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Abstract—A new paradigm for large-scale spectrum occupancy
learning based on long short-term memory (LSTM) recurrent
neural networks is proposed. Studies have shown that spectrum
usage is a highly correlated time series over multi-dimensions.
Therefore, revealing all these correlations using one-dimensional
time series is not a trivial task. In this paper, we introduce a
new framework for representing the spectrum measurements in
a tensor format. Next, a time-series prediction method based on
CANDECOMP/PARAFAC (CP) tensor decomposition and LSTM
recurrent neural networks is proposed. Our proposed method is
computationally efficient and is able to capture different types
of correlation within the measured spectrum. Moreover, it is
robust to noise and missing entries of sensed spectrum. The
superiority of the proposed method is evaluated over a large-
scale synthetic dataset in terms of prediction accuracy and
computational efficiency.

Index Terms—Spectrum occupancy learning, Tensor CP de-
composition, LSTM time-series prediction.

I. INTRODUCTION

Spectrum occupancy learning (SOL) aims to extract spec-

trum usage patterns at each frequency band over time. The

learned model of spectrum occupancy facilitates the function-

ality of dynamic spectrum access. Spectrum sensing, optimal

channel selection for opportunistic spectrum access, and re-

source allocation are some examples that can be performed

more efficiently by the prediction of spectrum usage [1].

The SOL problem can be regarded as time series learning

and prediction. Thus, its performance mainly depends on the

underlying model for time series analysis. Many statistical

models and methods for spectrum usage prediction have

been proposed in the last decade [2]. Auto-regressive models,

Markov models [3], [4] and neural networks [5], [6] are ex-

ploited as the core model for spectrum time-series prediction.

However, spectrum usage is a non-stationary process whose

characteristics are time-variant [7]. Other factors such as users’

mobility and diverse demands of users make this process more

complex. To overcome this challenging problem, deep learning

methods are successfully implemented for capturing spectral

usage patterns [8], [9]. Long short-term memory (LSTM) and

convolutional neural networks (CNNs) are popular models

for learning deep networks [10] in various applications such

as computer vision [11], pattern recognition, radar, traffic

classification [12], and other problems [13], [14]. However,

these methods are still challenging for large-scale learning
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of spectrum time series. The correlation lag of spectrum

occupancy over time can be occurred within a very large range.

For example, averaged spectrum occupancy may correlate to

that of one hour ago, but some network activities are daily or

weekly [15]. Thus, spectrum occupancy at one time could be

related to spectrum occupancy of one day or a week ago as

well. Likewise, there might exist some spectrum patterns even

in a larger scale over time. While conventional time-series

prediction methods fail to reveal correlations in large lags,

LSTM is able to capture these patterns. However, there are

two issues in the large-scale data scenario. First, learning and

prediction of an extremely long time series implies capturing

all the spectrum correlations efficiently; thus, the computa-

tional burden of learning and updating the LSTM model may

not be tractable for online tracking of spectrum occupancy.

Second, dealing with missing entries in the learning phase is

inevitable for a real data sequence as it affects the prediction

accuracy in the test phase. We propose to utilize tensor-based
data completion methods that has attracted many attentions for

data processing in the presence of missing entries [16].
This paper proposes a new high-dimensional structure for

sensed spectrum data in order to improve accuracy and scala-

bility of LSTM for large-scale SOL. A joint problem of data

interpolation and extrapolation (completion and prediction) is

introduced. Tensor CP decomposition provides a reliable low-

dimensional representation of data, and LSTM performs a fast

prediction on the lower-dimension data (decomposed factors).
Correlations with long lags are vulnerable to be forgot-

ten in the naive vector-based representation. However, these

correlations can be identified in a much smaller lag in a

new dimension of a tensor. In the present paper, tensor-based

representation of time series is exploited in order to extract

some basic time series known as CP factors of a tensor. These

factors are robust to noise and missing entries. Large-scale

prediction of all time series over long-time dimension only

requires the prediction of CP factors of the measured tensor.

This significant advantage can be considered as a big data

reduction technique.
The main contributions of this paper are summarized as

follows:

• A novel time-series prediction framework is proposed

based on tensor decomposition and LSTM networks. Our

framework can be employed for large-scale spectrum

occupancy learning among many other large-scale time-

series prediction applications.
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• Computational burden is decreased by solely performing

prediction on low-dimensional CP factors rather than

high-dimensional raw data.

• The problem of missing samples in the time-series pre-

diction is addressed using tensor completion techniques.

Throughout this paper, X denotes a three-way tensor and X
denotes a matrix. Mode-n fiber of a tensor is a vector obtained

by fixing all modes except the nth mode and mode-n matricized

version of a tensor is denoted by X(n). x and x represent

a vector and a scalar, respectively. Hadamard product, outer

product, and Khatri-rao product are denoted as ∗, ◦, and �,

respectively [17].

The remaining of this paper is organized as follows. Section

II presents a brief description of the CP decomposition of

tensors, and other prerequisites. The proposed method is

presented in Section III. In Section IV, we will show the

experimental results, followed by conclusion in Section V.

II. BACKGROUND AND SYSTEM MODEL

In this section, the prerequisite background is presented,

then the system model for spectrum aggregation is explained.

A. Tensor CP Decomposition

A Tensor is a multi-dimensional array. Since their introduc-

tion, tensors have been utilized in plethora of applications as

they bring a concise mathematical framework for formulating

problems involving high-dimensional data or big data espe-

cially in signal processing literature [18], [19]. The CP de-

composition factorizes a 3-dimensional tensor X ∈ R
F×T×N

of rank R into a sum of R number of rank-1 tensors which

can be represented as [17]

X =

R∑
r=1

ar ◦ br ◦ cr Δ
=< A,B,C >, (1)

where, ar, br, and cr are the CP factors of the rth

component and the rth column of factor matrices A, B and

C, respectively. In other words, A = [a1 a2 . . .ar] ∈ R
F×R.

Similarly, B ∈ R
T×R and C ∈ R

N×R are defined.
The tensor X can be matricized as follows [17]

X(1) = A(C�B)T ,

X(2) = B(C�A)T , (2)

X(3) = C(B�A)T .

A powerful property of high-order tensors is that their rank

decomposition is unique under milder conditions compared to

matrices [20]. This interesting property of tensors is attractive

for communication systems [21] and specially in channel

estimation and blind coding in MIMO systems [22], [23].

The CPD used for this paper is done by the alternating least

squares (ALS) method proposed by Carrol, and Harshman

[24], [25]. The goal is to calculate a CPD with R components

that approximates X accurately, i.e., to obtain

min
X̂
‖X − X̂ || s.t. X̂ =

R∑
r=1

= ar ◦ br ◦ cr. (3)

ALS iteratively fixes B and C to solve for A, then fixes A
and C to solve for B, and then fixes A and B to solve for C
[17]. We refer to this algorithm as the plain CP algorithm.

B. LSTM Network

A neural network is a powerful tool for activity pattern

learning [26]. Similar to other neural network structures, an

LSTM network consists of an input layer, hidden layer(s), and

an output layer [27]. An RNN network provides the feature of

internal memory maintenance i.e., it saves the information of

previous time slots. This technique has addressed the problem

of gradient explosion which means that the network overwrites

its memory in an uncontrolled manner. However, LSTM fixes

the issue encountered in the conventional RNNs by adding

an adaptive memory unit, which is its key component. This

adaptive memory unit controls saving dominant samples and

forgetting obsolete data which enables LSTM to track infor-

mation over longer periods of time.

C. System model

Consider a spectral sensor that captures the power spectrum

density (PSD) of an RF band of F frequency bins at T times a

day. Therefore, we will have a matrix of size T × F for each

day of recording. Additionally, assume data is recorded for

N days. Corresponding to one frequency bin f , there exists a

matrix of size T × N that presents occupancy changes over

all times. Similarly, corresponding to one instant of time t, a

matrix of length F ×N represents the occupancy of spectrum

over all channels and days in a specific time of day. After

N days (frontal slices), the occupancy of the f th frequency

channel at tth time slot is the subject of prediction for the

upcoming day. The proposed data arrangement is shown in

Fig.1.

To forecast the values of next time steps of a sequence, we

utilize a predictor that trains a regression network. Four types

of training networks are used in this paper, the auto-regressive

model (AR), support vector machines (SVM), convolutional

neural networks (CNN), and LSTM.
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Fig. 1: Comparing two representing methods of F time series. (a) Matrix-based
representation. (b) Tensor-based representation.
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III. PROPOSED METHOD

Tensor decomposition learns a few principle factors for

each way, such that all fibers in the corresponding way of

the tensor can be reconstructed using the linear combination

of the learned fibers. Tensor CP representation is a concise

model, and it is robust to perturbations and missing entries.

It is shown that a low-rank tensor can be recovered from a

small number of entries using CP decomposition. In other

words, the CP factors of the original tensor and the CP

factors of the partial and noisy replica of the original tensor

are close to each other [28]. These attractive characteristics

of structured data in a high-dimensional tensor motivate us

to employ tensor CP decomposition for dynamic spectrum

completion and prediction.

Consider a rank-1 tensor X ∈ R
F×T×N with a third

dimension over long time variable n in Fig. 2. This tensor

consists of FT time series (fibers) alongside its third way.

Because X has rank 1, all these time series are a scale of a

vector c, which is a basic time series. This vector is broken

down into two parts, the given part, cL, which corresponds to

the known part of tensor, and the unknown part, cP , which

corresponds to the part of the tensor to be predicted. Prediction

of all unknown variables of tensors is equivalent to prediction

of cP . For a general rank-R tensor, there exist R basic time

series that span the space of all fibers of the tensor in the

third way. Thus, the prediction of R temporal factors enables

us to predict any time series of the tensor. Suppose our source

= =

ܿ௅ ܿ௉
ܽ

ܾ
Rank-1 tensor ܽ ∘ ܾ ∘ ்ܿܿ௉

்ܾܽ
=

ढ
Fig. 2: A rank-1 tensor is the outer product of 3 vectors and it can be cast as the
modulation of a rank-1 matrix with a temporal pattern.

of data is dynamic, therefore, obsolete data might degrade

the result of prediction. To tackle this problem, only recent

slices are considered for learning. The number of slices for

each epoch of prediction is referred as the length of training,

NL. Likewise, we define the length of prediction, NP , where

N = NP+NL is equal to the size of the third dimension of the

underlying tensor. The proposed tensor-based prediction solves

two following consecutive problems to predict the unknown

entries of the tensor over time:

(A,B,CL) = argmin
A,B,CL

‖XL− < A,B,CL > ‖2
F , (4a)

XP = < A,B, h(CL,Ω) >, (4b)

in which, h(. , .) represents a model for time-series prediction

and Ω is the set of model’s parameters. We will investigate

the effect of the prediction model on the performance of the

whole framework. AR, SVM, CNN, and LSTM are studied

as core models for prediction. However, our main proposed

algorithm is LSTM-based. Fig. 3 shows the block diagram of

the proposed prediction algorithm.

CPD

LSTM

CPR

Given

Given

Predicted

Fig. 3: Block diagram of our tensor-based time-series prediction.

CP decomposition reveals the latent factors of data from

different perspective, and LSTM predicts the long temporal

factors. The extracted factors using CP and extrapolated factors

using LSTM can produce a tensor by CP reconstruction (CPR).
The computational complexity of our proposed approach

can be divided into two main terms. The First one is CPD

with complexity order of O(Rmax(F, T,N)3). Secondly, the

complexity of LSTM per time step is given as O(W ) where

W is the number of weights [27].
Matrix and tensor completion are state-of-the-art methods

for data completion in many applications [29], [30], [31]. The

proposed tensor-based scheme can be extended to the joint

completion and prediction in a straightforward formulation.

Assume a given incomplete tensor, X I
L and a mask tensor

with the same size of the data tensor, M ∈ {0, 1}F×T×NL .

The entries corresponding to 0 are not measured. Tensor X is

modeled by a rank-R tensor, while missing entries corrupt the

intrinsic structure; thus, the given X I
L is not rank-R anymore.

However, the incomplete tensor can be completed iteratively

such that the completed tensor is low-rank after performing

iterations between the following steps,

XL = M∗X I
L + (1−M)∗ < A,B,CL > (5a)

(A,B,CL) ← CP decomposition onXL (5b)

Here, 1 is a tensor with all entries equal to 1. The given data

in X I
L is kept for known entries of the mask and the missed

data is estimated via CP factors for unknown entries of the

mask. Updating the incomplete tensor enables the algorithm

to estimate a more accurate set of factors in the next iteration.

Thus, CP factors and missing entries can be updated iteratively.

The CP factors are initialized before the first iteration by

performing CP decomposition on M ∗ X I
L. Alg. 1 shows

our proposed method for joint time series completion and
prediction. The main loop of the algorithm completes data to

find a more fitted set of CP factors. Then, LSTM predicts the

long-time factors, and the predicted time series are resulted by

CP reconstruction. The tensor completion is performed using

iterative CP decomposition and data interpolation.
The CP step (in (5b) or Line 3 of Alg. 1) does not use

information of the mask, and the mask is used only for data

interpolation. A modified version of CP decomposition is

presented in Alg. 2 that infuses information of the mask in

order to estimate CP factors. The optimized CP for incomplete

data can be employed in line 3 of Alg. 1 instead of the plain

CP in order to estimate more accurate factors.

679

Authorized licensed use limited to: University of Central Florida. Downloaded on July 15,2020 at 01:05:35 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Time-series completion and prediction via tensor CP
decomposition and LSTM prediction.

Input: Incomplete Tensor X I
L, mask M and rank R.

Output: Completed and predicted tensor X̂
1: A,B,CL ← CP decomposition on M∗X I

L with rank R.

While (The stopping criterion is not met)

2: XL ← using Eq. (5a).

3: A,B,CL ← CPD on XL with rank R using Eq. (5b).

End
4: CP ←LSTM on each column of CL

5: C ← concatenate CL and CP

6: X̂ ← < A,B,C >.

Algorithm 2 Optimized CP for incomplete data.

Input: Tensor X , mask M, and rank R.
Output: CP factors of X
1: A,B,C ← Plain CP decomposition on X [17].

While (The stopping criterion is not met)

2: A ← minimize
A

‖M (1) ∗ (X(1) −A(C �B)T )‖2F
3: B ← minimize

B
‖M (2) ∗ (X(2) −B(C �A)T )‖2F

4: C ← minimize
C

‖M (3) ∗ (X(3) −C(B �A)T )‖2F
End

SOL can be regarded as a learning-based detection where

the problem is to detect whether a channel is occupied or

not. Our decision rule for detection is based on the output

of our proposed algorithm. Assume x̂ftn is the predicted

spectrum value at frequency channel f , time t and day n.

Two hypotheses are considered for spectrum occupancy status

for this entry as given by

S(f, t, n) =

{
OCCUPIED if x̂ftn ≥ γ
NOT OCCUPIED if x̂ftn < γ

(6)

In which, S(f, t, n) indicates the estimated occupancy status

at frequency channel f , time t and day n and γ is a threshold

for operating the designed detector. As γ increases, both the

probability of detection and the probability of false alarm

will decrease. Receiver operating characteristic (ROC) of the

proposed detector is able to find the optimum threshold to

achieve the desired false alarm rate.

IV. EXPERIMENTAL RESULTS

In the following experiments, we assume that 20 frequency

channels are sensed. PSD of each frequency channel is

recorded 10 times an hour, i.e., there exist 240 measurements

from the spectrum for each mode-2 fiber. Moreover, it is as-

sumed that the recording for 100 days is available. Therefore,

F = 20, T = 240, and N = 100.

Synthetic dataset for time t at day n and frequency f
follows the joint probability distribution of P (t, n, f) =
Pt(t)Pn(n)Pf (f) where each distribution is generated accord-

ing to the below model,

Pt(t) =
3∑

i=1

βiN (τi, σ
2
i ), (7a)

Pn(n|j) = N (μj , λ
2
j ), for j = n mod 7, (7b)

Pf (f) = U [1, 2, ..., F ]. (7c)

Eq. (7a) is the probability of spectrum occupation in a

typical day which is modeled by a Gaussian mixture model

(GMM) with three peaks at 3pm, 6pm, and 9pm. Parameters

{βi, τi, σi} are designed to satisfy the desired pattern of

GMM1. The conditional probability of occupancy over days

follows (7b). The condition determines that n corresponds to

which day of week. The parameters {μj , λj} are designed such

that at Mondays, Tuesdays, Wednesdays, and Thursdays, the

spectrum is more occupied than Fridays, and Friday is busier

than the weekend2 [8]. In addition, there is no preference

for frequency occupation of a user which leads to a uniform

distribution with equal probabilities over all frequency bins,

which is employed in (7c). This model is inferred from

previous work [15].

The employed LSTM architecture has 4 hidden layers.

Learning rate is 0.05 and the number of epochs is 300 with

ADAM optimizer. Intel Corei7 CPU with 4.20GHz is used for

performing simulations on MATLAB 2018b.

The CPD-ALS algorithm determines the factors of the ten-

sor numerically by solving alternating optimization problems.

Calculating CP rank of a tensor is an NP-hard problem.

However, it is upper bounded by the following inequality [17]

Rank(X ) ≤ min(FT, FN, TN).

A practical solution for finding rank is to start with a low

number, compute the normalized reconstruction error, and

increase it as needed. Normalized error is obtained as a

function of rank as follows,

ecpd(R) =
||X − X̂ (R)||F

||X ||F . (8)

In this equation, ||.||F denotes matrix Frobinious norm and

R is an integer number between 1 and the maximum rank.

Tensor ˆX (R) is the rank-R approximation of X optimized

by a tensor decomposition algorithm. The goal is to select

the lowest rank that approximates X . The effect of rank for

training the basic time series will be investigated later. In this

experiment, results of the proposed method is exhibited. The

synthesized data is organized into an F × T × N tensor. In

which F = 20 (20 frequency bins), T = 240 (240 measure-

ments per days), and N = 100 (100 days). With rank 10,

CP decomposition provides A ∈ R
20×10, B ∈ R

240×10, and

C ∈ R
100×10. In order to evaluate prediction performance, the

underlying tensor is broken into two tensors, (i) the learning

tensor, XL, and (ii) the test tensor, XP , that is the subject

of prediction. In this experiment NL = 80 days are used for

learning and NP = 20 days are considered for prediction.

1We set β1=0.5, β2=0.3, β3=0.2, τ1=150 (3PM), τ2=180 (6PM), τ3=210
(9PM), and σi=20 (2hours).

2We set μ0=μ1=μ2=μ3=1, μ4=0.5, μ5=μ6=0.2, and λj =0.1μj .
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The obtained long-time CP factors, CL ∈ R
80×10 are

exploited to predict CP ∈ R
20×10. Each column of CL is

a pseudo-time series that is employed for prediction of CP

independently. Predicted values from AR, SVM, CNN, and

LSTM training networks are computed. We also calculated the

prediction of the matrix-based data using the aforementioned

training methods to demonstrate the impact of utilizing CPD.

Numerical comparison with other methods is presented in

Table I. Tensor-based methods improve prediction accuracy

as well as save the computational burden.

TABLE I: Normalized Prediction Error and Processing Time (sec)

Method CPD time Learning time Total time Error%

AR [32] N/A 55.12 55.12 33.55

AR+CPD 3.71 4.23 7.94 21.83

SVM [26] N/A 1202.21 1202.21 23.78

SVM+CPD 3.71 20.52 24.23 16.94

CNN [8] N/A 496.44 496.44 22.40

CNN+CPD 3.71 15.87 19.58 17.81

LSTM [33] N/A 2389.96 2389.96 23.71

LSTM+CPD 3.71 12.01 15.72 15.26

Employing LSTM for prediction of CP factors exhibits the

best results, and it decreases computation cost in comparison

to the plain LSTM on the set of raw time series. The

normalized error is computed using the following rule,

ep =

∑
(xi − x̂i)

2

∑
x2
i

,

where xi and x̂i are the actual and the predicted values in the

time series.

It can be observed that each prediction technique

is improved by employing CPD. Our proposed method,

LSTM+CPD, returns the best performance in terms of the

normalized prediction error. In general, LSTM outperforms

methods based on AR, SVM, or CNN [32], [26], [8]. It

is worthwhile to notice that our proposed method predicts

spectrum occupancy more accurately than performing LSTM

on raw time series data [33]. On top of the enhanced prediction

error, CPD achieves a massive data reduction. Table I demon-

strates the processing time for each method and illustrates that

exploiting CPD is able to diminish the total running time of

prediction rigorously.

In the next experiment, the proposed method, Alg. 1, is

employed for missing spectrum recovery when a portion of

spectrum measurements is missing. To this aim, the whole

tensor is assumed to be incomplete. Therefore, random mea-

surements from a F × T ×N tensor are available to recover

the whole tensor. The proposed spectrum completion algorithm

requires performing CPD in each iteration of completion. It is

shown that employing the modified CP for incomplete data,

Alg. 2, is more effective for missing spectrum recovery. Each

iteration of data completion using the optimized CP needs

more computations. However, the number of needed iterations

for the modified CP is much less than the plain CP. Fig. 4 (a)

shows the performance of our proposed time series completion

method using the plain CP and the introduced CP versus

iteration of data completion in Alg. 1.

100 101 102
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

10 20 30 40 50
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Fig. 4: Normalized completion error using the proposed method in Alg. 1 (a) Over
iterations. (b) For different missing ratios.
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Fig. 5: Normalized error of prediction vs. the assumed rank for the underlying tensor.
a) for learning tensor and b) for the test tensor. As the rank increases the learning error
decreases. However, increasing rank causes over-learning for prediction. Thus, prediction
error is not necessarily decreasing.

The performance of our proposed joint completion and

prediction problem is presented for different missing ratios.

The plain CP algorithm and the modified CP are compared for

performing Alg. 1 to solve the joint problem. In this experi-

ment, time series of 80 days are considered for learning and

20 days for prediction. The learning tensor, XL, is assumed

to have missing entries. As it can be seen in Fig. 4 (b), our

proposed algorithm successfully completes data in terms of

the normalized error and predicts time series using LSTM. As

previously stated, the modified CP outperforms plain CP in

the presence of missing entries. The prediction error is close

to that of exploiting all data for learning that is presented in

Table I. For example, in presence of 10% missing entries for

learning, the prediction error is 16.53%. This number is close

to 15.26% which is obtained by learning using the full tensor.

Each component of CP decomposition learns some patterns

of data. Selection of the rank equal to R provides R set of

factors that reconstruct the learning tensor. As the assumed

rank increases, more details about learning tensor are captured

and the reconstruction error decreases. Fig. 5 (a) shows the

reconstruction error of the learning tensor versus the assumed

rank. However, learning fine details does not help prediction.

Thus, the imposed rank cannot be a large number. For exam-

ple, in Fig. 5 assuming rank as a number between 5 and 10
is reasonable. Fig. 5 (b) shows the performance of prediction

using LSTM versus the selected rank of CP for decomposition

of the learning tensor. As it is shown, beyond rank 10, the

normalized error of prediction is not decreasing monotonically.

The last experiment of this paper shows the performance of

spectrum occupancy detection. Two hypotheses are considered

based on (6). The detection performance is determined using

a ground truth of spectrum occupancy from the synthesized

data. Our proposed spectrum prediction results in a value

for spectrum in each channel over time. The value turns

into a decision rule by (6). Probability of detection, PD, vs.
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Fig. 6: ROC of the proposed detector in Eq. 6.

probability of false alarm, PF , are plotted by applying different

values for the threshold. Utilization of AR, SVM, CNN, and

LSTM on the tensor-based prediction is compared by their

ROC graph in Fig. 6. LSTM exhibits better performance for

detection of free channels. It means that with a fixed false

alarm rate, the probability of detection using the proposed

LSTM-based method is higher than that of the other methods.

V. CONCLUSION

A combination of tensor decomposition and LSTM time-

series prediction is proposed as a new paradigm for large-scale

spectrum occupancy prediction. The measured spectrum data

is organized into a 3-way tensor. The CPD-ALS algorithm

is performed to obtain CP factors for big data reduction

and learning reliable patterns of data. The LSTM network is

then utilized to predict CP factors in order to estimate future

spectrum occupancy patterns over time and for all frequency

channels. Employing LSTM as the core predictor of CP factors

outperforms other schemes such as AR, SVM, and CNN.
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