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Figure 1: Several deep learning applications of our proposed data selection algorithms discussed in this paper.

Abstract

Finding a small subset of data whose linear combination
spans other data points of dataset, also called column sub-
set selection problem (CSSP), is an important open problem
in computer science with a wide range of applications in
computer vision and deep learning such as the ones shown
in Fig. 1. There are some studies that solve CSSP in a
polynomial time complexity w.r.t. the size of the original
dataset. A simple and efficient selection algorithm with
a linear complexity order, referred to as spectrum pursuit
(SP), is proposed that pursuits spectral components of the
dataset using available sample points. The proposed non-
greedy algorithm aims to iteratively find K data samples
whose span is close to that of the first K spectral compo-
nents of entire data. SP has no parameter to be fine tuned
and this desirable property makes it problem-independent.
The simplicity of SP enables us to extend the underlying lin-
ear model to more complex models such as nonlinear man-
ifolds and graph-based models. The nonlinear extension of
SP is introduced as the kernel-SP (KSP) algorithm. The
superiority of the proposed algorithms is demonstrated in
many applications including training generative adversar-
ial networks, graph-based label propagation, few shot clas-
sification, graph summarization and open-set identification.

1. Introduction

Processing M data samples, each including N features,
is not feasible for of most the systems when M is a very
large number. Therefore, it is crucial to select a small subset
of K << M data from the entire set such that the selected
data can capture the underlying properties or structure of the
entire data. This way, complex systems such as deep learn-
ing (DL) networks can operate on the informative selected
data rather than the redundant entire data. Randomly select-
ing K out of M data, while computationally simple, is in-
efficient in many cases, since non-informative or redundant
instances may be among the selected ones. On the other
hand, the optimal selection of data for a specific task im-
plies solving an NP-hard problem [2]. For example, finding
an optimal subset of data to be employed in training a DL
network with the best performance requires

(
M
K

)
number of

trial and errors, which is not tractable. It is essential to de-
fine a versatile objective function and to develop a method
that efficiently selects theK samples that optimize the func-
tion. Let us assume theM data samples are organized as the
columns of a matrix A ∈ RN×M . The following is a gen-
eral purpose cost function for subset selection, known as
column subset selection problem (CSSP), which is an open
problem [3]:
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Figure 2: Intuitive illustration of our main contributions in this paper. (a) A dataset including 20 real images from AT&T face database
[1] is considered. (b) the images in (a) are represented as blue dots. Three most significant eigenfaces are shown by green dots. However,
these eigenfaces are not among data samples. Here we are interested in selecting the best 3 out 20 real images whose span is the closest to
the span of the 3 eigenfaces. There are

(
20
3

)
possible combinations from which the best subset must be selected. In this paper, we propose

the SP algorithm to select K samples such that their span pursuits the span of the first K singular vectors. (c) Utilizing the proposed linear
selection algorithm (SP), a tractable algorithm is developed for selecting from low-dimensional manifolds. First a kernel which is defined
by neighborhood transforms the given data on a manifold to a latent space. Next, the linear selection operator is performed.

S∗ = argmin
|S|≤K

‖A− πS(A)‖2F , (1)

where πS is the linear projection operator on the span of K
columns of A indicated by set S. This problem has been
shown to be NP hard [2]. Moreover, the cost function is
not sub-modular [4] and greedy algorithms are not efficient
to tackle Problem (1). Computer scientists and mathemati-
cians during the last 30 years have proposed many tractable
selection algorithms that guarantee an upper bound for the
projection error ‖A − πS(A)‖2F . These works include al-
gorithms based on QR decomposition of matrix A with col-
umn pivoting (QRCP) [5, 6, 7], methods based on volume
sampling (VS) [8, 9, 10] and matrix subset selection algo-
rithms [3, 11, 12]. However, the guaranteed upper bounds
are very loose and the corresponding selection results are far
from the actual minimizer of CSSP in practice. Interested
readers are referred to [13, 11] and Sec. 2.1 in [14] for de-
tailed discussions. For example, in VS it is shown that the
projection error on the span of K selected samples is guar-
anteed to be less than K + 1 times of the projection error
on the span of the K first left singular vectors (which is too
loose for a large K). Recently, it was shown that VS per-
forms even worse than random selection in some scenarios
[15]. Moreover, some efforts have been made using convex
relaxation and regularization. Fine tuning of these methods
is not straightforward. Moreover their cubical complexity
is an obstacle to employ these methods for diverse applica-
tions.

Recently, a low-complexity approach was proposed to
solve CSSP, referred to as iterative projection and match-
ing (IPM) [16]. IPM is a greedy algorithm that selects K
consecutive and locally optimum samples, without the op-
tion of revisiting the previous selections and escaping local
optima. Moreover, IPM samples the data from linear sub-
spaces, while in general data points reside in the union of
nonlinear manifolds.

In this paper, an efficient non-greedy algorithm is pro-

posed to approach Problem (1) with a linear order of com-
plexity. The proposed subspace-based algorithm outper-
forms the state-of-the-art algorithms in terms of accuracy
for CSSP. In addition, the simplicity and accuracy of the
proposed algorithm enable us to extend it for efficient sam-
pling from nonlinear manifolds. The intuition behind our
work is depicted in Fig. 2. Assume for solving CSSP,
we are not restricted to selecting representatives from data
samples and we are allowed to generate pseudo-data and
select them as representatives. In this scenario, the best
K representatives are the first K spectral components of
data according to definition of singular value decomposi-
tion (SVD) [17]. However, the spectral components do not
reside in the dataset. Our proposed algorithm aims to findK
data samples such that their span is close to that of the first
K spectrum of data. We refer to our proposed algorithm
as spectrum pursuit (SP). Fig. 2 (b) shows the intuition be-
hind SP and Fig. 2 (c) shows a straightforward extension of
SP for sampling from nonlinear manifolds. We refer to this
algorithm as Kernel Spectrum Pursuit (KSP).

Our main contributions can be summarized as:

• We introduce SP, a non-greedy selection algorithm
with linear order complexity w.r.t. the number of orig-
inal data points. SP captures spectral characteristics of
dataset using only a small number of samples. To the
best of our knowledge, SP is the most accurate solver
for CSSP.

• Further, we extend SP to Kernel-SP for manifold-based
data selection.

• We provide extensive evaluations to validate our pro-
posed selection schemes. In particular, we evaluate the
proposed algorithms on training generative adversar-
ial networks, graph-based label propagation, few shot
classification, and open-set identification, as shown in
Fig. 1. We demonstrate that our proposed algorithms
outperform the state-of-the-art algorithms.



2. Data Selection from Linear Subspaces
In this section, we first introduce the related work on ma-

trix subset selection and then we propose our algorithm for
CSSP.

2.1. Related Work
A simple approach to selection is to reduce the entire

data and evaluate a criterion only for the reduced set, AS.
Mathematically speaking, we need to solve the following
problem [18, 9]:

S∗ = argmin
|S|≤K

φ
(
(AT

S AS)
−1). (2)

Here, φ(.) is a function of matrix eigenvalues, such as the
determinant or trace function. This is an NP hard and non-
convex problem that can be solved via convex relaxation of
`0 norm with time complexity of O(M3) [19, 18]. There
are several other efforts in this area for designing function
φ [9, 20, 21]. Inspired by D-optimal design, VS [10] con-
siders a selection probability for each subset of data, which
is proportional to the determinant (volume) of the reduced
matrix [9, 22, 23]. To the best of our knowledge the tight-
est bound for CSSP is introduced in NIPS 2015 paper as
follows for selecting K columns [11]:

‖A− πS∗(A)‖2F ≤ 3 ‖A−AK‖2F ,

where AK is the best rank-K approximation of A. More-
over, VS guarantees a projection error up to K + 1 times
worse than the firstK singular vectors [10]. A set of diverse
samples optimizes cost function (2) and algorithms such as
VS assign a higher probability for them to be chosen. How-
ever, selecting some diverse samples that are solely different
from each other probably does not provide good represen-
tative for all (un-selected) data.

Ensuring that selected samples are able to reconstruct un-
selected samples is a more robust approach than selecting a
diverse subset. The exact solution of Problem (1) aims to
find such a subset. An equivalent problem to the original
problem (1) is proposed in [24]. Their suggested equiva-
lent problem exploits the mixed norm, ‖.‖2,0, which is not
a convex function and they propose to employ `1 regular-
ization to relax it [24]. There is no guarantee that convex
relaxation provides the best approximation for an NP-hard
problem. Furthermore, such methods which approach the
problem using convex programming are usually computa-
tionally intensive for large datasets [24, 25, 26, 27]. In this
paper, we present another reformulation of Problem (1) and
propose a fast and accurate algorithm for addressing CSSP.

2.2. Spectrum Pursuit (SP)
Projection of all data onto the subspace spanned by K

columns of A, indexed by S, i.e., πS(A), can be expressed
by a rank-K factorization, UV T . In this factorization, U ∈
RN×K , V ∈ RM×K , and U includes a set ofK normalized
columns of A, indexed by S. Therefore, the optimization
problem (1) can be restated as [16]:

argmin
U,V

‖A−UV T ‖2F s.t. uk ∈ A, (3)

where, A = {ã1, ã2, . . . , ãM}, ãm = am/‖am‖2, and
uk is the kth column of U . It should be noted that U is
restricted to be a collection of K normalized columns of
A, while there is no constraint on V . As mentioned be-
fore, this is an NP hard problem. Recently, IPM [16], a
fast sub-optimal approach to tackle (3), was proposed. In
IPM, samples are selected in a greedy manner until K sam-
ples are collected. Although sequential selection is desir-
able in certain applications such as active learning and on-
line data selection, it may result in a local optimum. In this
paper, we propose a new selection algorithm, referred to as
Spectrum Pursuit (SP), which can select a better solution for
Problem (3). The time complexity of both IPM and SP are
linear with respect to the number of samples and the sam-
ples’ dimension, which is desirable for selection from very
large datasets. The idea behind SP is that instead of mak-
ing K consecutive locally optimal selections, we start with
a set of K samples, selected either randomly or for exam-
ple by IPM. We then iteratively update this set by remov-
ing one sample and adding a new one such that the new set
of K samples minimizes (3). This facilitates revising our
selection and escaping from local optima. In SP, we mod-
ify (3) into two sub-problems. The first one is built upon
the assumption that we have already selected K − 1 data
points and the goal is to select the next best data. How-
ever, it relaxes the constraint uk ∈ A in (3) to a moderate
constraint ‖uk‖ = 1. This relaxation makes finding the
solution tractable at the expense of coming up with a solu-
tion that may not belong to our data points. To fix this, we
introduce a second sub-problem that reimposes the underly-
ing constraint and selects the datapoint that has the highest
correlation with the point selected in the first sub-problem.
These sub-problems are formulated as

(uk,vk) =argmin
u,v

‖A−UkV
T
k − uvT ‖2F s.t. ‖u‖2 = 1,

(4a)

Sk =argmax
m

|uT
k ãm|. (4b)

Here Sk is a singleton that contains the index of the se-
lected data point. Matrices Uk and V k are obtained by re-
moving the kth column of U and V , respectively. Subprob-
lem (4a) is equivalent to finding the first left singular vector
(LSV) of Ek , A − UkV

T
k

. The constraint ‖u‖ = 1
keeps u on the unit sphere to remove scale ambiguity be-
tween u and v. Moreover, the unit sphere is a superset for
A and keeps the modified problem close to the recast prob-
lem (3). After solving for uk, we find the data point that
matches it the most in (4b). The steps of the SP algorithm
are elaborated in Algorithm 1. Fig. 3 illustrates Problem
(4) pictorially. SP is a low-complexity algorithm with no
parameters to be tuned. The complexity order of computing
the first singular component of anM×N matrix isO(MN)
[28]. As the proposed algorithm only needs the first singu-
lar component for each selection, the computational com-
plexity of SP is O(NM) per iteration which is much faster
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Figure 3: Two consecutive iterations of SP algorithm. The first LSV of
the residual matrix is a vector on SN−1 and the goal is to find K samples
which pursuit the spectral characteristics of dataset over iterations.

than convex relaxation-based algorithms with complexity
O(M3) [18]. Moreover, SP performs faster than K-medoids
algorithm and volume sampling, whose complexity is of or-
der O(KN(M − K)2) and O(MKN logN), respectively
[29, 30]. The stopping criterion can be convergence of set S
or reaching a pre-defined maximum number of iterations.

Simplicity and accuracy of SP facilitate its extension to
nonlinear manifold sampling with a wide range of applica-
tions. We will refer to this extended version as kernel-SP
(KSP) which is discussed next in Section 3.

Algorithm 1 Spectrum Pursuit Algorithm
Require: A and K

Output: AS
1: Initialization:

S←A random subset of {1, . . . ,M} with |S| = K
{Sk}Kk=1←Partition S into K subsets, each containing one element.
iter= 0
while a stopping criterion is not met

2: k =mod(iter,K)+1
3: Uk = normalize column(AS\Sk )

4: V k = ATUk(U
T
k
Uk)

−1

5: Ek = A−UkV k
T (null-space projection)

6: uk = find the first left singular vector of Ek by solving (4a)
7: Sk ←− index of the most correlated data with uk(4b)
8: S←−

⋃K
k′=1 Sk′

9: iter=iter+1
end while

3. Kernel SP: Selection based on a Locally Lin-
ear Model

The goal of CSSP introduced in (1) is to select a subset
of data whose linear subspace spans all data. Obviously,
this model is not proper for general data types that mostly
lie on nonlinear manifolds. Accordingly, we generalize (1)
and propose the following selection problem in order to ef-
ficiently sample from a union of manifolds

argmin
|S|≤K

M∑
m=1

‖am − πSm(am)‖2F s.t. Sm ⊆ S ∩ Ωm, (5)

where Ωm indicates the indices of local neighbors of am

based on an assumed distance metric. This problem is sim-

plified to CSSP in Problem (1) if Ωm is assumed to be equal
to {1, · · · ,M}. Problem (2) is written for each column of
A separately in order to engage neighborhood for each data.
This problem facilitates fitting a customized and locally lin-
ear subspace for each data sample in terms of its neighbors.

Similar to Section 2, where we introduced SP as a low-
complexity algorithm to tackle the NP-hard Problem (1),
here we propose an extention of SP, referred to as kernel
SP (KSP), to tackle the combinatorial search Problem (2).
Manifold-based dimension reduction techniques and clus-
tering algorithms do not provide prototypes suitable for data
selection. However, inspired by spectral clustering of man-
ifolds [31], main tool for nonlinear data analysis that parti-
tions data into nonlinear clusters based on spectral compo-
nents of the corresponding normalized similarity matrix, we
formulate KSP as

S = argmin
|S|≤K

‖L− πS(L)‖2F , (6)

where L = D−
1
2SD−

1
2 , is the normalized similarity ma-

trix of the data, S = [sij ] ∈ RM×M is defined as the
similarity matrix of data and D is a diagonal matrix and
dii =

∑
j 6=i sij . Note that since the SP algorithm mod-

els data with a low-rank matrix, identity matrix is not sub-
tracted in order to keep L low-rank. The defined L differs
Laplacian matrix only by an identity matrix. Note that prob-
lem (6) is the same as problem (1), where A is replaced by
L. The steps of the KSP algorithm are summarized in Al-
gorithm 2.

Algorithm 2 Kernel Spectrum Pursuit

Require: A, α, and K
Output: S

1: S←Similarity Matrix: sij =e−α‖ai−aj‖

2: Form diagonal matrix D where dii =
∑
i6=j sij

3: L = D−1/2SD−1/2.
4: S← Apply SP on L with K (Alg. 1)

4. Empirical Results and Some Applications of
SP/KSP

To evaluate the performance of our proposed selection al-
gorithms we considered several applications and ran exten-
sive experiments. For all the experiments, we compared our
results with other state-of-the-art selection algorithms. The
selected applications in this paper are (i) fast GAN train-
ing using reduced dataset, (ii) semi-supervised learning on
graph-based datasets, (iii) large graph summarization, (iv)
few-shot learning, and (v) open-set identification.

4.1. Training GAN
Here, we present our experimental results on CMU

Multi-PIE Face Database [32] for representative selection.
We use 249 subjects from the first session with 13 poses,
20 illuminations, and two expressions. Thus, there are
13 × 20 × 2 images per subject. Fig. 4 (top) depicts 10



selected images from 520 images of a subject based on dif-
ferent selection methods: SP (our proposed) is compared
with DS3 [33], VS [30], and K-medoids [34] as three
well-known selection algorithms. As it can be seen, SP
selects from more diverese angles. Fig. 4 (bottom) com-
pares the performance of different state-of-the-art selection
algorithms in terms of normalized projection error of CSSP,
which is defined as the cost function in (1) for a give selec-
tion method normalized by the projection error of the ran-
dom selection. As shown, SP outperforms all other meth-
ods. There is also a considerable performance gap between
SP and IPM [16], the second best algorithm.

K-
M
ed

D
S3

SP
VS

Figure 4: Results of representative selection from face images of
Multi-pie dataset. (Top) Visualization of selection 10 images from
520 images of a subject. (Bottom) Averaged projection error for
different number of representatives from 249 subjects. The projec-
tion error is normalized by projection error of random selection for
all methods and the ratio is reported. The proposed SP algorithm
is compared with IPM [16], DS3 [33], FFS [35], SMRS [24], S5C
[36], K-medoids [34] and volume sampling [30].

Next, to investigate the effectiveness of selection in a real
application, we use the selected samples to train a genera-
tive adversarial network (GAN) to generate multi-view im-
ages from a single-view input. For that, the GAN architec-
ture proposed in [37] is employed. The experimental setup
and the implementation details in [37] are considered where
the first 200 subjects are used for training and the rest for
testing. We select only 9 images from each subject and
train the network with the selected images for 300 epochs
using the batch size of 36. Table 1 shows the normalized
`2 distances between features of the real and generated im-
ages, indicated as identity dissimilarities, averaged over all
the images in the testing set. Features are extracted using a
ResNet18 trained on MS-Celeb-1M dataset [38, 39]. As can
be seen, SP and KSP outperform other selection methods.
Moreover, KSP performs better than SP due to the selection
from a nonlinear manifold.

Table 1: Identity dissimilarities between real and GAN-generated
images for different selection methods. For each method, GAN is
trained based on the selected data points.

SMRS S5C FFS DS3 K-Med VS IPM SP KSP
0.631 0.617 0.608 0.602 0.599 0.583 0.553 0.550 0.546

Trained GAN using All Data 0.5364

4.2. Graph-based Semi-supervised Learning
To evaluate the performance of our proposed selection

algorithm on more complicated scenarios, we consider the
graph convolutional neural network (GCN) proposed in [40]
that serves as a semi-supervised classifier on graph-based
datasets. Indeed, a GCN takes a feature matrix and an adja-
cency matrix as inputs and for every vertex of the graph pro-
duces a vector, whose elements correspond to the score of
belonging to different classes. Moreover, every row of the
feature matrix defines the feature of a vertex in the graph.
The semi-supervised task here considers the case where
only a selected subset of nodes are labeled in the training
set and the loss is computed based on the output vectors of
these labeled nodes to perform back-propagation. More-
over, we inherit the same two-layer network architecture
from [40] and we follow their pre-processing techniques.
To be more specific, an identity matrix is added to the orig-
inal adjacency matrix so that every node is assigned with
a self-connection. Further, we normalize the summation of
two matrices using the kernel discussed in lines 2 and 3 of
Algorithm 2 while the adjacency matrix serves as the simi-
larity matrix S.

Our proposed KSP algorithm, together with other base-
lines, is tested on Cora dataset which is a real citation net-
work dataset with 2, 708 nodes and 5, 429 number of edges
as well as a random cluster-based graph datasets. The neural
network is trained based on semi-supervised learning, i.e.,
the network is fed with the feature and adjacency matrices
of the entire graph while the loss is only computed on the la-
beled vertices. Here the labeled vertices is the subset of ver-
tices that is selected by performing our proposed algorithm
(KSP) on the normalized adjacency matrix. We train both
datasets for a maximum of 100 epochs using Adam [41]
with a learning rate of 0.01 and early stopping with a win-
dow size of 10, i.e. we stop training if the validation loss
does not decrease for 10 consecutive epochs. The results are
summarized in Figure 5. Due to the inherent randomness of
training neural networks using gradient descent based opti-
mizers, some ripples appear in the curves. However, it can
still be identified that, as expected, the test accuracy tends to
increase as more labeled points are utilized for training. Fur-
ther, as can be seen from the figure our proposed KSP algo-
rithm significantly outperforms other algorithms for almost
the whole range of selected points. This implies the supe-
rior performance of KSP in selecting the subset of data that
comprises the most representative points of clusters. Lastly,
because of the existence of outliers in a random graph, the
accuracy of the proposed algorithm starts to improve slowly
at about 70%, whereas other competitors saturate at about
60%. However, we note that the model is trained with only
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Figure 5: Semi-supervised classification accuracy of GCN on (Left) the
Cora dataset [42] and (Right) a random cluster-based graph dataset. Only
the selected nodes are labeled and the subset selection is performed using
the proposed KSP algorithm, in comparison with GIGA [43], FW [43], and
random selection (RND).

Figure 6: Zachary’s Karate Club is a small social network where a con-
flict arises between the admin and the instructor in the club [52]. Each
node of the club network represents a member of the karate club and a link
between members indicate that they interact outside the club. The admin
and the instructor which are the two nodes of this graph are {0, 33}, re-
spectively. We apply KSP and two other algorithms to choose two of the
main vertices. GIGA, MP and FW select•, IS selects•, VS selects•,
and KSP, FFS and DS3 select•.

10% of data, so this also implicitly suggests that our algo-
rithm successfully picks out the most informative nodes.

4.3. Graph Summarization
Clusters (also known as communities) in a graph are

those groups of vertices that share common properties.
Identification of communities is a crucial task in graph-
based systems. Instances include protein-protein interaction
networks in biology [53], recommendation systems [54] in
computer science, social media networks, etc. In the fol-
lowing, we design an experiment to find the vertices with a
central position on several types of graphs, produced both
by real datasets such as [47] and also synthetic graph which
contains the aggregated network of some users’ Facebook
friends. In the former dataset, vertices represent individuals
on Facebook, and edges between two users mean they are
Facebook friends.

Various community detection based algorithms such as
betweenness centrality (BC) has been proposed to measure
the importance of a user in the network [46] by looking at
how many shortest paths pass through that user (vertex) for
connecting each pair of other users (vertices). The more
shortest paths that pass through the user, the more central
the user is in the Facebook social network. Now assum-
ing that a graph G or a similarity matrix is given, the aim
is to first implement our method on the graph to approxi-
mate it with a subset of the vertices and then the exploit the
measure of shortest path to evaluate the accuracy. We re-
port the following performance measures: instead of com-
puting the average shortest path between each vertex of the
graph and all the other vertices which is really expensive
(use of Dijkstra’s algorithm n2 times where n is the number

of vertices), we compute the average shortest path between
all the vertices and the selected vertices by KSP. The lat-
ter can be computed by using Dijkstra’s algorithm only kn
times, where k is the number of selected vertices.

Further, in this experiment we evaluate the performance
of KSP compared with several state-of-the-art algorithms
for data selection and coreset construction. The results
of these experiments are shown in Table 2 where 10 ver-
tices from each graph are selected (except for Karate Club
sketched in Fig. 6 from which we select 2 vertices) by differ-
ent data selection algorithms. As can be seen our proposed
method provides significant improvements in shortest path
error over the state-of-the-art.

4.4. Few Shot Learning
Training on Sampled Pairs: The previous sections dis-

play the exceptional performance of our selection algo-
rithms on cluster-based graphs. Next, we would like to fur-
ther evaluate the performance of SP on a more common data
such as images and features. This analysis is motivated by
the work in [55], as we employ their proposed neural net-
work architecture named Siamese neural network. More-
over, we adopt the Omniglot dataset and split it into three
subsets for training, validation, and test, each of which con-
sists of totally different classes. For training and validation
process two images are randomly sampled from their own
corresponding data and are fed as the input to the Siamese
neural network and a binary label is assigned to each pair
according to the classes that they are sampled from. The
network trained on these pairs achieves 90%+ accuracy in
distinguishing inter-class and intra-class pairs.

Classification with Few-Shot Learning: After being
fully trained on the sampled pairs, the model is further
developed for few-shot classification. In other words, if
the model is accurate enough to distinguish the identity of
classes from which the pairs come from, given few rep-
resentatives of a specific class, a trained Siamese network
could serve as a binary classifier that verifies if the test
instance belongs to this class. Therefore, the problem re-
duces to selecting the best representatives of every class to
be paired with any test images. The class that produces the
pairings with the highest average score is then identified as
the classification result. This subset selection problem can
be addressed by our SP algorithm. The test set of Omniglot
after splitting comprises 352 different classes, each of which
is composed of around 20 images. We sequentially deploy
our algorithm on every one of the 352 classes to choose the
most informative subset of the 20 images. The classifier
made from the Siamese network and the selected 352 repre-
sentative groups are then evaluated on all the 7,000+ images
in the test set. An example of selected groups and the few-
shot learning results are illustrated in Figure 7.

It can be observed in Figure 7 that images selected by
the evaluated algorithms are generally more standard and
more identifiable than the others. Among all these competi-
tor algorithms, SP makes the best selection for this char-
acter. Specifically, both GIGA [43] and FW [43] pick the



Table 2: Performance of different state-of-the-art coreset construction algorithms for Graph summarization (central vertex selection) on
various types of graphs. Practically all major social networks provide social clusters for instance, ’circles’ on Google+, and ’lists’ on
Facebook and Twitter. For example, concerning Facebook ego graph, with SP algorithm we define the task of identifying users’ social
clusters on a user’s ego-network by exploiting the network structure. The table shows that our proposed algorithm outperforms other
algorithms on all graphs except Florentine.

Graph/Algorithm RND IS [44] VS [30] FFS [35] MP [45] DS3 [25] IPM [16] FW [43] BC [46] GIGA [43] KSP
Facebook Ego [47] 0.2960 0.1250 0.2210 0.0142 0.0250 0.0147 0.0140 0.0190 0.0149 0.0145 0.0130

Powerlaw Cluster [48] 0.2739 0.2735 0.2732 0.0167 0.2701 0.0275 0.0167 0.2730 0.0358 0.0296 0.0167
Barabasi [49] 0.1630 0.1625 0.0142 0.0184 0.1625 0.0154 0.0156 0.1628 0.0378 0.0169 0.0122

Geo [50] 0.0685 0.0674 0.0683 0.0424 0.0493 0.0411 0.0299 0.0673 0.0014 0.0017 0.0012
Florentine [51] 0.0026 0.0006 0.0007 0.0003 0.001 0.0019 0.0003 0.0009 0.0003 0.0003 0.0004

Karate Club [52] 0.1388 0.0158 0.0326 0.0117 0.0146 0.0117 0.0117 0.0146 0.0117 0.0146 0.0117
Synthesized Graph 0.1421 0.1430 0.0115 0.0120 0.0143 0.0127 0.0122 0.0143 0.0143 0.0124 0.0106

Figure 7: Learning of Omniglot’s dataset on Siamese Neural Network
using few shots. (Left) Visualization of the 2-image selection from the first
class of Omniglot’s test set. Images selected by an algorithm are marked
in corners with the same color used in the right plot. (Right) Classification
accuracy with few-shot learning.

last image of the first row that does not show a clear spi-
ral and the last character of the second row chosen by FW
is written huddled. Due to the fact that the classification
accuracy is evaluated based on the 352 test classes while
they do not appear in the training set, around 60% of cor-
rect classification is considerably acceptable. In particular,
SP achieves accuracies of 59.84%, 62.70%, 63.55%, and
64.88% for 2-shot, 3-shot, 4-shot, and 5-shot classifications,
respectively, which is comparable to the GIGA results of
60.21%, 62.36%, 63.42%, and 65.22% while outperform-
ing other baseline algorithms. This is while SP needs less
memory requirement and its computational complexity is
less than its peers.

4.5. Open-Set Identification
In this experiment, the open-set identification problem

is addressed based on selection which results in signifi-
cant accuracy improvement compared to the state-of-the-
art. In open-set identification, test data of a classification
problem may come from unknown classes other than the
provided classes at the time of training, and the goal is
to identify such samples belong to open-set and not the
known labeled classes [56]. Interested readers are referred
to [57, 58, 59, 60, 61] to know about the state-of-the-art
milestone of approaches towards open-set problem.

Employing the entire closed-set data during the train-
ing procedure leads to inclusion of untrustworthy samples
of the closed-set. Even regularized or underfitting models
may suffer from slightly memorizing the behavior of such
samples which exacerbate the separation between open and
closed-set by adding ambiguity to the decision boundary be-
tween the closed and open-set classes. To resolve this issue,

we utilize our proposed selection method, KSP, which se-
lects the core representatives. Therefore, selected represen-
tatives provide distinctive open-set determiner as they are
more robust in rejecting open-set test samples which do not
fit well to the core representatives. We pictorially illustrate
the proposed scheme for open-set identification in Fig. 1 on
the rightmost panel and the proposed algorithm which is re-
ferred to as selection-based open-set identification scheme
(SOSIS) hereunder (Algorithm 3).

Algorithm 3 Selection-based open-set identification (SOSIS)

Require: AX (closed-set training data), and AY={aYp }Pp=1 (test set)
1: Train a classifier on AX on H classes
2: Sh ← set of K selected samples for class #h in AX

3: `(p)← label aYp using trained classifier in Step 1 (∀p)
4: err(p) = ‖aYp − πS`(p) (a

Y
p )‖2 (∀p)

5: c1, c2 ← perform kmeans on err with 2 centroids
Output: open-set← {aYp | err(p) ≥ c1+c2

2
}

Experiment Set-up: We use MNIST dataset as the
closed-set with samples from Omniglot as the open-set. The
ratio of Omniglot to MNIST test dataset is set to 1 : 1
(10,000 from each) same as the simulation scenario in [59].
A classifier with ResNet-164 architecture [62] is trained on
MNIST as for step 1 in Alg. 3. Results of macro-averaged
F1-score [63] for SOSIS method with different selection
methods and different number of samples are listed in Table
3 as well as the sate-of-the-art in [59]. The best achieved
F1-score is 0.964 belonging to SOSIS with KSP selection
using 50 representatives. The second best performance goes
to SOSIS with SP selection again using 50 representatives.
Performance downgrade is observed for both scenarios of
choosing too few representatives such as 5 or fewer and
obsessively choosing all data. The gap between the error
values resulted from projection of open and closed-set onto
selected samples computed in step 4 of Alg. 3 differs sig-
nificantly compared to that of the projection onto the entire
dataset (due to overfitting and memorization effect). We
call this splitting property as reflected in Fig. 8 (a) (entire
dataset) vs. 8 (b) (selected samples) at the testing phase. For
a better visualization, projection errors are sorted separately
for closed-set and open-set data at the testing phase. As
observed, fewer number of representatives results in higher
projection error. However, at the same time closed-set and



Table 3: Comparing F1-score of the proposed SOSIS algorithm with
state-of-the-art methods for open-set identification. SP, KSP and FFS [35]
are employed as the core of SOSIS.

method/K 5 20 50 100 500 All Data
SOSIS (based on FFS) 0.876 0.913 0.944 0.952 0.841
SOSIS (based on SP) 0.904 0.945 0.958 0.952 0.824 0.792
SOSIS (based on KSP) 0.928 0.959 0.964 0.959 0.827

Supervised only [59] 0.680
LadderNet [59] 0.764
DHRNet [59] 0.793

open-set test data are better split as also observed in Fig.
8. It is worth noting that the threshold also can be assigned
by validation if all values in err are not available at testing
time. In online applications, due to the splitting property
one can set the threshold according to error values on closed
set test samples benefiting form the splitting property.

Fig. 9 contains the macro-averaged F1-score vs. thresh-
old for different selected representatives using SP data se-
lection. Fine-tuning the open-set identifier by selecting best
representatives enhances the accuracy significantly as ob-
served in Fig. 9. As the number of representatives de-
creases, the performance sensitivity to the threshold adjust-
ment increases which means there is a trade-off between
accuracy using selection-based scheme and the stability of
performance w.r.t the designed threshold range. Fig. 9 also
shows that between 50-100 samples from each training class
(each containing about 6000) leads to optimal F1-score.
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Figure 8: Sorted values of err in Step 4 of Alg. 3 for 20,000 test
samples (10,000 per each closed/open set). (a) all data are selected as rep-
resentatives. (b) only 20 representatives are selected. For both (a) and (b),
a projection error above/below the threshold leads to classifying a sample
as open-set/closed-set. Blue and red points correspond to the correctly-
classified and missclassified samples, respectively. As shown, implement-
ing SOSIS enabled by KSP has significantly reduced the number of mis-
classified samples, from 5642 to 984.
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Figure 9: F1-score vs. threshold for different number of selected repre-
sentatives (Accuracy-Sensitivity Trade-off)

5. Conclusion
A novel approach to data selection from linear subspaces

is proposed and its extension for selection from nonlin-
ear manifolds is presented. The proposed SP algorithm
demonstrates an accurate solution for CSSP. Moreover, SP
and KSP have shown superior performance in many appli-
cations. The investigated fast and efficient deep learning
frameworks, empowered by our selection methods, have
shown that dealing with selected representatives is not only
fast but can also be more effective. This manuscript is allo-
cated mostly for algorithm designs and applications of data
selection. Theoretical results and more buttressing experi-
ments can be found in the supplementary document.
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Supplementary Material
The supplementary material provided in this document is orga-

nized as follows. In Section A, we present some theoretical results
on performance guarantees of SP and KSP. Then, in Section B,
further experiments are provided to investigate the performance of
the proposed approaches on several different real datasets.

A. Theoretical Results
Theorem 1 expresses that if dataset is grouped into P clusters.

SP selects a number of samples according to the importance of
each group (subspace). Importance refers to the rank of each sub-
space. Theorem 2 provides a tight upper bound for CSSP. Finally,
Lemma 2 shows that the proposed locally linear selection problem
in Equation (5) of the main paper is equivalent to the conventional
CSSP where the selection is performed on a similarity matrix in-
stead of raw data.

Theorem 1 Let A ∈ RN×N be collection of M samples in N
dimensional space. Assume columns of A can be grouped into
P clusters and each cluster forms a kp-dimensional subspace in
which

∑P
p=1 kp = K ≤ N . Selection of K samples using SP

provides exactly kp samples from each cluster.

Proof of Theorem 1: Let S denote the span of the selected data
and N be the null space of S. If kp samples are selected from the
pth cluster (subspace) using SP, the projection of all the samples
of the corresponding cluster onto N is 0, and SP does not select
further samples from the pth cluster anymore. Suppose SP selects
np samples from the pth cluster. Thus, the number of selected sam-
ples from each cluster cannot exceed the dimension of the cluster
subspace, i.e., np ≤ kp. If SP totally selects K samples from the
entire data, and the inequality np < kp holds for a cluster, then
there exists another cluster, i, for which ni > ki that is in contra-
diction to the previously stated result, np ≤ kp. Thus, np must be
equal to kp for p = 1, · · · , P . �

Theorem 2 If the columns of matrix A contain M zero-mean
samples inN dimensional space and ai is the first selected sample
using SP, then,

‖A− πi(A)‖2F ≤
(
1 +R2

A(1 +RA)(1−RA)
)
‖A−A1‖2F ,

where ‖A − πi(A)‖2F is the projection error on the span of the
selected sample and A1 is the best rank-one approximation.

Obviously, ‖A−A1‖2F is the lower bound for projection error
based on the definition of SVD. However, this theorem states that
the upper bound is a scale (≥ 1) of the lower bound and the scale
is 1 +R2

A(1 +RA)(1−RA).

Proposition 1 Assume ai is the first selected sample using SP.
Then,

‖A− πi(A)‖2F ≤ 1.25‖A−A1‖2F .

When RA = 1, the upper bound of projection error is equal
to its lower bound since the dataset is rank-one. Thus, any selec-
tion (even random selection) provides the same subspace which
is equal to the subspace of rank-one approximation. On the other
hand, when RA is too small,1 distribution of points in the dataset
is symmetric. Thus, a specific data point does not have a priority

1Please note thatRA is greater than 1/
√
N .
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Figure 10: Trajectory of the normalized projection error over iter-
ations of SP algorithm in terms of the rank-oneness measure. The
projection error is normalized by projection error of the best rank-
1 approximation. This ratio is surely greater than 1. However, we
have shown it is less than 1.25 for our algorithm. In each iteration,
matrix A is assumed to be the projection of entire data onto null
space of previously selected data and one sample is selected.

to be selected. Therefore, for such datasets even random selection
of a sample provides a close projection error in comparison to the
best projection error. In other words, for very low-rank and very
high-rank datasets, selection is not challenging and there are triv-
ial solutions. The most challenging scenario for selection of a new
sample occurs when RA =

√
2/2 and the gap between the lower

bound and the upper bound is maximized. In this case, the role of
selection algorithm is more critical because the dataset is neither
highly structured nor symmetrically-spread in the space. Fig. 10
shows the ratio of projection error obtained by selection to projec-
tion error using the best rank-1 approximation for several datasets.

Before jumping to proof of Theorem 2, we need to borrow the
following definition and lemma from [16].

Definition 1 [16] Rank-oneness measure (ROM) for matrix A
with singular values σ1, σ2, . . . , σR is defined as RA =√

σ2
1∑R

r=1 σ
2
r

= σ1
‖A‖F

.

Lemma 1 [16] Let a1,a2, . . . ,aM ∈ RN be M given data
points of dimension N organized as columns of A. Let σ1, u and
v denote the first singular value, the corresponding left and right
singular vectors of A, respectively. Then, there exists at least one
data point such that the absolute value of its inner product with u
is greater than or equal to σ1√

M
. Hence, max

m
|aTmu| ≥ σ1√

M
.

Proof of Theorem 2: Matrix A can be written in terms of its
singular components as follows,

A = u1u
T
1 A + · · ·+ uNuTNA.

The scaled version of selected data is decomposed in terms of the
first LSV and a vector which is orthogonal to it, denoted by u⊥.
Mathematically,

ãi =
u1 + αu⊥√

1 + α2
. (7)

Projection of A on the space of the selected data can be cast as
follows,

πi(A) =ãiã
T
i A/ã

T
i ãi

=
1

(1 + α2)
u1u

T
1 A +

α2

(1 + α2)
u⊥u

T
⊥A. (8)



Note that u⊥ is a normalized vector perpendicular to u1. Conse-
quently, the projection error can be presented in terms of singular
components as follows.

‖A− πi(A)‖2F = (9)

‖u1u
T
1A+...+uNuTNA–

1

(1+α2)

(
u1u

T
1A+α2u⊥u

T
⊥A
)
‖2F .

It is straightforward to show that ‖A − πi(A)‖2F is minimized
if u⊥ = uN . Let Resmin denote the minimum value of ‖A −
πi(A)‖2F . Thus, Resmin is equal to

‖u1u
T
1A+...+uNuTNA–

1

(1+α2)

(
u1u

T
1A+α2uNu

T
NA
)
‖2F

(10)

It is clear that ‖A −A1‖2F is a lower bound for ‖A− πi(A)‖2F .
Therefore,

‖A−A1‖2F ≤ Resmin.

On the other hand, there exists a value ε such that Resmin is upper
bounded by a factor of its lower bound as follows,

Resmin ≤ (1 + ε)‖A−A1‖2F.

Thus, substituting the expansion of Resmin from (10) we are look-
ing for an ε that satisfies the following inequality,

‖u1u
T
1A+...+uNuTNA–

1

(1+α2)

(
u1u

T
1A+α2uNu

T
NA
)
‖2F

≤ (1 + ε)‖A−A1‖2F ,

which is equivalent to

α4

(1 + α2)2
σ2
1+σ2

2 + σ2
3 + · · ·+ σ2

N−1 +
1

(1 + α2)2
σ2
N

≤ (1 + ε)(σ2
2 + · · ·+ σ2

N ). (11)

Since the data is pre-processed to be zero-mean, σN = 0 and
(11) can be simplified as

α4

(1 + α2)2
σ2
1 ≤ ε(‖A‖2F − σ2

1) (12)

By dividing both sides to σ2
1 , the right side can be cast in terms of

ROM(A) as
α4

(1 + α2)2
≤ ε(1−R2

A

R2
A

).

Now let us write the right side in terms of correlation of the first
left singular vector and ith data which is selected as stated in (7)
(their correlation is indicated by c).

(c2 − 1)2/c4

1/c4
≤ ε(1−R2

A

R2
A

).

According to Lemma 1 the correlation is lower-bounded by RA.
Thus,

(1−RA)2(RA + 1)2 ≤ ε(1−R2
A

R2
A

).

And finally ε is upper bounded in terms of ROM of A as follows,

ε ≥ R2
A(1 +RA)(1−RA).

SinceRA is bounded between 0 and 1, each ε ≥ 1
4

which is the
maximum of the right side establishes the desired upper bound. �

Lemma 2 Consider M data points and the neighborhood for
each one are denoted by am and Ωm, respectively. The following
problems have the same selection results using the SP algorithm.

P1 : argmin
|S|≤K

M∑
m=1

‖am − πSm(am)‖2F s.t. Sm ⊆ S ∩ Ωm,

and,
P2 : argmin

|S|≤K
‖H − πS(H)‖2F ,

where hij = [ |Ωi ∩ Ωj |aTi aj ].

Proof of Lemma 2: Matrix Xm ∈RN×M is defined as an all-
zero matrix except in rows indexed by Ωm. The non-zero rows are
equal to aTm (repeated for all those rows). Matrix X ∈ RMN×M

is defined as follows,

X = [vec(X1), · · · , vec(XM )].

Operator vec(.) reshapes a matrix to a vector. Using the definition
of X , Problem P1 can be cast in terms of X as follows,

argmin
|S|≤K

‖X − πS(X)‖2F .

It is straightforward to show that the kth left singular vector of
XTX is proportional to XTuk, where uk is the kth left singular
vector of X . Given the singular value decomposition of X as
X = UΣV T , where U and V are orthogonal matrices and Σ
is the diagonal matrix of singular values, one can write XTX =
V ΣUTUΣV T = V Σ2V T . Thus, the k-th left eigenvector is
aligned with vk which is the k-th column of V . Similarly,

XTuk =

rank(X)∑
i=1

σiviu
T
i uk = σkvk, (13)

where the last equality follows from orthogonality of U . Now, it
is trivial that the k-th left eigenvector of XTX is aligned with
XTuk (both aligned with vk).

As the following step of the proof, we proceed to state that
the same data index, m, which maximizes |xTmuk| (as in Eq.
4(b) in the main text) also maximizes |hTmXTuk|, where hm
is the mth column of H = XTX . This can be proved as fol-
lows: m∗ is in fact given as m∗ = argmax

m
|xTmuk |, i.e., the

index which picks the largest magnitude in vector XTuk. Simi-
larly, one can write hTmXTuk = (XTX)mXTuk and therefore,
m∗ = argmax

m
|XTXXTuk| . We also have,

XTX︸ ︷︷ ︸
H

kth left singular vector of H︷ ︸︸ ︷
XTuk=V ΣUTUΣV TV ΣUTuk =V Σ3UTuk

= σ3
kvk. (14)

This means both optimization mentioned above on index m result
in the same function with a difference in scale which does not af-
fect the solution. Therefore, selection with SP results in the same
selection by solving the following problem as solution of P1.

argmin
|S|≤K

‖H − πS(H)‖2F .�

Matrix H is equal to the weighted replica of auto-correlation
matrix of data, ATA. The weights come from the neighborhood
information. For example, if data i and data j are not neighbors,
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Figure 11: (a) A dataset lies on a two dimensional manifold identified
by two parameters, rotation and size. However, the rank of correspond-
ing matrix to this dataset is a large number. (b) Linear embedding using
linear PCA and selection using linear SP. (c) nonlinear embedding using
tSNE[64] and selection using kernel-SP. Un-selected and selected samples
are shown as red and black dots in the embedded space, respectively.

then hij = 0. And if they share P neighbors then hij = PaTi aj .
Matrix H is a similarity matrix and any other graph-based sim-
ilarity matrix is reasonable to substitute H . In the main paper,
we employ normalized similarity matrix, the definition of which
is inspired by Laplacian graph of neighborhood. This choice is a
conventional similarity matrix in the context of manifold-based di-
mension reduction. Moreover, it can be employed easily for graph
summarization which is investigated in the main manuscript. The
neighborhood and weighting in definition of matrix H is hard,
while the normalized similarity matrix based on Gaussian ker-
nel provides a soft neighborhood definition via smooth weighting.
Employing the normalized similarity matrix results in Problem (6)
in the main paper.

Fig. 11 illustrates the impact of nonlinear modeling on a toy
example containing a set of 100×100 images where each image is
a rotated and resized version of other images (Fig. 11(a)). Since
none of the images lie on the linear subspace spanned by the rest
of images, the ensemble of these data do not form a linear sub-
space. Therefore, this dataset is of high rank and the union of
linear subspaces is not a proper underlying model for it. The KSP
algorithm is implemented using a Gaussian kernel with parameter
α, i.e., sij , e−α‖ai−aj‖2 . As shown in Fig. 11 (c), the nonlinear
selection algorithm has been able to discover the intrinsic structure
of data and select data from more distinguished angles than that of
Fig. 11 (b) in which the plain SP is applied.

B. Supplementary Experiments
Further experiments in this section support experiments of the

main paper.

B.1. Convergence of SP
Provably convergent version of SP algorithm needs a slight

modification in the algorithm which is out of scope of this ma-
terial. However, lots of experiments show that the proposed SP
algorithm in the main paper converges in less than 5K iterations
for selecting K samples. Fig. 12 and Fig. 13 show convergence
behavior of SP and KSP for selecting from multi-pie face data set
and Cora citation dataset within less than 5K iterations.

B.2. GAN on Multi-pie Face Dataset
As it is discussed in the main paper, we select only 9 images

from each subject (1800 total subjects), and train the network with
the reduced dataset for 300 epochs using the batch size of 36. Fig.
14 shows the generated images of a subject in the testing set, using
the trained network on the reduced dataset, as well as using the
complete dataset. The network trained on samples selected by KSP
(fifth row) is able to generate more realistic images, with fewer
artifacts, compared to other selection methods (rows 1-4). The
parameter of KSP is set as 1e − 4 for constructing the similarity
matrix.

B.3. Graph Summarization
The motivation for our experiment here which is in line with

the experiment provided in Section 4.3 of the paper is to elabo-
rate upon one of the important applications of KSP algorithm i.e.,
graph summarization. Herein, we aim at comparing the central
vertex selection and community detection capability of KSP with
other state-of-the-art algorithms provided in table 2 for the Power-
law Cluster graph [48] as in Fig 16.

B.4. Training a Classifier using Reduced Data
The t-SNE visualization [64] of the selected representatives

for two randomly selected classes of UCF-101 dataset is shown
in Fig. 15. The contours represent the decision boundary of an
SVM trained using all or a set of selected samples. This exper-
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Figure 12: Selecting 5 and 20 representatives from the first 20
classes of Multi-pie dataset. Each class has 520 samples and the
error trajectory of each single implementation is depicted in order
to show that SP algorithm converges to its solution for each inde-
pendent selection. (Left) Projection error for selecting 5 samples
versus iterations. (Right) Projection error for selecting 20 samples
versus iterations. Typically, SP selects K representatives in 5K
iterations.

1 10 100 1000
0.8

0.85

0.9

0.95

1

Figure 13: Selecting different number of nodes from Cora dataset
which is a graph-based dataset. SP on the similarity matrix of
this graph converges in only K iterations which is the minimum
number of iterations for updating K selected nodes.
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Figure 14: Multi-view face generation results for a sample sub-
ject in testing set using CR-GAN [37]. The network is trained
on a selected subset of training set (9 images per subject) using
random selection (first row), K-medoids (second row), DS3 [25]
(third row), IPM (fourth row), and our proposed KSP algorithm.
The sixth row shows the results generated by the network trained
on all the data (360 images per subject). KSP generates closest
results to the complete dataset. In the main paper, a quantitative
measure is studied for comparing the generated images and the
ground truth from different viwes.
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Figure 15: t-SNE visualization of two classes of UCF-101 dataset
and their representatives selected by different methods. (a) Deci-
sion boundary learned using entire data of both classes. (b) De-
cision boundary obtained using 2, 5, and 10 representatives per
class, employing K-medoids (first row), DS3 [25] (second row),
IPM [16] (third row), and SP (fourth row).

iment illustrates that SP represent the actual boundary of classes
in the t-SNE space more accurately, comparing with other selec-
tion methods since its boundary is closer to the boundary which
is obtained by entire data. IPM algorithm [16] which is a greedy
algorithm has no option to revise the selected samples. Therefore,
selecting 10 samples results in the result of selecting 5 samples
using IPM plus 5 more selected samples. Similarly, the selected
2 samples using IPM also are present in the selection result for 5
and 10 samples. However, SP optimizes the selection for the given
desired K. Thus, selecting 2 samples results an independent se-
lection comparing to selecting 5 and 10 samples using SP. This
phenomena is depicted in Fig. 15. As it can be seen, IPM keeps
the previously selected samples and choose more greedily. While,
SP can result in different selection for different values of K.

Figure 16: We apply KSP and other algorithms as in table 2, to choose
three of the main vertices from another graph, i.e., Powerlaw Cluster graph
as was provided in table 2. The results are: GIGA, MP and FW select•,
IS selects•, VS selects•, DS3 selects•, and KSP and FFS select•.
As is evident, KSP and FFS are the only ones that are able to detect the
clusters and their corresponding vertices.

B.5. Open-set Identification
It is worth noting that in some contexts, open-set is defined

as the set containing both known and unknown classes. In this
paper, we have assumed that open-set is only used for the unknown
classes and the known classes at the time of training are called the
closed-set.

Here, we provide a discussion on how to select the threshold
in the open-set identification experiment setup. In Fig. 18, a net-
work is trained on the MNIST training data as shown on the left
partition. Next, the validation data consisting of data from both
the known and unknown classes is used to find the threshold as in
algorithm 3 in the main text.
In Fig. 17, the receiver operating characteristic (ROC) of area un-
der the curve (AUC) is plotted for the KSP method in the open-
set identification. Different number of selected representatives in
the proposed SOSIS algorithm (Alg. 3 in the main text) are con-
sidered. Sweeping through the threshold range, the ROC-AUC
is achieved for SOSIS algorithm with each desired number of
selected samples. As observed and magnified in Fig. 17, the
best ROC-AUC performance (higher in plot) is achieved for about
20− 50 number of selected representatives.
In Fig. 18, threshold selection is investigated with more scrutiny.
At the time of test, a pre-determined threshold is required for de-
ciding on test samples. Our proposed method works based on ac-
cessing a set of error values by splitting them and deciding on the
threshold. Using one test sample at a time does not lead to a set
of error values for splitting at a time. Therefore, one can simply
assign the threshold to be a value slightly larger than maximum of
error values relating to projecting training samples on selected rep-
resentatives from each class. Alternatively, if the learning frame-
work is allowed to access validation data, the threshold can be
achieved by clustering error values in the balanced validation data
into two groups with two centroids, and then taking their average
(1:1 sample ratio for Omniglot and MNIST in our case).
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Figure 17: ROC of the proposed selection-based open-set
identification employing KSP. The parameter of KSP for
constructing the similarity matrix is set to 0.6.
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Figure 18: In some scenarios where we access to a validat-
ing set, a reliable threshold can be estimated. In this case,
validating data from the open-set are not engaged for train-
ing the classifier and they are only employed for estimating
an optimal threshold.


