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Abstract—In this paper, a framework for localization of multi-
ple co-channel transmitters using phase difference measurements
between two antennas mounted on sensors of a sensor network
is proposed. To pursue localization, we equip each sensor with
two antennas and we use temporal cross-correlations between
the received signals of the two antennas to extract the phase
differences between each antenna pairs, named as phase inter-
ferometry measurements (PIMs), provoked by each transmitters
using tensor decomposition. We calculate Cramer-Rao lower
bound of error of localization using PIMs. Our simulation results
show that highly accurate estimations can be achieved using
PIMs. We also compare the accuracy of our proposed technique
with a sensor network that exploits highly directional linear array
antennas and show that our proposed technique can perform
similar to a network that employs very large antenna arrays.

I. INTRODUCTION

Separating power spectra and localization of unrevealed

sources have several applications in electronic warfare, mobile

wireless networks and cognitive radio networks to just name

a few. This type of electromagnetic environmental awareness

is necessary for electronic support (ES) systems to detect

adversarial radio activities and localize hostile transmitters

[1]. In cognitive radio and mobile networks, localization of

primary users (PUs) and mapping their power spectra, referred

to as radio cartography, are crucial for spatial frequency

reuse and spectrum management [2]. Bazerque. et. al. sug-

gest using a network of omnidirectional antennas to measure

signal strength at different locations around the network and

introduce a technique for joint estimation of power spectral

density (PSD) in space and frequency [3], with the assumption

of a sparse placement of PUs in the network. In a more recent

work, this technique is expanded by using a network of linear

array antennas that exploit beamforming for tracking sources

and dynamic radio cartography [4]. The requirement of having

prior information on channel gain magnitudes between sensors

and potential locations of PUs is the main deficiency of these

techniques.

In the passive localization literature, various techniques have

been proposed to pursue the localization task. A class of

∗ indicates shared first authorship. This material is based upon work
supported by the National Science Foundation under Grant No. CCF-1718195.

techniques employs direction-of-arrival (DOA) or angle-of-

arrival (AOA) to estimate target locations and track moving

targets [5], [6]. Time-of-arrival (TOA) and time-difference-

of-arrival (TDOA) of received signals in a sensor network

are widely used in literature to find locations of targets [7].

Frequency difference of arrival (FDOA) in different sensors

also can be employed to localize moving emitters in an

environment [8]. Lately, methods that use a combination of

two or three of AOA/TDOA/FDOA techniques have gained

more attention [9], [10]. Phase interferometry is widely used in

electronic warefere applications for wide-band (WB) interfero-

metric direction finding [11], [12], [13]. Since phase difference

between two antennas introduces ambiguous DOAs, most

techniques proposed in the literature suggest using two or more

baselines to disambiguate phase difference [14], [15]. Here, we

suggest measuring phase differences using a sensor network

that collects PIMs from different geographical locations to

disambiguate the phase and directly translate phase differences

to PUs locations.

Tensor decomposition is a strong mathematical tool for

modeling and analysis of multi-dimensional data. Tensor-

based methods have been employed in communications and

coding frameworks since Sidiropoulos et. al. introduced them

for blind code-division multiple access (CDMA) [16]. Re-

cently, more advanced coding methods in communication sys-

tems are developed based on the tensor decomposition theory

[17], [18]. In addition to coding, tensor decomposition has

received attentions in vehicular communication [19], channel

estimation [20] and data compression [21]. Moreover, tensor-

based techniques are employed for localization-based spectrum

sensing [22], [23]. These localization methods employ attenu-

ation and phase shift from sources to antennas at receivers and

each sensor is equipped with a single antenna. In the present

work, we employ a tensor decomposition technique to extract

phase differences in a set of paired antennas on each sensor

of the network. The main contribution in this paper can be

encapsulated as follow:

• Introducing a tensor-based approach to separate power

spectra of PUs and to extract PIMs on each sensors

provoked by each PU
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• Putting forward a localization scheme that employs PIMs

• Deriving Cramer-Rao lower bound (CRLB) of location

estimation using PIMs.

Notations: Throughout this paper, vectors, matrices, and

tensors are denoted by bold lowercase, bold uppercase, and

bold underlined uppercase letters, respectively. If W ∈
R

N1×N2×N3 then (T ):,n2,n3
is a vector of length N1, also

known as a mode-1 fiber of W , defined by fixing all the

indices but one. Similarly, we have mode-2 and mode-3 fibers.

W (1), W (2), and W (3) are unfolded matrices whose columns

are fibers of the first, second and third mode of W , respec-

tively. Moreover, ◦ denotes the outer product, i.e., entries of

W = a ◦ b ◦ c is calculated as wn1n2n3
= a(n1)b(n2)c(n3)

and vec(.) is an operator that concatenates columns of a matrix

into a vector.

The rest of the paper is ordered as follows. Section II

formulates the problem. Power spectra separation and PIM

extraction from temporal cross-correlation matrix of received

signals through a tensor decomposition approach are intro-

duced in Section III. We analyze CRLB of localization using

PIM in Section IV. Section V presents experimental results.

Finally Section VI concludes the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

We consider a scenario where there are K transmitters (or

PUs) in a region of interest. A sensor network including N
sensors co-exists with PUs and each sensor is equipped with

two antennas whose distance is indicated by D (see Figure 1).

Distance between antennas of a ULA is at most half of the

wavelength [24], however, in our proposed technique there is

no constraint on D. Here, our main goal is to find locations of

all PUs. We presume that the environment is multi-path free.

Given these assumptions, received signals at two antennas of

sensor n can be simply formulated as

u1n(t) =
K∑

k=1

an,kgk(t−Δt
(1)
n,k) + v1n(t), (1a)

u2n(t) =
K∑

k=1

an,kgk(t−Δt
(2)
n,k) + v2n(t), (1b)

where an,k marks channel gain between the nth sensor and

the kth PU, Δt
(1)
n,k and Δt

(2)
n,k are the time delays of arrival of

signal from PU k to the first and the second antennas of sensor

n, respectively, v1n and v2n mark white-Gaussian complex

noise at each antennas of sensor n, gk(t) marks the transmitted

signal of the kth PU as

gk(t) = mk(t)e
−j2πfct , (2)

where mk(t) is a base-band message, gk(t) is assumed to

be narrow-band and wide-sense stationary, and fc is the carrier

frequency. Here, we assume that transmitters are co-channel

and therefore fc is the same for all PUs. We also assume that

all N sensors of the network are synchronized. The TDOA

between two antennas at sensor n can be reformulated as

Area of Interest

… sensor

1( )
( )

( )
( )

,2

sensor
,1

Fig. 1. The geometry of the localization problem. A sensor network utilizes
sensors equipped with two antennas to measure phase differences between
antenna pairs.

Δt
(1)
n,k −Δt

(2)
n,k = Δtn,k =

r
(1)
k,n − r

(2)
k,n

c
, (3)

where r
(1)
k,n and r

(2)
k,n denote the distances between the PU k

and first and seconds antennas of sensor n, respectively, and

c marks the speed of light. We have

r
(1)
n,k =

√
(x

(1)
sn − xPUk

)2 + (y
(1)
sn − yPUk

)2

r
(2)
n,k =

√
(x

(2)
sn − xPUk

)2 + (y
(2)
sn − yPUk

)2 , (4)

where (x
(1)
sn , y

(1)
sn ), (x

(2)
sn , y

(2)
sn ), (xPUk

, yPUk
) are locations of

the first and the second antennas of sensor n and the kth

PU, respectively. Given base-band messages are narrow band,

u1n(t) and u2n(t) can be formulated as [25]

u1n(t) =

K∑
k=1

an,kgk(t) + v1n(t), (5a)

u2n(t) =

K∑
k=1

an,ke
−j2π 1

λ (r
(1)
n,k−r

(2)
n,k)gk(t) + v2n(t) . (5b)

We form u1(t) = [ u11(t), . . . , u1N (t) ]T and u2(t) =
[u21(t), . . . , u2N (t)]T by integrating received signals from the

first and the second antennas of each sensors in two vectors.

In the next section we show how to collect information of

all sensors in a three-dimensional tensor and measure PIMs.

Tensor decomposition is exploited to perform a collaborative

localization in order to localize all targets simultaneously.

Our proposed tensor-based approach is mainly based on

CANDECOMP/PARAFAC (CP) decomposition [26], which

factorizes a tensor into a sum of rank-one tensors. CP de-

composition is an extension of singular value decomposi-

tion (SVD) which facilitates a wide range of applications

in sensor networks [27]. For example, a three-way tensor

W ∈ R
N×N×NF of rank K can be decomposed as
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W =

K∑
k=1

ak ◦ bk ◦ ck = [[A,B,C]], (6)

where ak ∈ R
N , bk ∈ R

N and ck ∈ R
NF are factor vectors

of the kth rank-one component (Fig. 2). The factor matrices
refer to the collection of factor vectors from the rank-one

components, i.e., A = [a1 a2 . . . aK ] and likewise for B and

C. The kruskal-rank which is also referred to as krank is used

to derive conditions on uniqueness of tensor decomposition for

matrices A, B, and C [26]. krank is defined as the maximum

number k, such that any k columns are linearly independent

[26].

=

1
1

1
+  …  +

Fig. 2. Schematic of CP decomposition to summation of K rank-one
tensors. Each rank one tensor of dimension 3 can be written as outer
product of 3 vectors.

III. PHASE INTERFEROMETRY LOCALIZATION USING

TENSOR DECOMPOSITION

In the previous section we modeled the received signal

at each antenna pairs of sensors and showed that each PU

provokes a specific phase difference on each sensor. We also

showed that phase differences are merely functions of PUs’

locations (which are unknown) and antennas’ locations (which

are known). In this section we are going to inaugurate a

technique to uncover these phase differences from temporal

cross-correlation of received signals. Let

Ru1u2
(τ) = E

{
u1(t)u

H
2 (t− τ)

}
(7)

represent cross-correlation between u1 and u2 at time lag

τ . We can reformulate u1(t) and u2(t) as

u1(t) = Ag(t) + v1(t), (8a)

u2(t) = Bg(t) + v2(t), (8b)

where g(t) = [ g1(t), . . . , gK(t) ]T is the source signals

of K PUs, v1(t) = [ v11(t), . . . , v1N (t) ]T and v2(t) =
[ v21(t), . . . , v2N (t) ]T are received white Gaussian noise at

the first and the second antennas of all sensors, respectively.

Moreover, according to (7) and (8), Ru1u2
can be reformu-

lated as

Ru1u2
(τ) = AD(τ)BH , (9)

where D(τ) = Diag(ρ(τ)), ρ(τ) = [ ρ1(τ), . . . , ρK(τ) ]T ,

and ρk(τ) = E {gk(t)g∗k(t− τ)} marks auto-correlation func-

tion of gk(t) in time-lag τ . Moreover, according to (5b) ,

each element of matrix B = [bn,k] ∈ R
N×K equals to

the corresponding element in matrix A = [an,k] ∈ R
N×K

multiplied by a complex phase difference, i.e.,

bn,k = an,ke
−j2π 1

λ (r
(1)
k,n−r

(2)
k,n) . (10)

This phase difference within each pair of antenna plays the

key role in our proposed localization method. We define

Δφ = [Δφn,k], where Δφn,k =
bn,k

an,k
= e−j2π 1

λ (r
(1)
k,n−r

(2)
k,n),

to represent phase difference between all elements of A and

B. We refer to Δφ as PIMs. Let z(τ) = vec (Ru1u2(τ)),
and Zi(w) be the discrete Fourier transform1 of the ith

(i = 1, . . . , N2) element of z(τ) [22]

Zi(ω) =

∞∑
τ=−∞

zi(τ)e
−jωτ . (11)

By defining Wi(f) = Zi(
2πf
NF

), for f = 0, . . . , NF − 1, we

construct vectors wi = [Wi(0), · · · ,Wi(NF − 1) ]T for i =
1, . . . , N2. Let W (3) = [w1, · · · ,wN2 ] which is the unfolded

replica of tensor W w.r.t. the third dimension. The tensor

representation can be expressed as

W = [[A,B∗,C]], (12)

where C = [c1, . . . , cK ]T corresponds to propagating PSD

from all PUs and entries of ck = [Sk(0), . . . , Sk(NF−1)]T are

sampled from Fourier transform of the kth PU auto-correlation

which is defined as follows

Sk(w) =
∞∑

τ=−∞
ρk(τ)e

−jwτ .

The model in (12) is a PARAFAC model. Using a tensor rank

decomposition technique, A,B∗,C can be recovered up to

a scale and permutation in columns. There is a limit on the

number of detectable PUs (K) imposed by a constraint that

guarantees identifiability of PARAFAC decomposition [28]

krank(A) + krank(B) + krank(C) ≥ 2K + 2 , (13)

where krank(X) denotes the Kruskal rank of the matrix X .

Remark 1. Given A,B,C are full rank and NF ≥ K ≥ 2,

the following upper bound holds over the number of detectable

PUs

K ≤ 2N − 2 .

proof. Assume A and B are N ×K full rank matrices and

C is a NF ×K full rank matrix. For K < N , we have

krank(A) = krank(B) = krank(C) = K ,

and (13) is relaxed to K ≥ 2 that is assumed. For K ≥ N ,

we have

krank(A) = krank(B) = N, and krank(C) = K .

Referring to (13), it concludes that K ≤ 2N − 2. �
Since A and B are channel gain matrices from PUs to

sensors, it is very probable that A and B are full rank. Rank of

C depends on PUs’ signals spectral densities. In particular, if

1Cross-correlation Ru1u2 (τ) contains N2 entries that each one is a
function of τ . Thus, corresponding to each entry a Fourier transform can
be computed over variable τ . We can use either Fourier transform or discrete
Fourier transform. Here, we choose discrete Fourier transform since it is more
applicable in practice.
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PUs emit signals that are uncorrelated in frequency spectrum

domain, it is very probable that C is full rank. Intuitively,

we can reason that the number of detectable PUs decreases

if PUs’ signals are correlated in spectrum domain or channel

gian matrices are not full rank, since it would be much more

difficult to discriminate between PUs.

Since all elements of C are non-negative, the phase differ-

ence between each element of B and A can be calculated.

Consequently we can retrieve the matrix of phase differences

Δφ up to a permutation in columns. Each column of Δφ
shows phase differences provoked by one of the PUs in all

sensors, and consequently it can be processed for localization.

Let Δφk be the kth column of Δφ,

Δφk = [ e−j2π 1
λ (r

(1)
k,1−r

(2)
k,1), . . . , e−j2π 1

λ (r
(1)
k,N−r

(2)
k,N ) ]T . (14)

Given known positions of sensors, Δφk is only a function of

unknown parameters (xPUk
, yPUk

) which is the position of

kth PU. To recover the position of the corresponding PU, we

solve the following optimization problem

(xPUk
, yPUk

) = argmin
x,y

‖Δφ(x, y)−Δφk‖2 , (15)

where Δφ(x, y) is formulated the same as Δφk except that

(xPUk
, yPUk

) is replaced by (x, y). In other words, (15) is a

simple two-dimensional search on all possible positions in the

area of interest to find the location of the kth PU. In practice,

we assume a grid with Ng cells over the area of interest and

perform the search on that grid. Ng is a function of the size of

the area of interest and the localization resolution. The whole

process of localization using PIMs is summarized in Alg. 1

and Figure 3.

Algorithm 1 Localization based on PIMs

Require: Received signals from N paired antennas {u1n, u2n}Nn=1

Antennas’ locations {(x(1)
sn , y

(1)
sn ), (x

(2)
sn , y

(2)
sn )}Nn=1

and estimated maximum number of PUs as CP rank (K)

1: Ru1u2 (τ) ← E
{
u1(t)uH

2 (t− τ)
}∞
τ=−∞

2: z(τ) = [zi(τ)]
N2

i=1 ← vec (Ru1u2 (τ))

3: {Zi(w)}N2

i=1 ← {∑∞
τ=−∞ zi(τ)e

−jwτ}N2

i=1

4: W ← {Wi(f) = Zi(
2πf
Nf

), f = 0, . . . , NF − 1}N2

i=1

5: A,B∗,C ← CPD on W with rank K

6: Δφ ←
[
Δφn,k =

an,ksn,kbn,k

||an,ksn,kbn,k||2

]

7: (xPUk
, yPUk

)Kk=1 ← localization by solving (15)

Output: PUs’ locations {(xPUk
, yPUk

)}Kk=1

Considering Alg. 1, computational cost of step 2 is

O(N2 log(N)), in case we approximate continuous Fourier

transforms by FFT with length N2 [29]. Assuming NF ≥
max(N,K), the computational cost of step 5 is O(KN3

F )
[30]. The computational cost of step 8 is O(NNg). Therefore,

overall computational cost of the proposed algorithm can be

determined either by step 5 or step 8, depending on which one

of them is greater.

1( )
1 2

2

2

1

1

2( ) Cross 
Correlation DFT

Sensor 
Network

Sensor 1
Sensor 2

Sensor

PIM Tensor

Tensor 
Decomposition

, ,
2D Search

.
.
.

PUs
Locations

Sensors’ locations

Fig. 3. The block diagram of the proposed localization scheme.

IV. CRAMER-RAO LOWER BOUND OF ERROR (CRLB)

In this section we investigate CRLB for an unbiased es-

timator that employs PIMs as of (14). As we mentioned in

the previous section, we recovered phase differences between

two antennas of each sensor provoked by a PU. Given each

measurement is added by an independent white Gaussian

noise, Fisher information matrix (FIM) of phase difference

measurements from PU k can be calculated as [31]

J(xPUk
, yPUk

) =
1

σ2

N∑
i=1

∇x,y (Δφk)
H
i ∇x,y (Δφk)i ,

(16)

where σ2 is the variance of noise, (Δφk)i is the element i
of Δφk and ∇x,y is gradient operator w.r.t x, y. Consequently

CRLB of variance of error turns into

E{(xPUk
− x̄PUk

)2 + (yPUk
− ȳPUk

)2} ≥
trace

(
J(xPUk

, yPUk
)
−1)

, (17)

where (x̄PUk
, ȳPUk

) is the estimated position of PU k. To

examine, the lower bound of error that can be achieved by

employing measurements in the form of (14), we conduct

several simulations. As an example, assume that 9 sensors

are placed in a line align with the left edge of the area of

interest. CRLB inside the area of interest is depicted in Fig.

4. As the figure illustrates CRLB varies from sub-meter values

near the edge closest to the sensor network, to more than two

meters near the two farthermost vertices to the sensor network.

Although in this simulation we suppose that signal-to-noise-

ratio (SNR) is 20dB, much higher SNRs is accessible due to

the independency of noise in antennas pairs that results in the

cancellation of noise terms in (9).

Assuming identical SNR at input antennas, CRLB illustrated

in Figure 4 is very close in shape and values to CRLB of the

same sensor network that utilizes directional antennas with

0.02o in standard deviation of directional of arrival (DOA)

estimation error [31], [32]. Such a precision in DOA estimation

can be achieved using a ULA with at least 80 antennas when

SNR = 20dB [33].

V. SIMULATION RESULTS

As we discussed in Section III, to localize multiple PUs

in an area of interest, we obtain PIMs for each PUs using

a PARAFAC tensor decomposition. To represent the cost
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Fig. 4. Standard deviation of CRLB of location estimation using PIMs
of (14). In this scenario, 9 sensors are placed in a line aligned y-
axis from (1,−1)Km to (9,−1)Km in equi-spaced locations, two
antennas of each sensors are placed 10m apart aligned with y-axis ,
D = 10m, fc = 5GHz, and SNR = 20dB.

function of localization when measurements are not noisy, let

us define

f(x, y) = ||Δφ(x, y)−Δφx0,y0
||2, (18)

where Δφx0,y0
denotes PIMs of an arbitrary known PU placed

at (x0, y0). In our first simulation, we plot f(x, y) for a PU that

is placed at (500, 500)m, sensors are placed in a line aligned y-

axis from (1,−1)Km to (9,−1)Km in equi-spaced locations,

in particular, the first sensor is placed at (1,−1)Km and the

ninth sensor placed at (9,−1)Km, all the remaining sensors

placed between these two sensors. D is set to 10m. As Figure

5 illustrates, f(x, y) is a non-convex function that possesses

several local minimum and maximum; however, there is a

global minimum at the location of PU that can be revealed

by search.

In the following simulation, we compare the accuracy

of localization between two following sensor network. The

first sensor network is equipped with two omni-directional

antennas at each sensors which measures PIMs and localizes

PUs using the proposed algorithm, while the second sensor

network is equipped with ULAs, each uses M antennas, and

exploits DOA localization techniques. Sensor placements of

both networks are the same. We suppose that power of received

signals at each antennas of sensor n of the first and the second

sensor networks are identical, which means input SNRs of all

(,) 1 (,)

Fig. 5. (a) Cost function of localization (f(x, y)) for a PU located
at (500, 500)m, (b) For a better visualization the reciprocal of the
same function ( 1

f(x,y)
) is depicted. In this simulation, the scenario

is the same as of Figure 4.

0 5 10 15 20 25 30
SNR

0
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20

Es
tim

at
io
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Er

ro
r(

m
)

Phase Interferometry
Array M=80
Array M=60
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Fig. 6. Comparison of location estimation errors (as definition of
(17)) between a sensor network that uses 2 antennas mounted on
each sensors and phase interferometry measurements and a sensor
network that uses ULAs with M antennas mounted on each sensor.
The scenario is the same as of Figure 4.

antennas in both scenarios are the same. However, since each

array of the second network, receives signal at M antennas,

it can integrate all M signals to obtain a better SNR, while

each array of the first network receives signals at only two

antennas and can’t take advantage of the array gain in the first

place. Nonetheless, referring to (7), the first network can make

use of independency of noise at first and second antennas to

mitigate noise level heavily. Given only one PU is located in

the area, we assume that each antenna of the second network

measures DOA of the signal transmitted by the PU utilizing

spatial search at each array [34], and consequently localizes

the PU using the total least square technique [35]. We also

assume that antennas of each ULA are placed half wave-length

apart.

Figure 6 illustrates that the accuracy of the proposed

technique that only mounts 2 antennas with 166 wavelengh

distance apart on each sensor is in the vicinity of a network

that mounts arrays with M = 80 elements on each sensor

when SNR is between 3dB to 7dB, and is better than the

same array network when SNR is above 7dB. This leads to a

huge reduction in complexity of sensor’s antenna, since ULAs

should be equipped with phase shifters behind each antennas

and a complex receiver for beam steering [36]. Conversely, in

the proposed schema the phase difference between only two

antennas is measured. Moreover, antenna arrays are bound to

spatial search to find PUs, while the proposed method bypasses

spatial search by estimating PUs locations via integrating PIMs

from differnt sensors mounted at different locations around

the area of interest. This means a reduction in the required

time for PUs localization. Therefore, the proposed technique

significantly reduces the number of required antennas, the

complexity of the receiver and the required time for localiza-

tion compared to the network that exploits the DOA technique.

On the other hand, the number of detectable PUs using the

proposed technique is limited up to the bound of (13), while

the network that utilizes antenna arrays is capable of detecting

more PUs and the only limiting parameter on the number of

PUs is the resolution of localization.
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VI. CONCLUSION

In this work, we proposed a localization framework based

on mounting two antennas on each sensor of a sensor net-

work. The antennas are placed multiple wavelength apart. we

measure phase differences at each pair of antennas provoked

by signal emission of PUs using a tensor decomposition

technique. We showed that using PIMs, highly accurate lo-

cation estimation of PUs can be obtained. We showed that the

proposed technique can perform similar to a sensor network

that utilizes very large ULA antennas which is more complex

than our proposed configuration in terms of implementation.

We discussed that the proposed technique can greatly reduces

the complexity, the cost and the time required for a sensor

network to localize multiple PUs in an area of interest in

comparison to a sensor network that utilizes electronically

steerable antennas.
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