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Motivation
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 In many real-world applications, some sensors might report 

irrelevant data (outliers).

 The processing node should not blindly aggregate 

measurements from all sensors.

We aim to achieve outlier distributional robustness, which means the 

estimator performs well for different outlier probability 

distributions.



Related Work
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Y. Jiang et. al., ICASSP 2007. 

This method is obtained by modeling the ToA estimation error as 

Cauchy-Lorentz distribution.

F. Yin et. al., IEEE Transactions on Signal Processing 2013

The authors have developed a robust geolocation method by 

estimating the probability density function (PDF) of the 

measurement error as a summation of Gaussian kernels. This method 

works best when the measurement error is drawn from a Gaussian 

mixture PDF.

S. Yousefi et. al., WPNC 2014.

Robust statistics, and specifically Huber norm, is exploited to 

localize sensors in a network in a distributed manner using the 

location of a subset of nodes.



Our Contribution
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 A robust optimization problem is formulated, which 

disregards unreliable measurements, using squared range 

formulation.

 Two different algorithms are proposed to find the solution of 

the optimization problem.

 Convergence of the algorithms is analyzed theoretically.



Problem Statement and Model
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 The system is comprised of 𝑅 sensors, with known (possibly 

erroneous) locations, trying to localize a target.

 A portion of the measurements is irrelevant data with 

unknown distribution.

 The processing node has no information about the number of 

and the distribution of outlier measurements. 

𝒙
𝒂𝒊

𝒓𝒊

 Bluetooth 

 CSI

 RSSI

 ToA

 …



Problem Statement and Model
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 Range measurement:

 PDF of measurement error:

 β denotes the ratio of outlier measurements, also known as 

the contamination ratio.

Measurement errorThe location of the ith sensor

Coordinates of the target

• Uniform

• Shifted Gaussian

• Exponential

• …



Localization From Squared Range Measurements
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 The conventional square-range-based least squares 1:

 This formulation is not convex and is not optimal in the ML 

sense.

 But, it can be transformed into a special class of optimization 

problems with desirable characteristics:

1. A. Beck, P. Stoica, and J. Li, “Exact and Approximate Solutions of Source Localization Problems,” 
Signal Processing, IEEE Transactions on, vol. 56, pp. 1770–1778, 5 2008.



Robustness
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 Robustness signifies insensitivity to small deviation from the 

common assumption.

 Any robust proposed statistical procedure should have the 

following features:

 It must be efficient, in the sense that it must have an optimal 

or near optimal performance at the assumed model

 It must be stable, i.e., robust to small deviations from the 

assumed model. 

 Also, in the case of breakdown, or large deviation from the 

model, a catastrophe should not occur. 



Robust Localization From Squared Range Measurements
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 The general recipe to make any statistical procedure robust is to 
decompose the observations to fitted values and residuals.

 We use the residuals to assign weights to each observation. 

 We define the new objective function as:

 The new terms are added in such a way that result in the 
commonly used class of M-estimators known as Geman-McClure 
(GM) function.1

1. Inspired by: I. Daubechies, R. DeVore, M. Fornasier, and C. S. Gunturk, “Iteratively reweighted least 
squares minimization for sparse recovery,” Communications on Pure and Applied Mathematics, vol. 63, 
no. 1, pp. 1–38, 2010.



Robust Localization From Squared Range Measurements
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 We are solving the following optimization problem:

Sub-problem #1

Sub-problem #2



Robust Localization From Squared Range Measurements
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 Sub-problem #2 is convex and the global minimizer can be 

obtained easily.

 Choosing such weights is common in iteratively reweighted least 

square (IRLS) methods. 

 𝑒𝑖 ≪ 𝜖 ֜𝑤𝑖 ෥𝒂𝑖
𝑇𝒚 − 𝑏𝑖

2
→ 0

 𝑒𝑖 ≫ 𝜖 ֜𝑤𝑖 ෥𝒂𝑖
𝑇𝒚 − 𝑏𝑖

2
→ 1



Robust Localization From Squared Range Measurements
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 Sub-problem #1:

 Two different algorithms: 

 SR-IRLS: At each iteration, the global minimizer is derived.

 SR-GD:  We limit ourselves to be near the previous estimate.



The Squared Range Iterative Reweighted Least Squares (SR-IRLS)
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 Matrix form of sub-problem #1:

 A quadratic objective function is being minimized subject to 

a quadratic equality constraint. 

 This special class of optimization problems is called 

Generalized Trust Region Sub-problems (GTRS)1.

1. Moré, Jorge J. "Generalizations of the trust region problem." Optimization methods and 
Software 2.3-4 (1993): 189-209.



The Squared Range Iterative Reweighted Least Squares (SR-IRLS) (2)
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 Hessian of the objective function is positive definite.

 Sub-problem #1 has a global minimizer for all the iterations.

 KKT conditions

 λ is the Lagrange multiplier.



The Squared Range Iterative Reweighted Least Squares (SR-IRLS) (3)
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 It can be shown that:

1. The interval of interest is not empty and can be derived using 

closed form expressions.

2. The characteristic function is strictly decreasing over this 

interval.

3. λ∗can be obtained using a bisection algorithm.

4. The objective function converges to a stationary point of the 

optimization problem.

 SR-IRLS finds the global minimizer at each iteration.

 Fast convergence for value of the objective.

 The convergence of the iterates 𝒚(𝑘) cannot be proved easily.



The Squared Range Gradient Descent (SRGD) 
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 Instead of finding the global minimizer, we can find steepest 

descent at each iteration.

 convergence of the whole-sequence of the iterates can be 

proven theoretically.

 New objective function1 :

1. Inspired by: Xu, Yangyang, and Wotao Yin. "A globally convergent algorithm for nonconvex 
optimization based on block coordinate update." Journal of Scientific Computing (2017): 1-35.

Find the steepest 

descent, while staying 

close to the 

prediction.



The Squared Range Gradient Descent (SRGD) (3) 
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 Again, a quadratic objective function is being minimized 

subject to a quadratic equality constraint. (GTRS)

 As before, this problem can be solved efficiently using a 

bisection algorithm. 

 The value of the new iterate is bounded to be around the previous 

iterate, unlike the SR-IRLS method.



Hybrid Algorithm
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 SR-GD method needs more time to find the solution than 

SR-IRLS.

 To take advantage of the fast convergence of the SR-IRLS and 

the whole sequence convergence of the SR-GD:

 Start with the SR-IRLS.

 Switch to SR-GD, after convergence of the objective function, 

which is proven.



Results: Simulation Environment

 Simulation environment 4000 ×

4000 𝑚2

 10 sensors, distributed 

uniformly at random.

 4 outlier sensors

 The noise of the outlier sensors 

are uniformly distributed in 

range [−4000√ 2, 4000√ 2].

 Noise distribution:

 𝜎 = 55 𝑚



Results: Convergence

 SR-GD needs more iterations and more time to converge.

 SR-Hybrid needs less iterations than SR-GD, while its 

convergence is still theoretically provable.



Results: Cramer-Rao Bound

 CRLB: Cramer-Rao Lower Bound

 RIN: Robust Iterative Non-parametric1

 SR-LS: Conventional squared range 

solution

 40% of the sensors are reporting 

unreliable data to the processing 

node, i. e., 𝛽 = 0.4.

 For sufficiently large number of 

measurements, the proposed methods 

are efficient, because they meet the CRLB 

and they are unbiased.

F. Yin, C. Fritsche, F. Gustafsson, and A. M. Zoubir, “TOA-Based Robust Wireless Geolocation and Cramer-Rao Lower 

Bound Analysis in Harsh LOS/NLOS Environments,” Signal Processing, IEEE Transactions on, 2013.



Results: Robustness

 The hybrid version performs the best for different values of 

contamination ratio. 

 Robustness criteria:

 Near optimal performance at the assumed method (𝛽 = 0),

 Stability for small 𝛽,

 and, for large 𝛽, a catastrophe is not occurred.



Conclusions

24

 Distributional robustness can be achieved by using M-

estimators.

 The proposed method achieves CRLB, although it is not 

optimal in the ML sense.

 Future directions:

 Distributed computation

 Real-world dataset

 Mobile sensors and target

 Tracking multiple targets.
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Thank you!


