square of
singular values of X l, respectively. Adding noise or adding
a new noisy column in X l perturbs Cl, without changing
its dimensions. To quantify the sensitivity of eigenvectors of
Cl against perturbations, we use the following Lemma.

Lemma 1 (from [43]) Assume square matrix C and its

spectrum [�i,vi]. Then, k@vik2 
qP

j 6=i
1

(�i��j)2
k@CkF ,

where k.kF denotes Frobenius norm and the partial deriva-

tive is taken with respect to any scalar variable.

If we take the partial derivative with respect to an entry in
C, we can see that the sensitivity of the ith spectral com-
ponent, vi, to perturbations in C, is inversely related to
the gap between its corresponding eigenvalue �i and other
eigenvalues �j , j 6= i. Therefore, we can define the sensi-
tivity coefficient of the ith eigenvector of a square matrix as
si ,

qP
j 6=i

1
(�i��j)2

. In general, the first singular compo-
nent v1 is the least sensitive direction to the perturbations.
This is because, in many scenarios, the gap between con-
secutive eigenvalues is decreasing (see [3] and references
therein), which leads to s1 < si, 8i � 2. However, we can
further increase the robustness, by embedding the ID feature
vectors onto a union of 1-dimensional subspaces. Since the
singular values represent the amount of energy concentrated
along their corresponding singular vector, if almost all of
the energy of the data points in each class is concentrated
along its corresponding first singular vector, we will have
large �1 and small �i, i � 2 for all the classes. Therefore,
if the feature vectors belonging to the same class lie on a
1-dimensional subspace, we can use the first singular vector
of X l as a robust representative of the class subspace in the
feature space and to reject outliers, as shown in Section 4.
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Figure 1. Overall architecture of the proposed framework. A neural network (e.g., WideResnet28) maps the input onto a feature space. Then,
the cosine similarities between the extracted feature xn and the class vectors wl are used to compute the class membership probabilities.
wls are set to predefined orthonormal vectors and are not updated during training. This leads to the desired embedding, union of uncorrelated
1-dimensional subspaces. At test time, the cosine similarity between the test samples and the first singular vector corresponding to each class
is used to distinguish between the ID and OOD samples.

3.1. Enforcing the Structural Constraints
Intraclass Constraint: We can make the feature vectors
for each known class to lie on a 1-dimensional subspace
by employing cosine similarity. This can be achieved by
modifying the softmax function to predict the membership
probability using pln = e| cos(✓ln)|

P
l e

| cos(✓ln)| , where pln is the prob-
ability of membership of feature vector n in class l and
cos(✓ln) = wT

l xn

kwlkkxnk is the cosine similarity between the
learned feature vector xn and the weights of the last fully
connected layer corresponding to class l, i.e.,wl. Note that,
unlike other methods which employ angular margin [37, 23],
we use the absolute value of the cosine similarity to compute
the class memberships. This is due to the fact that the sub-
space membership, and therefore the class membership, does
not change if a vector is multiplied by �1. By employing
such activation function, the feature vectors of each class
are aligned to its corresponding weight vector wl. In other
words, class l forms a 1-dimensional subspace along the
direction of wl in the feature space. Therefore the final loss
function to be minimized is defined as:

L =
1
N

NX

n=1

� log(
e| cos(✓

⇤
n)|

P
l e

| cos(✓ln)| ), (1)

where ✓⇤n is angle between the nth feature vector and the
weight vector corresponding to its true label.

Interclass Constraint: By using the absolute cosine simi-
larity as the classification criteria, we can ensure the feature
vectors are angularly distributed in the space and form a
union of 1-dimensional subspaces. To boost the interclass

separation of the known classes, we need to decrease the
interclass similarity, in terms of cosine similarity. Minimum
interclass cosine similarity can be enforced by ensuring that
wl are orthogonal to each other. We achieve this by simply
initializing the weight matrix with orthonormal vectors, as
described in [31], and freezing them during the training. Or-
thogonal initialization requires that M > L, which is often
the case in practice (feature space dimension is larger than
number of classes). In other words, the feature extractor,
i.e., the deep neural network, is trained such that it can map
each input sample in class l onto a predefined 1-dimensional
subspace represented by the direction of wl.

Figure 1 shows the overall architecture of the proposed
framework. The neural network maps the input sample onto
a low-dimensional space, where the known classes are repre-
sented by a set of orthonormal vectors. The cosine similarity
between the extracted feature from the nth input sample,
xn, and the vector corresponding to the class subspace, wl,
is used to determine the class membership probability and
therefore the label. Figure 2 demonstrates the effectiveness
of the proposed framework in enforcing the desired embed-
ding. It shows a 3-dimensional embedding, obtained by
PCA, of the feature vectors belonging to the first 3 classes
of CIFAR10. The neural network, WideResnet28, is trained
on all the classes of CIFAR10 with and without enforcing
the proposed structural constraints. Figure 2(a) shows that
the feature vectors belonging to each class extracted from
a plain WideResnet have a fairly isometric Gaussian struc-
ture, meaning that they are spread out in different direction
uniformly. On the other hand, as shown in Figure 2(b), the
feature vectors extracted from the same network trained us-
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Figure 2. 3-dimensional representation of the features belonging to the first 3 classes of CIFAR10 training set, extracted from WideResNet
with and without the proposed embedding: (a) features extracted from a plain WideResnet, (b) features extracted after enforcing the proposed
embedding, and (c) same as (b) after `2-normalizing the feature vectors. The solid lines represent the direction of the first singular vector
corresponding to each class. All the figures contain 3, 000 feature vectors.

ing our proposed technique lie on a union of 1-dimensional
subspaces. We also show the `2-normalized feature vectors
in Figure 2(c) to remove the scale of the feature vectors and
emphasize the angle between each vector and the singular
vector corresponding to its class.

4. Out-of-distribution Detection Test
If the feature vectors belonging to the known classes

lie on a union of 1-dimensional subspaces, their corre-
sponding region in the feature space has no volume. Thus,
the probability of OOD samples being in the region corre-
sponding to any of the known classes, which is the prob-
ability of false negative pfn, is zero. This can be seen
using the Bhattacharyya bound, discussed in Section 3,
pe = popfn + pipfp  p

pipoe�B . Therefore, if we make
the known classes occupy a tiny region with no volume in the
space, we will have B ! 1 and pfn ! 0. We use this prop-
erty to classify samples as OOD if they lie inside the region
corresponding to any of the known classes with probability
0. More specifically, given an input instance in and corre-
sponding feature vector xn, this probability can be estimated
using the singular vectors of each class as p(�n  �⇤|in),
where �n is defined as:

�n = min
l

arccos(
|xT

nv
(l)
1 |

kxnk
), (2)

which is the minimum angular distance of the test feature
vector xn, from the first singular vector of any of the classes.
We name this measure as spectral discrepancy. �⇤ is a
critical spectral discrepancy and defines the region belonging
to the known classes. Smaller values of �⇤ corresponds to
more compact regions. In the extreme case of �⇤ = 0, the
input instance in is detected as OOD, if it does not have
the exact same direction as one of the singular vectors. It is
worthwhile to mention that in the ideal case, the first singular
vector of class l, v(l)

1 , would be the same as wl. However, in
practice, the first singular vector is a better representative of
the subspace after training, as training feature vectors may

not perfectly align with wl. v(l)
1 can be computed using

the extracted features from training ID samples of class
l. Time complexity order of computing the first singular
vector is linear w.r.t both the number and the dimensions of
the feature vectors [4, 1]. To estimate p(�n  �⇤|in), we
employ Monte Carlo sampling. Specifically:

p(�n  �⇤|in) =
Z �⇤

0

p(�n|in)d�n ⇡ 1
S

SX

s=1

I(�s
n < �⇤),

(3)
where S is the number of the Monte Carlo samples and �s

n

is the spectral discrepancy of the sth Monte Carlo sample,
given input instance in. Furthermore, I(.) is the indicator
function that takes value 1 if �s

n < �⇤ and 0 otherwise. To
obtain the samples, we can use the methods proposed for
approximate Bayesian inference in [25, 8]. �⇤ is the decision
parameter, which can be set to achieve a problem-specific
precision and/or recall requirements using different methods
such as [22] or by using the training set (as will be discussed
in Section 5).

Figure 3 demonstrates the effectiveness of employing
spectral discrepancy in distinguishing between ID and
OOD samples. Similar to Figure 2, this figure shows a
3-dimensional representation of the features that are close to
the first 3 classes of the CIFAR10, meaning that the classifier
would classify them as one of these classes. The first two
subfigures show the features extracted from a plain WideRes-
Net. Comparing ID samples (Figure 3(a)) with OOD samples
(Figure 3(b)), it is clear that both ID and OOD samples follow
a very similar structure, which makes OOD detection more
difficult. On the other hand, the last two subfigures illustrate
the `2-normalized features extracted from the WideResNet
trained using our proposed embedding. Comparing the ID
(Figure 3(c)) and OOD (Figure 3(d)) samples, most of the
OOD samples have larger angular distance to their closest
singular vector, compared to the ID samples, which can be
exploited to detect them more accurately. A quantitative
evaluation of this example, including the histogram of spec-
tral discrepancies for ID and OOD samples, is provided in
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Figure 3. 3-dimensional representation of the features extracted
from a plain WideResNet and the same network with our proposed
embedding. (a) ID features extracted from plain network, (b) OOD
features extracted from plain network, (c) ID features extracted
using our embedding, and (d) OOD features extracted using our
embedding. The solid lines represent the direction of the first sin-
gular vector corresponding to each class. OOD samples, extracted
using our embedding, have larger angular distance to their closest
singular vector. All the figures contain 3000 samples.

Section 5 (e.g., Figure 4). Furthermore, an algorithmic de-
scription of the training and testing phases of our proposed
method is provided in the supplementary material.

5. Experiments
Datasets: For the image classification task, we train
the WideResNet model on CIFAR-10 and CIFAR-100 [16]
datasets, which consist of 50,000 images for training and
10,000 images for testing, with an image size of 32 ⇥ 32.
The testing set is used as the ID testing samples. Similarly
to prior work [20, 21, 24], for the OOD testing samples, we
use the following datasets: (i) TinyImagenet: The Tiny Im-
ageNet dataset consists of 10,000 test images of size 36⇥ 36
belonging to 200 different classes, which are sampled from
the original 1,000 classes of ImageNet [5]. As in [21, 36]
we construct two datasets from TinyImagenet: TinyIma-
genet-crop (TINc) and TinyImagenet-resize (TINr), by either
randomly cropping or downsampling each image to a size
of 32 ⇥ 32. (ii) LSUN: LSUN [41] consists of 10,000 test
images from 10 different scene categories. Like before, we
randomly crop and downsample the LSUN test set to con-
struct two datasets LSUN-crop (LSUNc) and LSUN-resize
(LSUNr).

For the action classification task, we train a 3DResNet
model on UCF101 [33] and HMDB51 [17] datasets, which
consist of 13320 videos with 101 classes and 6766 videos

with 51 classes, respectively. As in previous works in zero-
shot learning domain [26], we perform a random split the
datasets between OOD classes and ID classes. UCF101 is
divided in 50/51 ID/OOD classes, while UCF101 is divided
in 25/26 ID/OOD classes.

Evaluation Metrics: We evaluate the OOD detection per-
formance using the following metrics: FPR at 95% TPR
indicates the false positive rate (FPR) at 95% true positive
rate (TPR). Detection Error indicates the minimum mis-
classification probability. It is computed by the minimum
misclassification rate over all possible values of �⇤. AU-
ROC, defined as the Area Under the Receiver Operating
Characteristic curve, is computed as the area under the FPR
against TPR curve. AUPR In is computed as the area un-
der the precision-recall curve. For AUPR In, ID images
are treated as positive. AUPR Out is similar to the metric
AUPR-In. Opposite to AUPR In, OOD images are treated
as positive. F1 Score is the maximum average F1 score over
all possible critical spectral discrepancy values �⇤.

We deploy WideResNet with depth 28 and width 10 as
the neural network architecture for the image classification
task and a 3DResNet [11] with 32 residual layers as the
neural network for the action classification task. As in [26],
our 3DResNet is initialized with weights pretrained on the
Kinetics dataset [15]. Both network parameters are set as
the original implementations in [44, 11], except the last
layer, which is modified as discussed in Section 3. At the
test time, unless otherwise stated, we draw 50 Monte Carlo
samples to estimate p(�n  �⇤) and to detect the OOD
samples. To draw MC samples for the image classification
task, we employ the SWAG-Diag method proposed in [25].
However, the storage and computation requirements of [25]
makes it less practical for larger networks. Thus, for the
video classification setup we employ the method in [8] to
draw samples. Other uncertainty estimation methods such as
[18, 34, 10] can also be used to estimate the uncertainty in
conjunction with our proposed method. Additional training
details are provided in the supplementary material1.

Table 4 compares our results with recent OOD detection
techniques in terms of F1-score. As denoted in the table,
we use the code provided by the authors from most of the
baselines to generate the results under a fair setting, i.e.,
same architecture, same datasets, and same metrics. For
[27, 40], we provide the results reported by the authors, as
these methods rely on reconstruction and/or generation of
samples and the same architecture cannot be used. In ad-
dition, since these methods only report their performance
using F1-score, we also use this metric for all the methods.
Our proposed method is able to consistently outperform the

1Code for the image classification task is available at https://
github.com/zaeemzadeh/OOD and the code for the action recog-
nition task is available at https://github.com/mmlab-cv/OOD_
video



Table 1. A comparison of OOD detection results, in terms of F1-score, for different ID and OOD datasets. † represents the results achieved
by our re-run of the publicly available codes. The bottom section summarizes the performance of the methods that use a subset of OOD
samples for hyperparameter tuning, such as finding the best perturbation magnitude. Our method does not have any parameters to be tuned.

ID dataset CIFAR10 CIFAR100
OOD dataset TINc TINr LSUNc LSUNr TINc TINr LSUNc LSUNr
SoftMax Pred. [12]† 0.803 0.807 0.794 0.815 0.683 0.683 0.664 0.693
Counterfactual [27] 0.636 0.635 0.650 0.648 - - - -
CROSR [40] 0.733 0.763 0.714 0.731 - - - -
OLTR [24]† 0.860 0.852 0.877 0.877 0.746 0.721 0.753 0.747
Ours 0.930 0.936 0.962 0.961 0.810 0.860 0.769 0.886
Methods that use OOD samples for validation and hyperparameter tuning.
ODIN [21]† 0.902 0.926 0.894 0.937 0.834 0.863 0.828 0.875
Mahalanobis [20]† 0.985 0.969 0.985 0.975 0.974 0.944 0.963 0.952

Table 2. Performance of the proposed framework for distinguishing ID and OOD test set data for the image classification task, using a
WideResnet with depth 28 and width 10. " indicates larger value is better and # indicates lower value is better. All the methods use the same
network architecture.

Training OOD FPR at Detection AUROC AUPR In AUPR Out
dataset dataset 95% TPR Error

# # " " "
Softmax. Pred. [12]/OLTR [24]/ Ours

CIFAR10

TINc 38.9/25.6/9.0 21.9/14.8/6.8 92.9/91.3/98.1 92.5/93.2/98.2 91.9/88.3/98.1
TINr 45.6/28.8/7.6 25.3/15.8/6.2 91.0/90.3/98.5 89.7/92.3/98.6 89.9/87.1/98.4

LSUNc 35.0/21.3/2.8 20.0/13.0/3.7 94.5/92.9/99.4 95.1/94.4/99.4 93.1/90.8/99.4
LSUNr 35.0/21.7/3.4 20.0/13.2/3.8 93.9/92.6/99.3 93.8/94.4/99.4 92.8/90.0/99.3

CIFAR100

TINc 66.6/63.8/41.7 35.8/29.0/18.9 82.0/77.4/88.6 83.3/78.7/89.1 80.2/74.4/87.0
TINr 79.2/72.9/29.42 42.1/32.1/14.2 72.2/73.1/93.7 70.4/73.8/94.0 70.8/69.8/93.8

LSUNc 74.0/59.2/38,8 39.5/29.1/13.9 80.3/76.9/93.8 83.4/80.0/93.6 77.0/72.9/93.1
LSUNr 82.2/61.9/20.3 43.6/29.2/11.3 73.9/77.0/95.7 75.7/79.2/96.0 70.1/73.3/95.7

competing methods over different datasets, and is the closest
competitor to the techniques that use OOD sample for vali-
dation. Table 2 compares the performance of our proposed
solution with two of the more competitive baselines over
different metrics, using the same network architecture for all
the methods. Our results are consistent over different OOD
datasets and different metrics, meaning that our method can
perform well for different types of OOD samples, without
any hyperparameter tuning for each OOD dataset.

In the ablation study, Table 4 investigates the impact of
enforcing structure on the OOD detection using spectral
discrepancy. AUROC is computed by using spectral dis-
crepancy for the different variants. This table shows that,
while enforcing the proposed embedding slightly hurts the
ID classification accuracy and does not improve the repre-
sentation ability of the network, it is an effective technique
to distinguish between ID and OOD samples. This table also
shows the effect of MC samples, which are used to compute
the probabilities. As expected, introducing MC sampling
improves the OOD detection performance, regardless of the
feature space structure. However, the improvement is more
significant for networks on which our proposed structure
is enforced. Further, MC sampling alone or enforcing 1D
subspace alone does not make a significant difference. But
the combination of 1D subspaces and MC samples improves
the results significantly. This is mainly because our method
is a probabilistic approach and only works in a probabilistic

setting.
In Table 3, we show our result for the action classification

task. To best of our knowledge, we are the first to tackle the
task of Out-Of-Distribution detection in the action recogni-
tion domain. To establish a baseline, we apply the Softmax
threshold method as in [12] on the output of our network.
We are able to consistently outperform the baseline, even
if enforcing the structure hurts the results when is not com-
bined with our OOD detector, which is consistent with the
ablation study shown in Table 4. This illustrates the fact that
our method can be easily applied to different network archi-
tectures and even different modalities, by only replacing the
last fully connected layer of the network.

As a guideline to set the value of the critical spectral
discrepancy �⇤, Figure 4(a) shows the histogram of the spec-
tral discrepancy for samples belonging to CIFAR10, as the
ID dataset, and different real OOD datasets. It is evident
that samples from both the testing and training set of the ID
dataset follow a very similar behaviour. Thus, the training
set can be used to estimate the possible interval of spectral
discrepancies for the ID samples. For instance, about 98% of
the samples in CIFAR10 have a spectral discrepancy of less
than 2 degrees. On the other hand, Figure 4(b) demonstrates
the detection error for different values of the critical spectral
discrepancy �⇤. This figure shows that best detection error
is achieved by setting �⇤ to a value in range [1.3, 2] degrees,
regardless of the OOD dataset. Hence, this figure shows that



Table 3. Performance of the proposed framework for distinguishing ID and OOD test set data for the action recognition task, using a
3DResNet [11] with 32 residual layers. " indicates larger value is better and # indicates lower value is better. All the methods use the same
network architecture. As in [26], we use 50/51 splits of the UCF101 dataset and 25/26 splits of the HMDB51 dataset.

Training OOD FPR at Detection AUROC AUPR In AUPR Out
dataset dataset 95% TPR Error

# # " " "
SoftMax. Pred. (Baseline) [12]/ SoftMax. Pred. (Orthogonal Subs.) [12]/ Ours

UCF50 UCF51 86.3/82.44/71.6 36.8/36.1/30.0 66.0/68.3/75.7 89.8/90.1/74.3 25.6/27.8/72.5
HMDB25 HMDB26 82.0/85.2/84.5 41.8/44.5/40.8 59.7/56.4/61.9 88.9/87.6/65.4 20.4/19.7/56.6

Table 4. Ablation study of the proposed framework using CIFAR10
(ID) and TINr (OOD). While enforcing the structure hurts the ID
accuracy slightly, it improves the OOD detection performance
significantly. The remaining two combinations, (No, Yes, No) and
(No, Yes, No), are not meaningful.

Union of 1D Orthogonal MC In Disribution OOD
Subspaces Subspaces Samples Accuracy (%) AUROC

No No No 96.0 95.2
No No Yes 96.0 96.3
Yes No No 95.4 95.6
Yes No Yes 95.4 96.8
Yes Yes No 95.4 95.9
Yes Yes Yes 95.4 98.5
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Figure 4. (a) Empirical probability distribution of the spectral
discrepancy of samples belonging to CIFAR10 (ID) and different
OOD datasets. (b) Detection error for different values of critical
spectral discrepancy �⇤. Both the spectral discrepancy histogram
and the best �⇤ do not change significantly for different datasets.

�⇤ is not sensitive to the OOD dataset and can be set using
only the training set. However, it should be mentioned that
in general the best value for �⇤ depends on the task at hand
and the precision and/or recall requirements. As mentioned

earlier, �⇤ can also be set by many of the threshold esti-
mation techniques such as [22]. More experimental results
such as quantifying the impact of the number MC samples,
robustness of the first singular vector to perturbations, and
ROC curves are provided in the supplementary material.

6. Conclusion
We show that the distribution of the ID samples in the

feature space plays an important role in the OOD detection.
Particularly, we propose to embed the ID samples into a low-
dimensional feature space such that each known class lies
on a 1-dimensional subspace. Such embedding gives us two
main advantages in the OOD detection task: (i) ID samples
occupy a tiny region in the space and (ii) ID samples have
robust representatives. By exploiting these desirable features,
our proposed method is able to outperform state-of-the-art
methods in several performance metrics and different do-
mains. We also establish a new baseline for OOD detection
in the action classification in videos.
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