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Abstract—This paper presents a data-driven localization
framework with high precision in time-varying complex multi-
path environments, such as dense urban areas and indoors, where
GPS and model-based localization techniques come short. We
consider the angle-delay profile (ADP), a linear transformation
of channel state information (CSI), in massive MIMO systems and
show that ADPs preserve users’ motion when stacked temporally.
We discuss that given a static environment, future frames
of ADP time-series are predictable employing a video frame
prediction algorithm. We express that a deep convolutional neural
network (DCNN) can be employed to learn the background static
scattering environment. To detect foreground changes in the
environment, corresponding to path blockage or addition, we
introduce an algorithm taking advantage of the trained DCNN.
Furthermore, we present DyLoc, a data-driven framework to
recover distorted ADPs due to foreground changes and to obtain
precise location estimations. We evaluate the performance of Dy-
Loc in several dynamic scenarios employing DeepMIMO dataset
[1] to generate geo-tagged CSI datasets for indoor and outdoor
environments. We show that previous DCNN-based techniques
fail to perform with desirable accuracy in dynamic environments,
while DyLoc pursues localization precisely. Moreover, simulations
show that as the environment gets richer in terms of the number
of multipath, DyLoc gets more robust to foreground changes.

Index Terms—Data-driven Localization, massive MIMO, Deep
Learning, Dynamic Environments, Frame Prediction

I. INTRODUCTION

With the expansion of location-based services such as peer-
to-peer ride sharing, local search-and-discovery mobile apps,
navigation services, store locators, autonomous driving, and
urban unmanned aerial systems (UAS) traffic management, the
demand for highly-accurate positioning technologies is grow-
ing [2]. When the environment is free from strong multipath
(mainly outdoor environments), localization can be considered
mostly a solved problem [3]. Nonetheless, localization in
harsh multipath environments (mainly indoors and dense urban
areas) has remained under extensive investigation [4].

For environments where line of sight (LOS) is dominant
and multipath is scarce, various localization techniques have
been proposed in the literature, majority of which are model-
based. In these environments, physical models can describe
the scattering surrounding quite well. These techniques mainly
employ received signal strength indicator (RSSI), time of
arrival (ToA), time difference of arrival (TDoA) and angle

of arrival (AOA) measurements to pursue localization [5]–
[14]. One major issue with model-based techniques is that
they normally require measurements of those parameters from
multiple anchor nodes which may not be available in every
environment. To address shortfalls of model-based techniques
and to tackle localization for complex multipath environments,
several data driven approaches have been proposed. Data-
driven localization techniques are mainly called fingerprinting-
based localization [15]. This type of localization generally
constitutes gathering a dataset of a geo-tagged communication
parameter (e.g. RSSI or channel state information (CSI)) all
over the environment and training a neural network based
on the dataset for online localization. Unfortunately, the
data-driven approach has also failed to solve the problem
of localization in complex multipath environments thus far.
Data-driven approaches are highly dependent of an exorbitant
campaign of gathering a geo-tagged dataset. Moreover, they
need several hours of training. During these two relatively
prolonged procedures, it is probable that the environment
changes and the dataset becomes invalid [16]. Some efforts
have been conducted to taper the required dataset and reduce
the training time [17]; however, in the best-case scenario they
could reduce the initial required time to a couple of hours
while these environments can change in a couple of seconds.
Furthermore, it is almost impossible to gather data for every
possible dynamic scenario and retrain the network.

Massive multi input multi output (MIMO) is a technique
in wireless networks that utilizes numerous antennas mainly
at base stations to take advantage of multipath effect to
spatially multiplex users [18]. Massive MIMO is considered
a core technology behind the revolution in ultra-high speed
communications promised by 5G cellular networks [19]. To
enable spatial multiplexing, base stations must identify the
propagation environment from their antennas to the users’
antennas. This task is routinely conducted by measuring CSI.
When measured perfectly, CSI preserves all information about
scattering, fading, delays and power decay of the channel. Due
to the rich information contained in CSI, it is considered an
integral parameter for single-site fingerprinting-based localiza-
tion. Vieira et. al. considered using a deep convolutional neural
network (DCNN) trained by angle delay profiles (ADPs) for



localization for the first time in the literature [20]. Viera
shows that in addition to memorizing the dataset, the trained
DCNN can generalize localization to unknown location within
the environment. Sun et. Al. trained two different DCNNs
to pursue the localization task. The first network is similar
to the regression network proposed by Viera. The second
network incorporates two different blocks, the first block is
a classification DCNN that defines to which grid cell the user
location belongs, and the second block uses a weighted K-
nearest neighbor (WKNN) algorithm to find the user location
within the cell precisely [21]. In [22], the authors design
input features to make them robust to CSI impairments. They
consider an autocorrelated version of CSI as the input to
the CNN. In [23], De Bast et. al. showed that CNN trained
using CSI performs with centimeter accuracy in a static indoor
environment. However, when a person is walking in the room
the error increased by ten folds or more. To the best of our
knowledge, this is the only work that examines the effect
of dynamic scenarios on the accuracy of localization via a
CNN trained using CSI. Unfortunately, the available literature
mostly considers static scenarios and ignores the dynamic
nature of complex scattering environments. To address this
shortcoming, in our work, we mainly focus on addressing
localization in dynamic scenarios leveraging a data-driven
approach. To the best of authors’ knowledge, this work is
the first attempt to tackle localization in complex dynamic
environments with a data-driven perspective.

Deep learning has shown outstanding performance in the
field of computer vision (CV) so far. Among all various
topics in the CV context, video surveillance, video frame
prediction, video foreground and anomaly detection tackle
highly dynamic problems [24]–[26]. In our work, we adopt
some ideas from frame prediction literature to address data-
driven localization in dynamic environments. First, we prove
that time-series of ADPs preserves users’ movements assum-
ing a static environment (the static environment is referred
to as background (BG)). Consequently, it leads us to infer
predictability of the next frame on an ADP temporal sequence
based on previous frames using a predictive recurrent neural
network. We model changes in the environment by LOS
blockage, none LOS (NLOS) blockage, and NLOS addition,
referred as foreground (FG). We propose an algorithm to
discriminate between those ADPs which are accurate and those
distorted by FG. Consequently, we propose DyLoc to recover
distorted ADPs and to estimate the user location incorporating
a WKNN block with a predictive recurrent neural network
(PredRNN) block. To examine the performance of DyLoc
we consider an indoor and an outdoor environments utilizing
DeepMIMO dataset [1]. We show that a trained CNN fails
to estimate user location with acceptable accuracy in dynamic
environments while the proposed technique can estimate user
location with a decent accuracy. The main contributions of our
work can be encapsulated as follow:

• Proving that a time-series of ADPs can preserve users’
movements

• Showing ADP can be predicted based on previous frames
of the ADP time-series

• Modeling changes in the environment as LOS blockage,
NLOS blockage, and NLOS addition

• Proposing DyLoc, a novel localization algorithm, that
includes two steps: (i) an algorithm to detect distorted
ADPs, and (ii) an algorithm to recover distorted ADPs
and to estimate users’ location utilizing PredRNN and
WKNN techniques.

The rest of the paper is organized as follows. In Section II,
we present the considered system and channel model and
define ADP. We introduce motion preservation property of
ADP in Section III-A. In Section III-B, we express how we can
model a dynamic propagation environment, where propagation
paths can be blocked or added at anytime. We present a
new prospective toward fingerprint gathering campaigns in
Section IV. In Section V, we introduce DyLoc to tackle the
localization task in complex environments. In Section VI,
we examine the performance of the proposed technique via
various simulations. Finally, we conclude the paper in Section
VII.

II. SYSTEM AND CHANNEL MODEL

Assume we require to localize a single user, utilizing
a single base station (BS) of a typical MIMO-Orthogonal
frequency-division multiplexing (OFDM) wireless network.
For the ease of exposition and similar to [27], we suppose
that the BS is equipped with a uniform linear array (ULA),
with half wavelength spacing between two adjacent antennas,
and a user’s device has a single omni-directional antenna. The
BS has Nt antennas, and uses OFDM signaling with Nc sub-
carriers. We assume a geometric channel model between the
BS and the user with C distinguishable clusters. Moreover,
each cluster constitutes RC distinguishable paths. Each path
can be characterized by a delay τ

(k)
m , k ∈ {1, . . . , C},m ∈

{1, . . . , RC}, an AOA to the BS’s antenna θ(k)
m and a com-

plex gain α
(k)
m [27]. Assuming a wide-band OFDM system,

τ
(k)
m = n

(k)
m Ts, where Ts and n

(k)
m denote the sampling

duration and the sampled delay belonging to the path m of
the cluster k, respectively [21]. Assuming these parameters,
channel frequency response (CFR) for each sub-carrier l can
be written as [28]

h[l] =

C∑
k=1

RC∑
m=1

α(k)
m e(θ(k)

m )e−j2π
l n

(k)
m
Nc , (1)

where j denotes the imaginary unit and e(θ) denotes the array
response vector of the ULA given by

e(θ) = [1, e−j2π
dcos(θ)
λ , . . . , e−j2π

(Nt−1)dcos(θ)
λ ]T , (2)

where d is the gap between two adjacent antennas and λ is
the wavelength. Thus, the overall CFR matrix of the channel
between the BS and the user can be expressed as

H = [h[1], . . . ,h[Nc]] . (3)

This matrix commonly is referred to as CSI in the literature.



Angle Delay profile (ADP) is a linear transformation of the
CSI computed by multiplying it with two discrete Fourier
transform (DFT) matrices. Let us define the DFT matrix
V ∈ CNt×Nt as

[V ] z,q
∆
=

1√
Nt
e−j2π

(z(q−Nt2 ))
Nt ,

and F ∈ CNc×Nc as

[F ] z,q
∆
=

1√
Nc

e−j2π
zq
Nc .

Then ADP matrix G is defined as [21]

G = V HHF . (4)

Now, let us define [A] z,q = |Gz,q|, where |.| denotes absolute
value. Throughout this paper, we refer to A as ADP. When
measured perfectly, CSI is a very rich data and preserves
all scattering characteristics of the channel. However, when
depicted in its raw format it is completely meaningless. On
the other hand, referring to [29], the (z, q) element of the
ADP represents the absolute gain of zth AOA and qth delay
as illustrated in Fig. 1. Therefore, we can simply make sense
of ADP as a visual representation of all distinguishable paths
between the user and the BS. For example, we can deduct from
Fig. 1 that there is a LOS path cluster with AOA around 18o

and approximately 10−8s delay, and there are eight NLOS
clusters between the user and the BS. Using ADP, we can
cast the localization problem as a pattern recognition problem
and take advantage of the rich literature of deep learning
applications in CV [21].
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Fig. 1: A sample ADP image. Each pixel represents the absolute
gain of the path with the corresponding AOA and the delay. Each
”+”-like shape in the image shows a path cluster between the BS
and the user.

III. SCATTERING ENVIRONMENT

In this section, we discuss static and dynamic environments
and how a user’s motion reflects on ADP. We will show that
when a user moves in a continuous track in the location
domain, all paths in ADP also move in a continuous track,
assuming a totally static environment. Moreover, we discuss
dynamic changes in the environment and how we can model
their effects on scatterings.

A. Static Environment

First, let us define what we mean by a static environment.
Definition 1. Static environment is an environment including
a user and at least one base station, in which nothing other
than the user can move and all the materials of the surfaces
remain the same within the environment. In this environment,
scattering (influenced by propagation paths, decays, and de-
lays) remains unchanged. Moreover, the user’s motion does
not affect the scattering and does not block or add any path,
while it may change visible paths between the BS and the
user.

Theorem 1. Let us consider a static environment where the
user’s movement does not change the paths between the BS
and the user. Given a static environment, assume the user
movement does not change the visible paths between the BS
and the user. If user’s position shifts by some very small
positive amount δd, changes in delay of paths are limited to
the following bounds

δτ (k)
m ≤ δd

vc
; ∀k ∈ {1, . . . , C},∀m ∈ {1, . . . , RC} , (5)

where vc denotes the speed of light and δτ (k)
m denotes changes

in the delay of the path m of cluster k. Further, the following
bound on the path AOA shift holds for any α > 1

lim
δd→0

δθ(k)
m ≤ α δd

d
(k)
m

; ∀k ∈ {1, . . . , C},∀m ∈ {1, . . . , RC} ,

(6)
where δθ(k)

m and d(k)
m are changes in the AOA and the length

of the path m of cluster k, respectively.
Proof. When the user’s position changes by δd, the length

of each path from the BS to the user (LOS and NLOS) will
change the same or less, thus the change in the delay is limited
to δd

vc
.

Assuming LOS path (path 1 in Fig. 2), change in the angle
of the path is the maximum if the movement is perpendicular
to the path. Thus, assuming the movement is perpendicular
to the LOS, then tan(δθ) = δd

d(path)
, where dpath is the

length of the path from the BS to the user and δθ is the
change in AOA of signal from the user to the BS. Considering
limx→0 tan(x)→ x, for any α > 1 there is a δd close enough
to zero such that δθ(k)

m ≤ α δd

d
(k)
m

.
Referring to [30], every NLOS path from the BS to the

user, can be considered as a LOS path from a virtual BS to
the user, with the same length (Fig. 2). Thus, (6) holds for a
NLOS path as well. �

Referring to Theorem 1, we can infer that, given a static
environment and fixed paths between the BS and the user,
any continuous user’s movement in the location domain will
result in a continuous movement in the angle-delay domain. In
other words, when the user moves within the environment, all
paths in the angle-delay domain start moving in a continuous
track. Consequently, if we cascade consecutive ADPs to form a
time-series data, the sequence is highly correlated temporally.

Theorem 1 expresses that if a path exists in the ADP,
it moves in a continuous track when the user moves. In



Fig. 2: LOS and NLOS paths geometry. The NLOS path can
be considered as a LOS path from a virtual BS located at the
reflection of the BS with respect to the reflective surface.

addition to path motion, even in a static environment, it is
possible that some paths dissipate and some new visible paths
emerge during the user movement. Referring to [29], ADP is
highly correlated in location domain and similarities between
the ADPs decrease smoothly with respect to their physical
distances. Thus, emergence and dissipation of paths occur very
smoothly during the user movement. Hence, the following
conclusion can be inferred:

Collorary 1: Assuming a static environment, consecutive
frames of time-series of the user measured ADPs show a
continuous movement for all paths between the BS and the
user.

This conclusion leads us to the idea that it may be possible
to predict future ADP frames based on the time-series of past
frames.

B. Dynamic Behaviour of The Environment

Till now, we have discussed that a time-series of ADPs
belonging to a certain user are highly correlated temporally, as-
suming a static environment. Nonetheless, complex scattering
environments are normally highly dynamic. This means that
several objects can move into and out of them and can change
the scattering environment quickly and thoroughly. Dynamic
changes in the environment result in the following changes in
the static scattering environment:

1) LOS blockage: a new object blocks the LOS path
between the user and the BS.

2) NLOS blockage: a new object blocks some NLOS paths
between the user and the BS.

3) NLOS addition: scattering from surfaces of a new
object adds some NLOS paths between the user and the
BS.

We assume that all objects and surfaces belonging to the
static environments stay fixed and unchanged, therefore a LOS
path already blocked by the static environment cannot get
unblocked by the dynamic movements inside the environment.

IV. RETHINKING OF FINGERPRINT GATHERING
CAMPAIGNS

To form a dataset of geo-tagged CSIs (or any other com-
munication parameter), previous studies have generally con-
sidered measuring CSI at several locations inside a static
environment. Such campaigns may be ineffective for user

localization in dynamic scenarios in the first place, since
few movements inside the environment may invalidate the
whole dataset quickly. In this work, we introduce a new
perspective toward these data gathering campaigns that can
picture them as an integral part of any data-driven dynamic
localization framework. In fact, by measuring CSI around a
static environment, we map spatial distribution of all propa-
gation paths within the static environment. It is like recording
video footage from the whole static environment from the BS
point of view. Such a footage can reveal all LOS and NLOS
paths from any point inside the environment to the BS (or
vice versa) in visible light band. Similarly, such measurement
campaigns in radio frequency bands help us to understand
the underlying scattering environment thoroughly, from the BS
point of view. In the video processing literature, the underlying
static environment and the changing environment are called
”background” and ”foreground”, respectively. Here, we mimic
the same pattern. In fact, measurement campaigns are quite
obliging for understating the static scattering environment.
Once the measurements are complete, we can utilize our un-
derstanding of BG to detect FG and employ proper algorithms
to track changes and recover the true BG. Such a prospective
toward fingerprinting, in conjunction with meaningful repre-
sentation of the environment via ADP images, enables us to
cast dynamic fingerprinting problem (or any other wireless
communication problem that should deal with a dynamic scat-
tering environment) as a video processing problem. Eventually,
this redefinition enables us to take advantage of the rich
literature of video surveillance, video frame prediction, and
video foreground and anomaly detection in the context of
computer vision to tackle wireless communication problems
in dynamic environments.

V. DYLOC: DYNAMIC LOCALIZATION VIA
FINGERPRINTING

In this section, we introduce our proposed localization
framework for dynamic environments. Suppose a user is
moving inside an environment where there is a BS utilizing
massive MIMO technology for communication as defined in
Section II. Some of the measured CSIs may get affected by FG
and get distorted compared to those of a static environment
as explained in Section III-B. At first we train an off-the-
shelf DCNN as introduced in [20], [21] to conduct localization
assuming the environment is static. In this regard, we suppose
we have a dataset of geo-tagged CSIs that maps the underlying
BG exhaustively. To obtain a dataset of geo-tagged ADPs, we
transform all CSIs to ADPs using (4). We denote the dataset
by Υ which consists of ADPs paired by locations. Then we
take the DCNN and train it based on the dataset to conduct
the localization task when ADPs are not distorted.

Now, we assume a stream of CSIs are measured consec-
utively to establish and maintain the link between the user
and the BS. Ht denotes the CSI measured at time t, and
At denotes the corresponding ADP. Primarily, we develop an
algorithm to determine whether the measured ADP is distorted
or not. In this regard, we pass At through DCNN and estimate



the user location. Then we search the dataset and find nearby
locations to the estimated location and compare the paired
ADPs with the measured ADP, to see if there is at least one
ADP among them that is similar to the measured one. To
quantitatively measure similarity between two ADPs, we need
a similarity metric. In [29], authors introduce the joint angle-
delay similarity coefficient (JDASC) and prove that it is a
decreasing function of physical distance. We observed that
simple normalized correlation between two ADPs does the
job as well. Thus, we define normalized correlation S as

S (A, Â) =
vec(A).vec(Â)

||A||F ||Â||F
, (7)

where A, Â denote two arbitrary ADPs, vec(.) denotes an
operator that concatenates columns of a matrix into a vector,
operation . denotes inner product and ||.||F denotes Frobenius
norm. If there is at least one ADP from the neighboring
locations whose similarity to the measured ADP is more
than a predefined threshold (thr2), we label the ADP as
”accurate”, otherwise we label it as ”distorted”. The algorithm
for distorted ADP detection is summarized in Algorithm 1.
The rationale behind the proposed algorithm stems from our
discussion in Section III-A that ADP is highly correlated in
the location domain. Since the DCNN is solely trained by
accurate ADPs, it will return inaccurate locations when faced
with distorted ADPs. Hence, nearby ADPs will not show high
similarities with the measured ADP. On the other hand, if the
measured ADP is accurate, there will be an ADP in the nearby
ADPs that looks very similar to the measured one.

Algorithm 1 Distorted ADP Detection
Require: measured CSI at time t, Ht; thr1, thr2
Ensure: Ht is distorted or accurate

1: Convert Ht to ADP At using (4)
2: Apply At to DCNN and get the location estimation xt

3: Xt ← find all paired ADPs in the dataset where their tagged locations
are closer than thr1 to xt

4: flag ← 0
5: for all ADPs A ∈ Xt do
6: s ← S (A,At)
7: if s > thr2 then
8: flag ← 1
9: end if

10: end for
11: if flag == 1 then
12: return accurate
13: else
14: return distorted
15: end if

If the measured ADP is accurate, we can simply use DCNN
for localization. On the other hand, if it is distorted, we
propose to use WKNN along with a video frame prediction
algorithm to recover the true ADP and conduct localization.
Based on our discussion in Sections III-A and IV, time-series
of accurate ADPs are highly correlated temporally. Thus, given
time-series of accurate ADPs before facing a distorted ADP,
we try to predict the next frame of the time-series using a
predictive recurrent neural network (PredRNN). PredRNN is

a frame prediction algorithm that tries to learn dependencies
between consecutive frames and uses this knowledge to predict
the next frame of the sequence. Frame prediction is a challeng-
ing problem in CV and several algorithms have been published
to address it [31], [32]. We chose PredRNN mainly because it
shows promising results on the radar echo dataset. The detailed
discussion about PredRNN can be found in [33]. In this work,
we assume that we have a sequence of past accurate ADPs
with length f ∈ N at time t, At−fTs , . . . ,At−Ts denoted by
At. We train the network based on a dataset of random walks
which we generate using Υ. In Section VI-C, we will describe
how we generate the moving dataset, the PredRNN structure
and how we train it, in details.

After detecting a distorted ADP, we pass At through the
trained PredRNN to predict the accurate ADP denoted by
Ât. Next, we pass Ât through DCNN to obtain an initial
estimation of the user location x̂t. In addition to frame
prediction, in light of the fact that ADPs are highly correlated
in location domain, we can take the last location estimation
based on the last accurate ADP and find nearby locations in the
database and use them to reach a better location estimation and
recover the true ADP. To clarify, if some paths in the ADP get
blocked or added, the remaining paths pose correlation with
nearby ADPs. Thus, using the similarity criteria (7), we can
extract the residual similarities between the distorted ADP and
nearby ADPs. Moreover, we calculate the similarity between
the distorted ADP and the predicted one. Now we are able
to combine nearby locations and ADPs and the estimated
location and ADP via a WKNN algorithm to obtain a better
location estimation and recover ADP. Weights of WKNN can
be determined directly from calculated similarities. Hence, the
location and the true ADP can be estimated as

xt =
∑
x∈N

wxx; Āt =
∑
x∈N

wxAx , (8)

where xt denotes the estimated location and Āt denotes the
recovered ADP, Ax is ADP at location x, N denotes union
of the set of nearby locations added by the predicted location,
and wx is the weight, given by

wx =
S (At,Ax)∑
A∈A S (At,A)

, (9)

where A denotes the set of ADPs corresponding to lo-
cations in N . Finally, we can estimate the user location at
time t (denoted by xt) and recover the ADP (Āt) which
can be used for future location estimations. Algorithm 2
summarizes the proposed algorithm for ADP recovery and
location estimation. Moreover, Fig. 3 summarizes the end-to-
end DyLoc localization framework.

VI. SIMULATIONS

In this section, the performance of our proposed localization
framework for an indoor and an outdoor environments is
studied. In Section VI-A, we present the dataset that we used
for static environment fingerprinting. We define the structure
of the DCNN and how to train it in Section VI-B. Then, we
clarify how we generate the moving dataset using the static



Fig. 3: Block Diagram of the proposed localization framework DyLoc.

Algorithm 2 Location Estimation When ADP Is Distorted
Require: time-series of accurate ADPs At : At−Tsf , . . . ,At−Ts

distorted ADP At

geo-tagged ADP dataset Υ
the previous estimated location xt−Ts
thr3

Ensure: The recovered ADP Āt, and location estimation xt

1: Frame prediction
2: Apply At to PredRNN and get the predicted ADP Ât

3: Apply Ât to DCNN and get the location estimation x̂t

4: WKNN
5: N ← find all data points in the database which their locations are closer

than thr3 to xt−Ts
6: NA ← paired ADPs of locations in N
7: N ← N ∪ x̂t

8: NA ← NA ∪ Ât

9: xt ←
∑

x∈N wxxx;wx =
S (At,Ax)∑

A∈NA
S (At,A)

10: Āt ←
∑

x∈N wxAx

11: return Āt,xt

dataset in Section VI-A1. Further, we explain the structure of
the PredRNN and how we trained it. Next, we express dynamic
scenarios generated to test the performance of DyLoc. Finally,
in Section VI-D we dive deep into evaluating the performance
of DyLoc for various dynamic scenarios and compare it with
the state-of-the-art. 1

A. Static Datasets

In this work, we use DeepMIMO dataset to generate CSI
datasets in static environments2. Thus far, DeepMIMO has
introduced for one outdoor and two indoor environments.
We picked one indoor and one outdoor environments for our
simulations.

1) Outdoor Environment: To generate an outdoor environ-
ment we select DeepMIMO outdoor scenario number 1 (O1)
at 3.5 GHz band. ”O1” is an urban environment of two streets
and one intersection. We suppose only BS number 2 (BS2) is
working and it has been equipped with a ULA with Nt = 64
antennas aligned with y-axis. We set the OFDM bandwidth to
10 MHz and Nc = 64. We also set the number of paths to

1The authors release their codes in the following link
”https://github.com/FarzamHejaziK/DyLoc”.

2http://www.deepmimo.net/

25. Furthermore, we only generate a dataset for R1 to R1100
(Rows 1 to 1100, show locations of data points in DeepMIMO)
, therefore the datset constitutes of 199100 data points. Table
I summarizes the dataset parameters.

2) Indoor Environment: We picked DeepMIMO indoor
scenario number 3 ”I3” at 60 GHz to emulate an indoor
environment. ”I3” simulates a 10m × 11m conference room
and its hallway. We assume only access point number 2 (BS2)
is working. Other parameters that set up the indoor propagation
environment are reflected in Table I.

B. DCNN Setup

As we explained in Section I, in [21] two different DCNNs
have been introduced to pursue localization using ADPs. We
refer to the first setup that utilizes a regression network as
DCNN and the second setup that uses a classification network
along with WKNN as DCNN+WKNN. In our work, we train
the DCNN to learn the background scattering environment as
a part of DyLoc as described in Section V. We also compare
the performance of DCNN and DCNN+WKNN with DyLoc.

TABLE I: ”O1” and ”I3” DeepMIMO datasets’ parameters

Parameter Outdoor
Scenario (O1)

Indoor
Scenario (I3)

Frequency Band 3.5 GHz 60 GHz
Bandwidth 10 MHz 0.5 GHz

BS BS2 BS2
Antenna ULA ULA

Antenna Elements (Nt) 64 32
Antenna Alignment y-axis x-axis

Sub-carrier Number (Nc) 64 32
Path Number 25 25

Locations R1 to R1100 R1 to R550

1) Outdoor Environment: Based on the architecture pre-
sented in [21], we choose the parameters presented in Table
II for the DCNN setup. We use Max-pooling for pooling
layers with size 2 × 2 and ReLU for activation function. We
set training epochs to 500. The setup for the classification
network in DCNN+WKNN is the same as DCNN while we
add a Softmax layer to the network to conduct classification.
Defining area of interest as the set of all locations in the
dataset, we assume a 18× 55 grid on the area of interest (18
equally-spaced segments in the x-direction and 55 segments



in the y-direction). The classification network is trained to
determine to which cell of the grid an input ADP belongs.
Then using a WKNN technique with k = 3 we estimate the
location.

2) Indoor Environment: Parameters setup in Section VI-A2
results in 32 × 32 ADP images in this scenario. We train a
5-layer regression DCNN with parameters as in Table II to
learn the underlying propagation environment. The number
of training epochs in this simulation is set to 200. The
classification CNN setup in DCNN+WKNN technique is the
same as the DCNN setup. Similar to the outdoor environment
we assume a 18× 55 grid on the area of interest. We also set
k = 3 for the WKNN technique.

TABLE II: DCNN setup for ”O1” and ”I3”

Layer Kernel
Size (O1)

Kernel
Number (O1)

Kernel
Size (I3)

Kernel
Number (I3)

1 32× 32× 1 2 16× 16× 1 4
2 16× 16× 2 4 8× 8× 4 8
3 8× 8× 4 8 7× 7× 8 16
4 7× 7× 8 16 5× 5× 16 32
5 5× 5× 16 32 3× 3× 32 64
6 3× 3× 32 64

C. Moving Dataset and PredRNN Setup

To train PredRNN and to emulate dynamic scenarios, we
needed moving datasets. We generated moving datasets utiliz-
ing static datasets introduced in the previous section. Since the
static datasets define the propagation environment thoroughly,
they can be used to form dynamic datasets by stacking adjacent
locations and paired ADPs. Both ”O1” and ”I3” datasets
assume a grid on the corresponding environment (”O1” as-
sumes a 20 cm distance between two adjacent grid points and
”I3” assumes grid of 1 cm apart). We take advantage of the
underlying grid and form our moving dataset. To initialize
each movement, we suppose the user is randomly placed on
one of the grid points. Then at each step of the movement the
user moves to one of the adjacent grid points.

We assume the movement continues for f consecutive steps.
Next, we stacked all locations and paired ADPs together to
form and save one sequence. We consider 2 modes for user
random walks:
• Mode 1: User chooses its direction only at the first time-

step and continues the same direction in the following
time-steps. If the user reaches the boundaries of the
environment, the user chooses another direction from
possible remaining directions randomly.

• Mode 2: User goes for a complete random walk and at
each time-step chooses a new direction.

To train PredRNN, we generated the whole dataset based on
mode 1 movements since we expect that PredRNN is not able
to predict ADPs stem from fully random walks. Thus, we
generated 10000 sequences each with length 11. We employed
the PredRNN presented in [33] with the same setup and
parameters. We fed the first 10 ADP frames to the network and
optimized the network to predict the 11th ADP; so we do not
use the location sequence for training, we only make use of

the paired ADPs. Eventually, we expect the trained PredRNN
is capable of predicting the next ADP in the sequence, given
the 10 last accurate ADPs.

1) Dynamic Test Scenarios: To evaluate the performance of
the proposed DyLoc algorithm, we generate 1000 sequences
of length 20 for each of the indoor and the outdoor environ-
ments. Half of these sequences is generated based on Mode
1 movements and half of them based on Mode 2. We assume
the first 10 frames of each sequence consist of accurate ADPs
and FG does not affect them. On the other hand, we assume
the last 10 frames of each sequence are distorted based on one
of the following scenarios:
• LOS Blockage: we assume that the most powerful path

between the BS and the user gets blocked, thus we
eliminate this path from all 10 ADP frames.

• NLOS Blockage: we assume that the second most pow-
erful path between the BS and the user gets blocked, thus
we wipe out this path from all 10 ADP frames.

• NLOS Addition: we add a path 6dB weaker than the
strongest path arbitrarily located in the ADP image to all
10 ADP frames.

We inspect DyLoc performance for the above 3 scenarios
for both ”O1” and ”I3” environments and compare it with the
state-of-the-art DCNN and DCNN+WKNN algorithm [21].

D. Results and Discussion

In this section, we present the performance of DyLoc for
the scenarios introduced in Section VI-C for the outdoor
environment ”O1” and the indoor environment ”I3”.

1) Outdoor Environment: Table III summarizes root mean
square error (RMSE) of location estimation for the distorted
frames for the 3 scenarios using DyLoc and compares it with
DCNN and DCNN+WKNN. For the first 10 accurate frames,
the RMSE for all scenarios using DCNN and DCNN+WKNN
is 19 cm and 14.5 cm, respectively. Since DyLoc uses the
same DCNN when frames are accurate, the DyLoc accuracy
is 19 cm. However, when the frames are distorted, DCNN
error proliferates to more than 20 m when LOS is blocked,
more than 10 m when NLOS is added, and more than 7.5 m
when NLOS is blocked. This huge surge in error is because
DCNN has not been trained for localization based on distorted
ADPs. Moreover, DCNN error is the highest when LOS is
blocked. Since the outdoor environment is not a rich scattering
environment and generally there are 2-3 paths between the
BS and the user, the LOS path contains the most valuable
information in the ADP, so if it is blocked, the DCNN loses
its most important clue for localization. When NLOS paths
are distorted, the effect of NLOS addition is more than NLOS
blockage since we assume a very strong path is added to
the ADP. The DCNN+WKNN performance is even worse
than DCNN facing distorted ADPs and the error is more
than 180 m when LOS is blocked, more than 30 m when
NLOS is added, and more than 50 m when NLOS is blocked.
Since the classification network cannot find the correct cell
that the distorted ADP belongs to, the WKNN layer does
not perform well and the performance plunges drastically.



TABLE III: Location estimation RMSE in meter of the last 10 frames of the time-series employing DyLoc, DCNN [21],
DCNN+WKNN [21], and PredRNN [33] for LOS blockage, NLOS blockage, NLOS addition scenarios at outdoor environment
”O1” and outdoor environment ”I3”. PredRNN error shows location estimation error of the predictive arm of DyLoc.

Frame Number

RMSE(m) 11 12 13 14 15 16 17 18 19 20

Sc
en

ar
io

O
1

LOS Blockage
DyLoc 0.37 0.53 0.69 0.85 1.00 1.14 1.29 1.43 1.57 1.71
DCNN 25.55 25.14 25.51 25.01 25.18 24.58 25.17 25.72 24.11 24.96

DCNN + WKNN 181.66 179.30 178.88 178.90 175.11 178.90 183.42 176.93 180.52 176.00
PredRNN 2.05 1.96 2.32 2.45 2.56 2.72 2.88 3.05 3.24 3.56

NLOS Blockage
DyLoc 0.30 0.38 0.45 0.52 0.58 0.65 0.71 0.78 0.83 0.89
DCNN 10.15 10.69 10.95 11.05 10.60 11.23 11.06 10.95 10.98 10.65

DCNN + WKNN 36.17 34.66 34.52 34.45 38.95 35.32 36.86 36.23 35.72 39.38
PredRNN 2.05 2.09 2.16 2.16 2.21 2.22 2.21 2.26 2.28 2.34

NLOS Addition
DyLoc 0.30 0.42 0.53 0.63 0.72 0.82 0.91 0.99 1.08 1.16
DCNN 15.09 15.09 15.26 15.44 15.00 15.21 14.80 15.36 15.12 15.66

DCNN + WKNN 55.86 57.43 55.06 55.45 54.41 56.40 53.86 54.69 53.70 55.59
PredRNN 2.05 2.23 2.39 2.38 2.38 2.40 2.44 2.48 2.51 2.57

Sc
en

ar
io

I3

LOS Blockage
DyLoc 0.04 0.04 0.04 0.05 0.05 0.06 0.06 0.07 0.07 0.08
DCNN 0.93 0.93 0.93 0.92 0.93 0.92 0.93 0.93 0.93 0.93

DCNN + WKNN 2.02 2.00 2.04 2.03 1.99 2.01 2.03 1.99 2.00 1.99
PredRNN 0.15 0.16 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.17

NLOS Blockage
DyLoc 0.05 0.05 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.08
DCNN 0.47 0.47 0.47 0.48 0.48 0.48 0.47 0.46 0.46 0.47

DCNN + WKNN 1.12 1.10 1.07 1.11 1.10 1.06 1.11 1.13 1.12 1.10
PredRNN 0.15 0.16 0.16 0.17 0.17 0.18 0.18 0.18 0.18 0.18

NLOS Addition
DyLoc 0.04 0.04 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.08
DCNN 0.20 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19

DCNN + WKNN 1.35 1.27 1.33 1.39 1.32 1.36 1.34 1.37 1.33 1.32
PredRNN 0.15 0.16 0.16 0.17 0.17 0.18 0.18 0.18 0.18 0.18

In contrast to DCNN and DCNN+WKNN, DyLoc performs
with high accuracy when faces distorted ADPs. Regarding
the TABLE III, as frame number increases the DyLoc error
increases. This is totally expected since the prediction error of
the previous predicted frames propagates to the next frame and
results in a higher error at the next frame. Nevertheless, the
error remains less than 1.8 m, 1.2 m, and 0.9 m, for LOS
blockage, NLOS addition, and NLOS blockage for all the
distorted frames, respectively. These error values show a quite
promising performance by DyLoc in the outdoor environment
for dynamic scenarios.

Referring to Table III, RMSE of location estimation via the
predictive arm of Algorithm 2 (PredRNN) -before incorporat-
ing WKNN (x̂t)- for all distorted frames and for the 3 scenar-
ios are expressed. The error changes between 2.0 m to 2.4 m
for the NLOS blockage scenario, 2.0 m to 2.6 m in the NLOS
addition scenario, and 2.0 m to 3.6 m in the LOS blockage
scenario. The error is increasing with a higher rate when LOS
gets blocked since the measured ADP can help us the least
to improve our prediction. Moreover, in the LOS blockage
scenario, especially when we have only one path between the
BS and the user, and it gets blocked (i.e. the connection is
lost), x̂t is our exclusive source of location estimation. Thus,
the predictive arm is very crucial for location estimation in the
LOS blockage scenario. Additionally, when we incoroprate
WKNN to form DyLoc, the error values decrease to 0.3 m
(frame 11) and 0.89 m (frame 20), 0.3 m (frame 11) and 1.16
m (frame 20), and 0.37 m (frame 11) and 1.71 m (frame 20)
for the NLOS Blockage, NLOS addition, and LOS blockage

scenarios, respectively. These results show that the WKNN
arm is pretty successful in reducing the total estimation error.
Consequently, both WKNN and PredRNN arms are crucial for
accurate location estimation and robustness to FG dynamic
changes.

2) Indoor Environment: Similar to the outdoor environ-
ment, we compare DCNN, DCNN+WKNN, and DyLoc al-
gorithms in the indoor environment ”I3” for the 3 dynamic
scenarios. In contrast to the outdoor environment, the indoor
environment is a rich scattering environment and there are
several propagation paths between the BS and the user. The
RMSE for accurate frames utilizing DCNN is 5 cm and
DCNN+WKNN is 4.5 cm. Unlike the outdoor scenario, the
indoor scenario DCNN performs much better when NLOS
is added to the ADP. This happens because the scattering
environment is rich and NLOS addition can be filtered out
by DCNN.

As Table III expresses, RSME of DyLoc is less than 8 cm
for all scenarios and the performance of DyLoc is very close
in these scenarios. This can be justified by the fact that the
scattering environment is very rich and the pervasiveness of
paths helps DyLoc to obtain a robust location estimation to
environment changes. This fact is also reflected in the RSME
of PredRNN. Again, the performance of PredRNN is pretty
close in the 3 scenarios and the error changes between 15 cm
to 18 cm. Interestingly, it seems that the PredRNN performs
better in predicting the LOS path position in the ADP rather
than the NLOS paths. We may explain this phenomena by
the fact that the LOS path is stronger than the NLOS paths



and the predictive network could learn to predict its location
better than weaker NLOS paths. Thus, centimeter accuracy in
the indoor environments is achievable using DyLoc.

VII. CONCLUSION

We have introduced a novel framework to address data-
driven localization in dynamic environments. We have dis-
cussed that proposed deep learning algorithms in the literature
fail to tackle localization in dynamic environments since they
are principally dependent on prolonged tasks of data gathering
and network training. Taking advantage of a meaningful rep-
resentation of communication channel, we have devised an
algorithm to discover dynamic changes in the propagation
environment. Based on that, we have developed DyLoc to
perform localization in time-varing environments. We have
showcased the performance of DyLoc in indoor and outdoor
environments. Our results have shown that DyLoc is able
to pursue localization accurately in the both environments.
Moreover, simulation results have revealed that when the
number of multipath increases, DyLoc becomes more robust
to time-varying changes.
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Apelfröjd, and Tommy Svensson, “The role of small cells, coordinated
multipoint, and massive mimo in 5g,” IEEE communications magazine,
vol. 52, no. 5, pp. 44–51, 2014.

[20] Joao Vieira, Erik Leitinger, Muris Sarajlic, Xuhong Li, and Fredrik
Tufvesson, “Deep convolutional neural networks for massive mimo
fingerprint-based positioning,” in 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC). IEEE, 2017, pp. 1–6.

[21] Xiaoyu Sun, Chi Wu, Xiqi Gao, and Geoffrey Ye Li, “Fingerprint-based
localization for massive mimo-ofdm system with deep convolutional
neural networks,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 11, pp. 10846–10857, 2019.

[22] Paul Ferrand, Alexis Decurninge, and Maxime Guillaud, “Dnn-based
localization from channel estimates: Feature design and experimental
results,” arXiv preprint arXiv:2004.00363, 2020.

[23] Sibren De Bast and Sofie Pollin, “Mamimo csi-based positioning using
cnns: Peeking inside the black box,” arXiv preprint arXiv:2003.04581,
2020.

[24] Rashmika Nawaratne, Damminda Alahakoon, Daswin De Silva, and
Xinghuo Yu, “Spatiotemporal anomaly detection using deep learning
for real-time video surveillance,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 1, pp. 393–402, 2019.
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