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and Satish E. Viswanath

Abstract—A wavelet network (WN) is a feed-forward neural
network that uses wavelets as activation functions for the neurons
in its hidden layer. By predetermining the wavelet positions and
dilations, the WN can turn into a linear regression model. The
common approach for the construction of these WN families is
to use least-squares type algorithms. In this letter, we propose a
novel approach by formulating a WN as a sparse linear regression
problem, which we call a sparse wavelet network (SWN). In this
WN, the problem of calculating the unknown inner parameters
of the network becomes that of finding the sparse solution of an
under-determined system of linear equations. Our sparse solution
algorithm is a non-convex sparse relaxation approach inspired by
smoothed L0 (SL0), a distinguished sparse recovery algorithm. The
proposed SWN can be applied as a tool for the prediction and
identification of dynamical systems.

Index Terms—Wavelet network, sparse representation, non-
convex regularization, system identification.

I. INTRODUCTION

S PARSE modeling is a flourishing interdisciplinary field of
research that bridges signal processing, machine learning,

and statistics. It is particularly advantageous in selecting or
constructing a small set of predictive variables in cases where the
aim is to find the input and output of a system relationship [1].
Building on sparse modeling, in this letter, we propose a novel
wavelet network (WN) that has the potential to be used in various
areas, for example, in engineering disciplines [2]–[5].

The inherent time-frequency localization property of the
wavelet basis makes them more effective than other basis func-
tions. This insight inspired the concept of WNs by using wavelets
as the basic components of a traditional neural network [6]–[9].
Depending on the types of wavelets and network training scheme
used, there are different categories of WNs [10]. The adaptive
wavelet network (AWN) is a primitive type of WN that takes
advantage of the continuous wavelet transform for the formation
of the network building blocks and a gradient type algorithm for
model training [11]. Model initialization and training complica-
tions often limit AWNs to low dimensional applications [6].

A WN is called fixed grid wavelet network (FGWN) if it
originates from the discrete wavelet transform with predefined
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network inner parameters (the wavelet shifts and scales) [11].
The FGWNs basically act by using various model structures
or different parameter estimation algorithms [12]. Substantial
techniques for modifying and improving the efficiency of FG-
WNs have been created in the literature. For example, in [6]
multiscale wavelet decomposition was applied as the model
construction and the orthogonal least-squares algorithm was
applied for computing the network outer parameters. Li et al.
extended the model structure based on multi-wavelet basis
functions and refined the associated regression using a block
least mean squares method [8] and an ultra-orthogonal forward
regression algorithm aided by mutual information [12].

As a linear regression model, the output vector of an FGWN
can be represented as the multiplication of a wavelet matrix and
the coefficient vector. The common approach for finding the
coefficient vector is based on greedy strategies such as forward
selection which are highly suboptimal [13]. Since the construc-
tion of the wavelet matrix is based on the positions and dilations
of wavelet coefficients, in order to simplify computational com-
plexity, the FGWN regression problem may be considered as an
optimization equation and equivalently as an under-determined
systems of linear equations (USLE). Considering the sparse so-
lution of a USLE taken from the corresponding FGWN, which is
equivalent to the hidden layer weights, a network with low inner
dimension is achieved. This procedure might be useful for high
dimensional problems. In the current study, we take an FGWN as
a sparse linear regression problem, which we refer to as a sparse
wavelet network (SWN). Our proposed algorithm for finding the
sparse solution is based on the graduated non-convexity (GNC)
method and in particular, the smoothed �0 norm (SL0 algorithm)
which is an effective and fast approach [14]. This letter is a major
contribution to the literature on WN for at least two reasons:
(i) sparse modeling of the WN which brings about a network
with simple internal structure one that is easy to implement;
(ii) analyzing the convergence of the SL0 method using �0
norm approximation with a non-convex but gradient-Lipschitz
function.

II. STRUCTURE OF SWN

Assume that the observations of input-output data pairs are
as {(x(p), y(p)) : x(p) ∈ Rn, y(p) ∈ R, p = 1, . . . , P}. The pth
output sample of the WN is given by [15]:

y(p) =
m∑

i=1

θi

∣∣∣D1/2
i

∣∣∣ψ(Dix
(p) −Bti) =

m∑

i=1

θiψ
(p)
i (1)

wherem is the number of wavelons (wavelet neurons) in the hid-
den layer, θi are the weights between the hidden layer and output,
ψ ∈ L2(Rn) is the mother wavelet function, Di = diag(di),
di ∈ Rn is the scale parameter vector of the wavelets, ti ∈ Rn

is the shift parameter vector of the wavelets, and B = diag(b),
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b ∈ Rn is the discretization factor. Considering the total number
of samples, the network output vector y ∈ RP given in matrix
form as:

y =

m∑

i=1

θiψi = Wθ (2)

where W = [ψ1 . . .ψm] is called the wavelet matrix (dictio-
nary). The vectorsψi = [ψ

(1)
i . . . ψ

(P )
i ]T are regressors (atoms)

and θ = [θ1 . . . θm]T is the coefficient vector.

A. The Wavelet Matrix

According to the multiscaling wavelet frame theorem [16],
the wavelet matrix constitutes a multidimensional frame and
has significant characteristics by the following elementary lem-
malemm and corollary.

Lemma 1: If the columns of W = [ψ1 . . .ψm] are frames,
with frame bounds A > 0, B <∞, then inequalities AI �
WWT � BI hold. For a tight frameA = B and thusWWT =
AI.

Proof: See, for example, [17]. �
Corollary 1: The wavelet matrix W is full row rank.
Proof: The matrix W is full row rank if and only if

{∀f ∈ RP , fW = 0 =⇒ f = 0}. The condition fW = 0 im-
plies fWWT = 0, which in turn implies f = 0 because the
WWT in invertible according to Lemma 1. �

B. The Coefficient Vector

Since the wavelet matrix is full row rank, the USLE extracted
from the FGWN has infinitely many solutions. We are interested
in seeking its sparsest solution of the coefficient vector. The
sparsity of the coefficient vector affects the internal structure of
the WN. The sparser the coefficient vector, the less the network’s
computational complexity. A WN with too many hidden layer
nodes is slower, may cause training to diverge, or lead to over-
fitting, which would reduce the network generalizability [18].
On the other hand, having too few hidden units, results in large
training and generalization errors due to underfitting and high
statistical bias [6]. Therefore, we should look for a coefficient
vector that has an acceptable error and as much sparsity as
possible.

Finding the proper solution of vector θ can be cast as a
constrained optimization problem as follows:

min
θ

‖θ‖0 subject to ‖y −Wθ‖2 ≤ ε (3)

where ε is a predefined error tolerance.
Our strategy for solving (3) is based on the non-convex sparse

regularization technique. These methods are part of the GNC
family and are often significantly slower than greedy algo-
rithms [19]. A fast GNC technique which is based on smoothed
�0 norm (SL0) with reasonable computing time is proposed
in [14]. Inspired by the SL0 method, we propose a mathematical
framework for finding the sparsest solution of the USLE (2) as
the coefficient vector of the SWN.

III. FINDING A SPARSE SOLUTION

A. Non-Convex Regularization

The strategy of the SL0 algorithm is based on the defini-
tion of a smoothing parameter σ ≥ 0 and approximates the
smoothed �0 norm with a non-convex function ‖ · ‖σ as ‖θ‖0 =

limσ→0 ‖θ‖σ . In this way, the sparsity is induced gradually by
decreasing the smoothing parameter, so the nonconvexity of
the smooth function increases without getting trapped in local
minima [20].

The function ‖θ‖σ : Rn → R parameterized by σ ≥ 0 is
defined as

f(θ) = ‖θ‖σ =

m∑

i=1

(1− fσ(θi)) (4)

where the one variable function fσ(·) has the following proper-
ties:

P1) limσ→0 fσ(θi) =
{
1 ; if θi = 0
0 ; if θi �= 0

P2) f ′σ(θi) is gradient-Lipschitz with constantM/σ2, where
M is a positive constant. Hence the second derivative of
fσ(θi) is bounded (i.e. ∀θi ∈ R : |f ′′(θi)| ≤M/σ2).

With the definition of ‖θ‖σ , the sparsest solution of (3) is in
the form

θ∗ = argmin
θ∈Cε

{
f(θ) = ‖θ‖σ

}
(5)

where Cε = {θ : ‖y −Wθ‖ ≤ ε}.

B. The Final Algorithm

The function f in the form of (4) is gradient-Lipschitz through
the following Lemma.

Lemma 2: If fσ(θi) is gradient-Lipschitz with constant L
then ‖θ‖σ in the form of (4) is gradient-Lipschitz with
constant L.

Proof: See [20]. �
A gradient-Lipschitz function has an elementary but impor-

tant property which is expressed through the descent lemma as
follows:

Lemma 3 (descent lemma [21]): Assume that f : domf →
R is gradient-Lipscitz function with constant L > 0. Then for
any two vectors θ,θk ∈ domf

f(θ) ≤ f(θk) +∇T f(θk)(θ − θk) + 1

2γ
‖θ − θk‖22 (6)

where γ ∈ (0, 1/L] and domf express the domain of the func-
tion f . The right hand side of (6) is called the upper-bound of
f(θ) at the point θk and it is shown by f̄(θ,θk). The minimum
upper-bound is attained when γ = 1/L.

Proof: See, for example, [21]. �
As it stands, f̄(θk,θk) = f(θk). Therefore, instead of min-

imizing f , we can minimize its upper-bound. Thus, the itera-
tive solution algorithm for (5) is θk+1 = argminθ∈Cε

f̄(θ,θk).
Considering (4), we have

θk+1 = arg min
θ∈Cε

{
‖θk‖σ +∇T ‖θk‖σ (θ − θk)

+
1

2γ
‖θ − θk‖22

}
(7)

equivalently

θk+1 = argmin
θ∈Cε

1

2

∥∥θ − θ̄k
∥∥2
2

(8)

where θ̄k = θk − γ∇‖θk‖σ . So, the final solution to find
the sparse solution of USLE (2), which is summarized in
Algorithm 1, can be obtained.
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Algorithm 1: The Sparse Solution of Coefficient Vector.
Input: y, W, M , σ0, σmin, 0 < c < 1, K, γ, ε
initialization : θ = 0, σ = σ0

1: while σ > σmin do
2: for k = 1, 2, . . . ,K do
3: θ = θ − γ∇‖θ‖σ
4: θ = argminθ∈Cε

1
2‖θ − θ̄‖22

5: end for
6: σ = cσ
7: γ = (σ2/M)γ
8: end while

Output: θ

Remark 1: In Algorithm 1, σ0, σmin, and c are the initial
value, the final value, and the reduction factor forσ, respectively,
K is the number of inner-loop iterations, and γ is the learning
rate.

Remark 2: Since f̄ : Cε × Cε → R satisfies f̄(θ,θk) ≥
f(θ), f̄(θk,θk) = f(θk) for θ,θk ∈ Cε, f̄(θ,θk) is so-called
majorization function of f(θ) [22]. Therefore, our algorithm is
a type of majorization-minimization algorithms [21].

Remark 3: According to the proximal operator definition,
(8) can be rewritten as θk+1 = proxγg(θk), where g is an indi-
cator function. So, our method can be considered as a proximal
method for non-convex optimization [20].

C. Convergence Analysis

We will now assess the bound of the parameter γ to guaran-
tee convergence of the iterations in (7) through the following
theorem.

Theorem 1: Let f(θ) = ‖θ‖σ . Then, the sequence {θk} in
(8) converges to a stationary point of f . To guarantee conver-
gence, parameter γ should satisfy

0 < γ ≤ σ2

M
. (9)

Proof: According to (7), the iterations θk+1 can be written
as the associated algorithm

θk+1 = argmin
θ

{
∇T ‖θk‖σ (θ − θk) + 1

2γ
‖θ − θk‖22

}
.

(10)
Since θk+1 is the minimizer of (10)

∇T ‖θk‖σ (θk+1 − θk) + 1

2γ
‖θk+1 − θk‖22 ≤ 0. (11)

On the other hand, by (6) for minimum upper-bound of f(θ) at
the point θk, we have

‖θk+1‖σ ≤ ‖θk‖σ +∇T ‖θk‖σ (θk+1 − θk)

+
L

2
‖θk+1 − θk‖22 (12)

where L is the Lipschitz constant of the ∇‖θ‖σ and according
to Lemma 2, L =M/σ2.

Adding (11) and (12) results in

f(θk+1) ≤ f(θk)−
(

1

2γ
− M

2σ2

)
‖θk+1 − θk‖22 (13)

which implies that the sequence {f(θk)}∞0 is decreasing if 0 <
γ ≤ σ2/M . Since f is bounded from below (‖θ‖σ ≈ ‖θ‖0) and
decreasing, we conclude that {f(θk)}∞0 converges.

Summing (13) over all k ≥ 0 leads to

∞∑

k=0

{(
1

2γ
− M

2σ2

)
‖θk+1 − θk‖22

}
≤ f(θ0)− f(θ∞).

(14)
It is clear that right-hand side of (14) is finite and non-negative.
Necessarily, θk+1 → θk and therefore, {θk}∞0 converges.

Furthermore, since θk+1 is the minimizer of (10), we have

∇‖θk‖σ +
1

γ
(θk+1 − θk) = 0. (15)

Sinceθk+1 → θk, so∇‖θk‖σ → 0. This means that ask → ∞,
θk → θ∗ where θ∗ is a stationary point of f . �

D. Tight Wavelet Frame

At each iteration of the algorithm, the following constrained
minimization problem needs to be solved:

min
θ

1

2

∥∥θ − θ̄∥∥2
2

subject to ‖y −Wθ‖2 ≤ ε (16)

where θ̄ = θ − γ∇‖θ‖σ and ε denotes the error tolerance. To
solve (16), we derive the Lagrangian with multiplier λ in the
form

L(θ, λ) =
1

2

∥∥θ − θ̄∥∥2
2
+ λ(‖y −Wθ‖22 − ε2). (17)

Karush-Kuhn-Tucker conditions imply the following optimality
conditions:

⎧
⎨

⎩

θ∗ = (I+ 2λ∗WTW)−1(θ̄ + 2λ∗WTy)

‖y −Wθ‖22 = ε2

λ∗ ≥ 0

(18)

and after substitutions, we obtain the following equation

∥∥y −W(I+ 2λ∗WTW)−1(θ̄ + 2λ∗WTy)
∥∥2
2
= ε2. (19)

Generally there is no closed-form solution for this nonlinear
equation, unless W is a tight frame.

According to Lemma 1, if a wavelet matrix is a tight
frame then WWT = AI. By applying the matrix inver-
sion lemma, we obtain: (I+ 2λ∗WTW)−1 = I− (2λ∗/(1 +
2λ∗A))WTW, which by combining (19) and (18), leads to

⎧
⎪⎪⎨

⎪⎪⎩

λ∗ =
1

2A
max

{∥∥y −Wθ̄
∥∥
2

ε
− 1, 0

}

θ∗ = θ̄ +
2λ∗

1 + 2λ∗A
WT (y −Wθ̄)

. (20)

Since this approach simplifies the computations, in this study,
we consider only tight wavelet frames for the construction of
the WN wavelet matrix. It is worth mentioning that, if ε = 0 the
final solution of the algorithm is given by θ̄ = θ − γ∇‖θ‖σ . In
this situation, the algorithm is indeed a gradient descent with
step-size γ (similar to SL0).
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IV. SIMULATION RESULTS

In WN equation (1), di = [ai1 , . . . , ain ]T ,b = [b, . . . , b]T1×n
with a > 1 and b > 0 are considered [16]. One dimen-
sional mother wavelet admissibility theorem for tight wavelet
frame [17] states that the frame bound is equal to A =
2π

b ln a

∫∞
0 ω−1|ψ̂(ω)|2dω, where ψ̂(ω) is the Fourier transform

ofψ(x). Since in the multidimensional case, the wavelet function
is the tensor product of one-dimensional mother wavelets [16],
the tight frame bound isnA, wheren is the WN input dimension-
ality. As is customary in the WN literature, we use the Mexican
hat as the mother wavelet function in the construction of SWN.
To take advantage of the Mexican hat tight wavelet frame, we
are confined to choose {1 < a ≤ 20.25} [17, Ch. 3, p. 71] or
{a = 2, 0 < b ≤ 0.75} [17, Ch. 3, p. 76]. In our experiments, we
used MATLAB 9.4 on a PC with Intel(R) Core(TM) i7 CPU 930
(2.80 GHz) and 12 GB RAM on a 64 bit Windows 10 operating
system.

As an example, suppose the nonlinear two inputs, two outputs
system is given by
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y
(p)
1 =

1

1 +
(
y
(p−1)
1

)2

(
0.1y

(p−1)
1 + 0.9u

(p−2)
1 + 0.1u

(p−3)
2

)

y
(p)
2 =

1

1 +
(
y
(p−1)
2

)2

(
0.5y

(p−1)
2 + 0.3u

(p)
1 + u

(p−1)
2

)

(21)

where, the pairs (u(p)1 , u
(p)
2 ) and (y(p)1 , y

(p)
2 ) are the input and

output samples, respectively. An additive independent and iden-
tically distributed (i.i.d.) noise is also considered for both system
outputs where the noise term is uniformly distributed in [−ε, ε].
For identifying this system, two SWN with n = 3 inputs and
one output is formed. The inputs of the first SWN are x

(p)
1 =

[y
(p−1)
1 , u

(p−2)
1 , u

(p−3)
2 ]T and the inputs of the second SWN are

x
(p)
2 = [y

(p−1)
2 , u

(p)
1 , u

(p−1)
2 ]T . 900 points are used for training

the network. Half of them are uniformly distributed on [−1, 1]
and the remaining are sinusoids of the form 1.05 sin(πk/45).

u
(p)
1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin (πp25 ) p < 250

0.5 250 ≤ p < 500

−0.5 500 ≤ p < 750

0.1(sin (πp25 ) + sin (πp32 )

+ 2 sin (πp10 )) 750 ≤ p < 1000

(22)

u
(p)
2 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.6 sin (πp25 ) p < 250

0.3 250 ≤ p < 500

−0.3 500 ≤ p < 750

0.01(sin (πp25 ) + sin (πp32 )

+ 20 sin (πp10 )) 750 ≤ p < 1000

(23)

The Mexican hat wavelet ψ(x) = (1− x2)exp(−0.5x2) for
each dimension is computed for all input samples by choosing
a = 20.25, b = 2 and the scale levels over the interval [−20, 20].
Since the Mexican hat is a compactly supported wavelet by
the support [−4, 4], it can be shown that [6] the variation
range for the shift parameter is ti ∈ [−5, 36]. So, the number
of wavelet frame bases is range[−20, 20]× range[−5, 36] =
1722 and the frame bound is A = 6π/ ln 2. For running
Algorithm 1, we considered fσ(θi) = exp(−(θi/σ)

2), M = 2,

Fig. 1. Test results of the proposed SWN for the actual and approximated
signals: (a) the output y1 and (b) the output y2.

TABLE I
RMSE COMPARISON OF SOME WNS OVER THE TESTING DATA

σ0 = 0.5, σmin = 0.05, c = 0.8, and γ = 0.1. The algorithm is
terminated when it reaches K = 15 or when a given noise level
threshold (ε = 0.1, 0.25) is met.

After SWN construction and determination of the coefficient
vector, (22) and (23) test signals are used for testing the per-
formance of the SWN models. The performance of the SWN
outputs for the test signals are presented in Fig. 1. The SWN
performance was evaluated through simulations and compared
against several WN models using the same training and test-
ing procedure. The results in terms of the number of network
wavelons and root mean square error (RMSE) between the actual
and predicted output signals for two different noise levels are
given in Table I.

The AWN [15] is trained using the backpropagation algorithm
in the publicly available wavenet MATLAB Toolbox [23]. In the
FGWNs, instead of using the proposed algorithm, the orthogonal
least-squares method [11] and [18] or the D-optimality orthog-
onal matching pursuit algorithm [24] is applied. It can be seen
that the number of the proposed SWN wavelons are much lower
than the other methods, while at the same time our models result
in considerably smaller RMSE for both system outputs. Here
the sparsity concept is directly fed to the model construction,
which provides a parsimonious model with good generalization
performance.

V. CONCLUSION

In this letter, we made a novel contribution by looking at
wavelet networks from a sparse linear regression point of view
and proposed a sparse wavelet network (SWN). In an SWN,
the sparsity concept is equivalent to the number of hidden layer
neurons which are specified from the sparse solution of a linear
regression model. Our sparse solution algorithm is based on �0
norm approximation with a non-convex gradient-Lipschitz func-
tion. The function non-convexity can be controlled by varying
the smoothing parameter in each algorithm iteration [14]. The
proposed SWN has a solid mathematical foundation with low
complexity which can be utilized in practical implementations.
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