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Recently several asynchronous parallel algorithms for sparse
recovery have been proposed. These methods share an estimation
of the support of the signal between nodes, which then use this
information in addition to their local estimation of the support
to update via an iterative hard thresholding (IHT) method. We
analyze a generalized version of the IHT method run on each of
the nodes and show that this method performs at least as well
as the standard IHT method. We perform numerical simulations
that illustrate the potential advantage these methods enjoy over
the standard IHT.

I. INTRODUCTION

Sparse recovery problems have received significant attention
in the past decade, particularly in the compressed sensing (CS)
literature [1, 2]. CS techniques have revolutionized sensing and
sampling, with applications in image reconstruction [3, 4],
hyper spectral imaging [5], wireless communications [6–9],
and analog to digital conversion [10]. Meanwhile, complex
data-gathering devices have been developed, leading to the
rapid growth of big data. For instance, the size of problems
in hyperspectral imaging [5] are so large that they cannot
be stored or solved in conventional computers. This, as well
as the proliferation of inexpensive multi-processor computing
systems, has motivated the study of parallel sparse recovery.

In parallel sparse recovery, the goal is to solve a large-
scale sparse recovery problem by partitioning it among mul-
tiple processing nodes, thus reducing both the storage and
computation requirements [11]. However, many recent studies
[11–16] focus on synchronous parallel recovery of the sparse
signal, meaning that some subset of the processing nodes
need to wait for another subset of the nodes to complete
their tasks. Of course, this approach is sensitive to slow or
nonfunctional nodes. Thus, it is natural to look for algorithms
that divide the large-scale sparse recovery problems among
several computing nodes and solve it asynchronously. In
[17, 18], strategies to utilize the stochastic hard thresholding
(StoIHT) [19, 20] in an asynchronous manner were proposed.
Instead of sharing the current solution among the processors,
which is the conventional approach [11–13], an estimate of the
support of the signal is shared. Nodes use not only the local
information regarding their estimation of the signal but also
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the shared estimation of the support of the signal to learn the
support locations of the signal faster than conventional serial
IHT.

In this paper, we analyze the behavior of iterative hard
thresholding algorithms which use additional information (be-
sides the current estimation of the signal) to estimate the
support. In future work, we will leverage this analysis to prove
recovery guarantees for the asynchronous parallel approaches
of [17, 18].

II. NOTATION

We begin with a review of the necessary notation describing
the problem set-up and the class of algorithms to be analyzed.
We consider the sparse recovery problem of reconstructing
approximately sparse x ∈ RN from few nonadaptive, linear,
and noisy measurements, y = Ax + e, where A ∈ Rm×N is
the measurement matrix and e ∈ Rm is noise. A common
approach to recover the approximately sparse signal x is
utilizing the iterative hard thresholding (IHT) algorithm which
applies the iterative step

x(n+1) = Hk(x(n) +AT (y −Ax(n))),

where Hk(z) is the non-linear operator that sets all but the
k largest magnitude entries of z to zero. This algorithm
was shown to converge to the signal (up to a convergence
horizon which depends on the norm of the error e and the
misestimation of the sparsity) in [19]. We extend this analysis
to the class of iterative hard thresholding algorithms we denote
as IHTk,k̃, which applies the iterative step

x(n+1) = Hk,k̃(x(n) +AT (y −Ax(n))),

where Hk,k̃(z) is the non-linear operator that sets all but
the k largest magnitude entries and k̃ additional entries of
z to zero, and x(0) = 0. This class of algorithms allows
for the additional flexibility of selecting coordinates according
to a non-greedy strategy (e.g., randomly, according to prior
information, according to shared information between nodes,
etc.).

As in [19], we will analyze the IHTk,k̃ algorithms for
measurement matrices which satisfy the non-symmetric isom-
etry property (which is equivalent to the standard restricted
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isometry property for a scaled matrix). We say that A satisfies
the non-symmetric isometry property if

(1− βk)‖z‖22 ≤ ‖Az‖22 ≤ ‖z‖22

for all k-sparse z. Throughout what follows, we use ‖ · ‖ to
denote the Euclidean norm and ‖ · ‖1 the `1-norm.

We use the following standard notation. We let supp(a)
denote the set of indices of the non-zero entries of a while
suppk(a) denotes the set of indices of the k-largest magnitude
entries of a. For an index set Λ, we let aΛ denote the vector
in which the entries indexed by Λ are equal to those of a,
and all others are zero. We let xk = xsuppk(x) be the best
k-sparse approximation of the vector x. Thus, for exactly s-
sparse x, xs = x. We let the true support of signal x be
denoted Γ∗ = supp(x) and the support of the best k-sparse
approximation to x be denoted Γk = suppk(x). We let the
support of the nth iterate be denoted Γ(n) = supp(x(n)), the
support of the best k-sparse approximation to x(n) be denoted
Γ

(n)
k = suppk(x(n)), and the remaining support of the iterate

be denoted Γ
(n)

k̃
= Γ(n)\Γ(n)

k . Then, for ease of analysis, we
denote Ω(n) = Γk ∪ Γ(n). Note that |Γk| = k, |Γ(n)| = k+ k̃,
and |Ω(n)| ≤ 2k+k̃. We additionally let the iterative difference
between the Ω(n) sets be denoted Ω

(n−1)
(n) = Ω(n−1)\Ω(n). We

define the residual vector r(n) = xk − x(n), and the proxy
vector b(n) = x(n−1) + AT (y − Ax(n−1)); note then that
x(n) = Hk,k̃(b(n)). Finally, we define ẽ = A(x−xk)+e and
x̃(n) = x

Γk∪Γ
(n)

k̃

.

III. MAIN RESULT

We now show that the IHTk,k̃ algorithms converge at least
as quickly as the IHTk algorithm, and the convergence horizon
depends on the approximability of the signal x by a k-sparse
vector and the magnitude of the noise e.

Theorem 1. If A has the non-symmetric restricted isometry
property with β3k+2k̃ < 1

8 , then in iteration n, the IHTk,k̃

algorithms with input observations y = Ax + e recover the
approximation x(n) with

‖x−x(n)‖ ≤ 2−n‖xk‖+5‖x−xk‖+
4√
k
‖x−xk‖1 +4‖e‖.

Proof. First, note that

‖x− x(n)‖ ≤ ‖xk − x(n)‖+ ‖x− xk‖
= ‖r(n)‖+ ‖x− xk‖.

Now, since x(n) is at least as good as the best k-sparse
approximation to b

(n)

Ω(n) , it is better than xk, so we have

‖r(n)‖ ≤ ‖xk − b
(n)

Ω(n)‖+ ‖x(n) − b
(n)

Ω(n)‖

≤ 2‖xk − b
(n)

Ω(n)‖.

Now, expanding b
(n)

Ω(n) and noting Γk ⊂ Ω(n), we have

‖r(n)‖ ≤ 2‖xk
Ω(n) − x

(n−1)

Ω(n) −AT
Ω(n)Ar

(n−1) −AT
Ω(n) ẽ‖

≤ 2‖r(n−1)

Ω(n) −AT
Ω(n)Ar

(n−1)‖+ 2‖AT
Ω(n) ẽ‖

≤ 2‖(I −AT
Ω(n)AΩ(n))r

(n−1)

Ω(n) ‖

+ 2‖AT
Ω(n)AΩ(n−1)\Ω(n)r

(n−1)

Ω(n−1)\Ω(n)‖

+ 2‖AT
Ω(n)ẽ‖.

We have 2‖(I − AT
Ω(n)AΩ(n))r

(n−1)

Ω(n) ‖ ≤ 2β2k+k̃‖r
(n−1)

Ω(n) ‖
by Lemma 1 of [19]. Additionally, we have
2‖AT

Ω(n)AΩ(n−1)\Ω(n)r
(n−1)

Ω(n−1)\Ω(n)‖ ≤ 2β3k+2k̃‖r
(n−1)

Ω(n−1)\Ω(n)‖
by Proposition 3.2 of [21]. By the non-symmetric isometry
property, ‖AT

Ω(n)
ẽ‖ ≤ ‖ẽ‖ and β2k+k̃ ≤ β3k+2k̃ by definition.

Thus,

‖r(n)‖ ≤ 2β3k+2k̃‖r
(n−1)

Ω(n) ‖+ 2β3k+2k̃‖r
(n−1)

Ω(n−1)\Ω(n)‖+ 2‖ẽ‖

≤ 4β3k+2k̃‖r
(n−1)‖+ 2‖ẽ‖.

Now, if β3k+2k̃ <
1
8 , then ‖r(n)‖ ≤ 1

2‖r
(n−1)‖ + 2‖ẽ‖, so

iterating this inequality yields

‖r(n)‖ ≤ 2−n‖r(0)‖+ 4‖ẽ‖
= 2−n‖xk‖+ 4‖ẽ‖.

Finally, we have

‖x− x(n)‖ ≤ 2−n‖xk‖+ 4‖ẽ‖+ ‖x− xk‖

≤ 2−n‖xk‖+ 5‖x− xk‖+
4√
k
‖x− xk‖1 + 4‖e‖

since ‖ẽ‖ ≤ ‖x−xk‖+ 1√
k
‖x−xk‖1 + ‖e‖ by Lemma 6.1

in [21].

Now, while we see now that the IHTk,k̃ algorithms perform
at least as well as the IHTk algorithm, we consider a special
case in which these methods perform better than standard
IHTk algorithm. In this case, the convergence horizon defined
by the difference between the signal and its sparse approxima-
tion is decreased by the selection of the additional k̃ indices
in the approximation.

Theorem 2. Suppose the signal x has constant values on
its support, and the k̃ indices selected (non-greedily) by the
IHTk,k̃ algorithm each lie uniformly in the support of x with
probability p. If A has the non-symmetric restricted isometry
property with β3k+2k̃ < 1

8 , then in iteration n, the IHTk,k̃

algorithms with input observations y = Ax + e recover the
approximation x(n) with

Ek̃‖x− x(n)‖ ≤ 2−n‖x‖+ 5Ek̃‖x− x̃(n)‖

+
4√
k
Ek̃‖x− x̃(n)‖1 + 4‖e‖

≤ 2−n‖x‖+

(
5α+

4α√
k

)
‖x‖1 + 4‖e‖

where α =

(
|supp(x)|−k
|supp(x)|

)(
|supp(x)|−pk̃
|supp(x)|

)
.
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Proof. We begin by applying the triangle inequality,

‖x− x(n)‖ ≤ ‖x̃(n) − x(n)‖+ ‖x− x̃(n)‖.

We have that x(n) is at least as good as the best k-sparse
approximation to b

(n)

Ω(n) , it is better than x̃
(n)

Γk and x(n) agrees
with b

(n)

Ω(n) on Γ
(n)

k̃
, so we have

‖x̃(n) − x(n)‖ ≤ ‖x̃(n) − b
(n)

Ω(n)‖+ ‖x(n) − b
(n)

Ω(n)‖

≤ 2‖x̃(n) − b
(n)

Ω(n)‖.

Expanding b
(n)

Ω(n) and applying [19, Lemma 1] and [21, Propo-
sition 3.2], we have

‖x̃(n) − x(n)‖ ≤ 2‖x̃(n) − x
(n−1)

Ω(n) −AT
Ω(n)(y −Ax(n−1))Ω(n)‖

≤ 2‖x̃(n) − x
(n−1)

Ω(n) −AT
Ω(n)A(x̃(n) − x(n−1))‖

+ 2‖AT
Ω(n)Ax−AT

Ω(n)Ax̃
(n) +AT

Ω(n)e‖
≤ 2‖(I −AT

Ω(n)AΩ(n))(x̃
(n)

Ω(n) − x
(n−1)

Ω(n) )‖
+ 2‖AT

Ω(n)AΩ
(n−1)

(n)

(x̃(n) − x(n−1))
Ω

(n−1)

(n)

‖

+ 2‖AT
Ω(n)Ax−AT

Ω(n)Ax̃
(n) +AT

Ω(n)e‖
≤ 2β2k+k̃‖x̃

(n)

Ω(n) − x
(n−1)

Ω(n) ‖

+ 2β3k+2k̃‖x̃
(n)

Ω
(n−1)

(n)

− x
(n−1)

Ω
(n−1)

(n)

‖

+ 2‖AT
Ω(n)Ax−AT

Ω(n)Ax̃
(n) +AT

Ω(n)e‖

By the non-symmetric isometry property, ‖AT
Ω(n)

w‖ ≤ ‖w‖
and β2k+k̃ ≤ β3k+2k̃ by definition. Thus,

‖x̃(n) − x(n)‖ ≤ 4β3k+2k̃‖x̃
(n) − x(n−1)‖

+ 2‖A(x− x̃(n)) + e‖

Now, if β3k+2k̃ < 1
8 , then we can iterate this inequality to

yield

‖x̃(n) − x(n)‖ ≤ 2−n‖x̃(n) − x(0)‖
+ 4‖A(x− x̃(n)) + e‖

= 2−n‖x̃(n)‖
+ 4‖A(x− x̃(n)) + e‖

Finally, we have

‖x− x(n)‖ ≤ 2−n‖x‖+ 4‖A(x− x̃(n))‖
+ 4‖e‖+ ‖x− x̃(n)‖

and since x̃(n) is a best r := |suppk(x) ∪ (supp(x) ∩ Γ
(n)

k̃
)|-

sparse approximation to x, by [21, Lemma 6.1], we have
‖A(x− x̃(n))‖ ≤ ‖x− x̃(n)‖+ 1√

r
‖x− x̃(n)‖1. Thus, finally

we have

Ek̃‖x− x(n)‖ ≤ 2−n‖x‖+ 5Ek̃‖x− x̃(n)‖

+ 4‖e‖+ 4Ek̃

[
1√
r
‖x− x̃(n)‖1

]
≤ 2−n‖x‖+ 5Ek̃‖x− x̃(n)‖

+ 4‖e‖+
4√
k
Ek̃‖x− x̃(n)‖1.

Now, we need only analyze Ek̃‖x− x̃(n)‖q where q = 1, 2.
We do these analysis for both q = 1 and q = 2 next. We apply
the triangle inequality and then simplify, yielding

Ek̃‖x− x̃(n)‖q ≤ Ek̃‖xsuppk(x) − x̃
(n)
suppk(x)‖q

+ Ek̃‖xΓ
k̃(n)
− x̃

(n)
Γ
k̃(n)
‖q

+ Ek̃‖xsupp(x)\supp(x̃(n))‖q
≤ Ek̃‖xsupp(x)\supp(x̃(n))‖1

≤ ‖x‖1
|supp(x)|

Ek̃|supp(x)\supp(x̃(n))|

≤ ‖x‖1
|supp(x)|

[
|supp(x)| − k

− Ek̃

∣∣∣supp(x) ∩ (Γ
(n)

k̃
\suppk(x)

∣∣∣]
=

‖x‖1
|supp(x)|

[|supp(x)| − k]

[
1− pk̃

|supp(x)|

]
= α‖x‖1.

Applying this bound into the previous bound on Ek̃‖x−x(n)‖
yields the required result.

IV. EXPERIMENTS

In the first experiment, we take the signal dimension N =
1000, the sparsity level s := |supp(x)| = 20, and the number
of measurements m = 300. Here, the nonzero entries of signal
x are standard normal random variables (so they do not satisfy
the identical assumption of Theorem 2). Even so, when we
perform 100 iterations of IHTk,k̃ where k = k̃ = 5 and the
k̃ indices each lie in supp(x) with probability p (for various
values of p), we see that the convergence horizon is decreased
over standard IHTk as in Theorem 2. Note that in this case,
standard IHTk coincides with IHTk,k̃ where p = 0. These
results are averaged over 100 trials and plotted in Figure 1.

We additionally explore the rate at which the extra indices
shared between nodes by the Asynchronous StoIHT (AStoIHT)
[17] and the Bayesian Asynchronous StoIHT (BAStoIHT) [18]
lie in the true support of the signal x. In these experiments, we
run AStoIHT and BAStoIHT on various numbers of nodes nc
and plot the rate that the indices shared between nodes (i.e.,
not selected greedily using local node information), T (n), lie
in the true support, Γ∗. This is computed as T (n)∩Γ∗

s and is
plotted in Figure 2. Similar to the previous experiment and
following [17, 18], we N = 1000, s = 20, m = 300 and the
convergence criteria is ‖y − Ax(n)‖ ≤ 10−7. Furthermore,
in each trial, half of the cores are four times slower than the
other half. These results are averaged over 50 trials.

V. CONCLUSIONS

We have analyzed both theoretically and empirically the
behavior of the IHTk,k̃ algorithms. This provides heuristic
evidence for why BAStoIHT outperforms its undistributed
counterpart IHT. We prove that IHTk,k̃ performs at least as
well as IHTk. We additionally prove that IHTk,k̃ outperforms
IHTk in the special case where the signal x has constant
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Figure 1: Plot of error ‖x − x(n)‖ vs. iteration for 100
iterations of IHTk,k̃ with various probabilities p that the k̃
indices lie in supp(x).
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Figure 2: The rate at which the shared indices between nodes
lie in the true support of signal x for iterations of (a) AStoIHT
and (b) BAStoIHT.

entries on its support and the extra k̃ indices selected lie in
the signal support with fixed probability. Finally, we show that
this holds experimentally and provide evidence that the extra
indices shared between nodes in BAStoIHT lies in the signal
support at a high rate.
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