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Abstract—Spectrum sensing is one of the key steps for imple-
menting the cognitive radio-based systems. The efficiency and
the effectiveness of spectrum sensing have a profound impact on
the performance of the cognitive users. In this paper, we propose
two cooperative-parallel spectrum sensing algorithms. The co-
operation greatly reduces the sampling time for each secondary
user and increases the efficiency. Our proposed algorithms utilize
adaptive schemes as well as the graph theoretical analysis to ob-
tain the best strategy for channel sensing in the secondary users.
In this work, we model the cooperative spectrum sensing problem
with a bipartite graph. Assigning channel sensing tasks to the
secondary users corresponds to finding the perfect matching on
that graph. Two different algorithms are developed based on the
different complexity levels of the underlying matching algorithms.
The performances of these algorithms are compared with each
other and with other related algorithms from the literature.

I. INTRODUCTION

Cognitive radio (CR) is a promising solution to allevi-

ate today’s spectrum deficiency [1], which is caused by an

increased demand for wireless technologies. Current fixed

spectrum allocation strategies under-utilize this valuable re-

source. Therefore, CR was proposed to mitigate the under-

utilization of the spectrum and to make spectrum allocation

more efficient [1, 2]. According to the CR paradigm, in

addition to the existing licensed users of the spectrum, a

new type of users is defined who are allowed to access the

spectrum given that they do not interfere with the licensed

users. The licensed users are also called primary users (PUs)

and the unlicensed users whose access to the resources is

opportunistically possible are called secondary users (SUs) or

cognitive users. The under-utilized parts of the spectrum are

called spectrum holes [2]. The ideal CR is able to efficiently

detect and utilize these holes.

Spectrum sensing is the key CR task which is responsible

for finding the spectrum holes. Finding more spectrum holes

means more opportunities for SUs to transmit. Several detec-

tion methods are used for spectrum sensing in the literature

such as energy detector [3–5], waveform-based detector [5],

cyclostationarity-based sensing [5], and matched-filter based

detector [5]. In this work, we consider energy detector due to

its simplicity and its ability to detect with the least amount

of a priori knowledge about PUs signals. The IEEE standard

for CRs is IEEE 802.22 [6], in which the spectrum sensing is

carried out in two consecutive stages in which the first stage

is an energy detector.

The cooperation among the SUs are also considered in

many papers to mitigate the problems such as hidden terminal,

shadowing, and fading. Moreover, it has been shown that

cooperation decreases the sensing time [7, 8]. In these works,

the cooperation is used to enhance the sensing of one specific

channel. In other words, all SUs are assigned to sense the

same PU channel. Cooperation can be also implemented in

another level in which each SU senses a unique channel which

is different than the channel that other SUs sense [9, 10].

In [9] such cooperation is introduced and it is called parallel

cooperative spectrum sensing. In this work, we also consider

that different SUs sense different channels simultaneously.

The challenges that are imposed by the cooperation are

an increased complexity and the necessity of a common

control channel. The common control channel can be imple-

mented [11] via a dedicated band, unlicensed band, or underlay

(i.e. using the same band with much lower energy such that it

does not create interference). The control channel can be also

incorporated in the same transmission and sensing channel

using TDMA schemes [12].

The limitations of RF frontend has required the channel

sensor to be able to sense one channel at a time [13, 14].

Therefore, it is more efficient if an SU senses a channel which

has a high probability of being empty as opposed to sensing

a random channel. Accordingly, the estimation of PUs arrival

model have been considered in some recent studies [4, 15].

For example, an adaptive channel sensing strategy is proposed

in [15]. The authors have shown that using the previous history

of the channels, an SU chooses to sense the best channel it

believes would provide the most reward (highest probability of

being empty). Additionally in [16] an efficient sensing scheme

based on optimizing the sensing period and sensing sequence

using PU’s channel occupancy, is proposed.

The contribution of this paper is to propose two cooperative-

parallel spectrum sensing algorithms that are highly efficient

in terms of sensing requirements. Among all available PU

channels, each SU senses only one PU channel. This PU

channel is uniquely determined for each SU in a central

node (CN) that has all the sensing information from the

previous sensing durations. We also minimize the overhead

of transmissions over the common control channel.

The remainder of this paper is organized as follows. In

Section II, we introduce our model and assumptions for the

PU and SU channels. In Section III, first, we present our ideas

for relating a spectrum sensing problem to a similar problem

in graph theory. Then, using the mathematical structure in

graph theory, we propose two algorithms for implementing



the cooperative-parallel spectrum sensing. In Section IV, the

experimental results of implementing the proposed algorithms

are depicted. Finally, Section V provides the discussion of the

results of this work and concludes the paper.

II. SYSTEM MODEL

The problem that we consider in this paper can be repre-

sented with a toy example in Figure 1. In this Figure, PUs

occasionally use their licensed channels for transmission of

their own traffic. The existing SUs are trying to find the

opportunities that the PUs are not available thus they can

step in and use those channels. In this framework, SUs are

equipped with frontends that can only sense one channel at a

time and no control channel exists besides CH 1, CH 2, and

CH 3 (i.e. PU channels). We model a PU’s activity in time

CH3

CH2

PU

SU

CN

Fig. 1. Centralized cooperative spectrum sensing

by a Markov model (MM) with the state transition matrix

A = [ a00 a01

a10 a11
] as shown in Figure 2. According to this model,

each PU channel can be in one of the two states busy (on)

and empty (off), which represent whether or not PU is active

in that time slot. The probabilities a00, a01, a10, and a11 are

the transition probabilities which represent the probability of

staying in the busy state, transition from busy state to empty

state, transition from empty state to busy state, and staying in

the empty state, respectively. The transition might happen in

between two consecutive sensing attempts of that channel. We

assume all PUs have the same transition probabilities.

ON OFF

00a 01a

10a

11a

OFF:

Channel is empty
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Channel is busy

Fig. 2. Model of primary user arrival

Assuming the TDMA sharing policy for the sensing and

transmission, we define the following time durations:

• Sampling period (T ): The amount of time between two

consecutive sensing of an SU.

• Sensing duration (TS): The amount of time SU requires

to sense a channel.

• Transmission duration (TX ): The amount of time SU

obtained to send its own traffic in a sampling period.

These sensing and transmission durations for a SU are rep-

resented in Figure 3 and we have T = TS + TX . SUs

periodically choose a channel to sense and send sensing results

to CN. Then, CN coordinates the channel sensing and channel

access at SUs. Based on the gathered information and previous

channel occupation history, CN allocates the channel that each

SU has to sense in the subsequent sensing period.

Sampling period (T ) should be short enough to avoid PU

quality of service (QoS) degradation. On the other hand, more

transmission opportunities can be obtained from the channel as

the transmission time increases. The sensing efficiency factor

(ηsense) can be defined as

ηsense =
TX

T
=

TX

TX + TS

. (1)

In CR implementation such as IEEE 802.22, T has a fixed and

pre-defined value. Therefore, in (1), the only factor that can be

adjusted to increase the efficiency is the sensing duration (TS).

The typical values for T and TS are 200ms and 5ms [6, 16],

respectively. In Section III-A, we show TS can be reduced

using the parallel cooperation and history of the channels. We

assume n SU exist, and they are waiting for the opportunity

to transmit. Moreover, m PU channels exist and the channel

occupation follows the on-off model of Figure 2. In the toy

example of Figure 1, n = 4 and m = 3.

TS TX TS TXTS TX

T=200  m sec

PU on

Lost Opportunities

Fig. 3. Channel sensing cycles at SUs.

Since we employ energy detectors in SUs, an extra con-

straint would be imposed on the system. To avoid interference

from other SUs, the sensing cycles in all SUs should be

synchronized. The synchronization is performed in CN.

III. COOPERATIVE-PARALLEL SPECTRUM SENSING USING

BIPARTITE MATCHING AND ADAPTIVE LEARNING

In Section II, the cooperative-parallel spectrum sensing for

CR has been introduced. In this section, we describe the

algorithms to allocate the channels to SUs for sensing. CN

receives information from the SUs based on their sensing

experience and decides which channels will be sensed in

the next sensing period by each SU. The messages that are

communicated between each SU and CN are in form of vectors

of probability distributions. In other words, every SU keeps the

history of previous PU channel sensing in a vector with length

m. Let xi = [xi,1, . . . , xi,m] be the probability vector of the

ith SU and we use the approach in [15] to find and update

xi,j at each TS. Every element of this vector (xi,j ) is the

probability that the ith SU chooses the jth PU channel to sense

in the next sensing cycle. Each SU calculates this probability

iteratively based on the new channel sensing results. Roughly

speaking, every channel sensing that finds an empty channel

increases the corresponding probability for that channel and

every channel sensing that finds a busy channel decreases

that probability. Our proposed approach is as follows. Each

SU sends its probability vector to CN. After CN receives

x1, . . . , xn, it determines the best channel that each SU should

sense. We propose to use bipartite matching from the graph

theory for these optimal channel allocations.
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We propose to use bipartite matching algorithms from the

graph theory to allocate the available channels to the SUs. In

the rest of this section, first, two cooperative-parallel spectrum

sensing algorithms for CRs are introduced. Then, we formulate

the problem of minimizing the graph size. Finally, we consider

the effect of non-ideal channel sensing in the performance of

the proposed algorithms.

A. Cooperative-Parallel Channel Sensing Algorithms

In this section, we show that the problem of cooperative-

parallel spectrum sensing can be mapped into a bipartite

matching problem. Accordingly if we can find a perfect match-

ing over the corresponding bipartite graph then all PU channels

would be sensed by SUs (i.e., all possible opportunities are

found). In our proposed bipartite graph, we assignvertices of

one side of the graph to SUs (i.e., n vertices) and vertices of

the other side to the graph to PU channels (i.e., m vertices).

To assign edges between these two sets of vertices we employ

two different strategies as follows.

1) Creating a connected bipartite graph with minimal edges

to have perfect matching (Algorithm 1).

2) Creating a weighted complete bipartite graph (Algo-

rithm 2).

In the first strategy, we assign an edge between the vertex

corresponding to ith SU and the vertex corresponding to jth

channel if and only if xi,j is greater than a threshold δ.

This threshold controls the number of edges in the graph.

In Section III-B, we find this threshold through analysis. The

greater the number of edges the more complex is the matching

algorithm. On the other hand, if the threshold is too high,

some PU channels may not be assigned for sensing and the

opportunities are lost. Therefore, the optimal value for the

threshold can be found by minimizing the number of edges

given the graph is abiding the condition of Hall’s theorem [17].

Equivalently, this condition implies that the corresponding

bipartite graph be an expander graph with expansion factor

greater than 1 (i.e. α > 1) [18].

In second strategy, the graph is fully connected. In other

words, all edges between the two sets of the vertices are

connected. It is possible to inversely relate the probability of

finding a transmission opportunity by the weight of each edge

that connects the corresponding SU to that channel. Therefore,

the higher the probability, the smaller the weight of that node

would be. Using this allocation strategy, the complete graph

that we obtain always satisfies the Hall’s theorem condition

if m ≥ n. Yet, it is more complex to find the minimum

weight allocation in this case [17]. The weights of each edge

is obtained by wi,j = 1
xi,j+ǫ

, where wi,j is the weight of the

edge between the ith SU and the jth PU channel and ǫ is very

small constant to avoid unbounded weights.

Employing any of the two edge allocating strategies gener-

ates different bipartite graphs that require different matching

algorithms. In the first case, a simple augmenting path al-

gorithm [17] can solve the problem yet, the second problem

requires application of more complex methods such as Hun-

garian algorithm [17]. The following algorithms are proposed

to perform cooperative sampling based on the choice of the

edge allocation strategies. In the following algorithms N(i)
represents the set of neighboring vertices of vertex i and δ
represents the threshold probability for connecting an edge.

Algorithm 1 finds the perfect matching by thresholding the

edge connections. Therefore, the underlying bipartite graph

becomes sparse i.e. only a small portion of edges are connected

in the graph. The computational complexity of the matching

algorithm which is carried out in CN is O(mn) [19].

Algorithm 1: Channel allocation for efficient sensing with

thresholding.

Initializing:

for i = 1 to n do
Randomly select a PU channel to sense.

xi is updated based on Alg1 [15].

for i = 1 to n do
xi is transmitted to CN.

end for

CN finds the threshold δ and transmit it to SUs.

end for

while SUs are interested in an empty channel do

for i = 1 to n do
for j = 1 to m do

if xi,j > δ then
An edge is connected between vertex i and

vertex j.

The corresponding i, j which determine the edge

uniquely are transmitted to CN.

end if

end for

end for

Run the augmenting path algorithm [17] in CN.

The obtained matching results are transmitted to SUs.

for i = 1 to n do
The allocated channel is sensed.

xi is updated based on Alg1 [15].

end for

end while

Algorithm 2 finds the perfect matching based on the

weighted bipartite matching. The computational complexity

of the weighted matching algorithm (Hungarian algorithm) is

O(mn2) [19].
B. Obtaining the Optimal Graph Size in Algorithm 1

In this section, we provide the analysis for finding the

threshold δ for connecting an edge between any two vertices

of the bipartite graph. The higher the threshold the fewer the

number of edges in the bipartite graph and SUs will be more

selective in choosing a channel to sense. On the other hand,

the threshold should be low enough to ensure that a perfect

matching can be found on the graph. The following theorem

relates δ with the probability of finding the perfect matching.

Theorem 1: For a bipartite graph A = (N, E) with N =
X
⋃

Y , |X | = n and |Y | = m, and n ≤ m (|.| represents the
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Algorithm 2: Channel allocation for efficient sensing with

weighted matching.

Initializing:

for i = 1 to n do
Randomly select a PU channel to sense.

xi is updated based on Alg1 [15].

end for

while SUs are interested in an empty channel do

for i = 1 to n do
xi is transmitted to CN.

end for

Weights are updated in CN according to wi,j = 1
xi,j+ǫ

.

Run the Hungarian algorithm [17] in CN.

The obtained matching results are transmitted to SUs.

for i = 1 to n do
The allocated channel is sensed.

xi is updated based on Alg1 [15].

end for

end while

cardinality of the set), a perfect matching M ⊆ E from X to

Y exists with probability 1 − pf(δ). Here δ is the threshold

on the probability of existing an edge between any two nodes

from sets X, Y and pf (δ) is given as follows.

pf =

n
∑

i=1

i
∑

j=1

(

(

n
i

)

2n

( n

dij

)

p(δ)dij (1 − p(δ))n−dij

)j

i
∑

dm
i

=1

i(I1−p(δ)(n− dm
i , dm

i + 1)i−1
( i

dm
i

)

p(δ)dm
i (1− p(δ))i−dm

i

∑i−1

k=dm
i

(

m
k

)

[
∏i

l=1

(

k
dil

)

−
(

k
k−1

)
∏i

l=1

(

k−1
dil

)

]

∏i

l=1

(

m
dil

) ,

(2)

where dij represents the degree of jth vertex in any subset

of X with the cardinality i and dm
i is the maximum of dij

over all possible values of j and Ix(., .) represents regularized

incomplete beta function.

Proof: To verify (2), first, we find the probability of

failure an specific subset of X with known degrees is assumed.

The cardinality of this subset is S = a and the degrees of

the vertices in the set are D = da = [da1, da2, . . . , daa]. In

general, S is a random variable that represents the cardinality

of any subset of X , D is a random vector that represents the

degree of each node in any subset of X . The Hall’s theorem

states that a perfect matching can be found on a bipartite

graph if and only if for any subset of X with cardinality of

S = a, N(S = a, D = da) ≥ a. Where N(S = a, D = da)
represents the set of neighboring nodes of any subset of X
with node degrees D = da and cardinality S = a. Therefore,

given da and a the probability of not satisfying this condition

is pf |S=a,D=d
a

= P (N (S = a, D = da)) < a. Given the

size and the degree of the nodes in any subset is known (i.e.

a and da, respectively),

pf |S=a,D=d
a

=
# of cases that Hall’s theorem condition is not satisfied

# of all possible cases
(3)

The total number of possible ways for connecting vertices of

a subset of X with cardinality a to the other set of vertices

with cardinality m is equal to
∏a

l=1

(

m
dal

)

. On the other hand

the number of ways that a subset of X with cardinality a has

fewer neighbors than a in set Y is equal to,

a−1
∑

k=dm
a

(

m

k

)

[

a
∏

l=1

(

k

dal

)

−

i−1
∑

q=dm
a

(

q

i

) a
∏

l=1

(

q

dal

)

].

Where dm
a = max{da}. Therefore, equation (3) can be written

as follows,

pf |S=a,D=d
a

=

∑i−1

k=dm
a

(

m

k

)

[
∏a

l=1

(

k

dal

)

−
∑i−1

q=dm
a

(

q

i

)
∏a

l=1

(

q

dal

)

]
∏a

l=1

(

m

dal

) .

(4)

dm
a is also a random variable that its pmf function, f(a)(d

m
a ),

using the order statistics can be obtained as follows,

f(a)(d
m
a ) = a(I1−p(δ)(a− dm

a , dm
a + 1))a−1

(

a

dm
a

)

p(δ)dm
a (1− p(δ))a−dm

a ,
(5)

where p(δ) is the probability of existing an edge between any

two nodes and it is determined by the threshold δ. To find the

total pf it is necessary to average over S, D, and dm
a .

pf = ES{ED|S=a{pf |S=a,D=d
a
}} (6)

The probability of having cardinality a for any subset of X is

given by,

p(S = a) =

(

n

a

)

2n
. (7)

The probability that any subset of X having degree distribution

da given the cardinality of that subset is a, is as follows,

p(D = da|S = a) =

a
∏

i=1

p(Di = di); Di ∼ BIN(n, p(δ)) (8)

p(δ) is the outcome of random variable Π. To find the

distribution of Π, we define random variable Q
i

which its

outcomes denote the probability vector of selecting vertices

of Y at every vertex of X . We also assume the m vertices of

Y are equally selected over a long period of time. Therefore,

we find the probability distribution of Q
i
’s,

Q
i
∼ Dir([1/m, . . . , 1/m]m×1) i = 1, . . . , n. (9)

where Dir(.) represents Dirichlet distribution. Therefore, the

probability distribution of selecting a specific vertex of set Y
by vertex i of set Πi is obtained by calculating the marginal

distribution of Q
i

for that vertex (i.e. the distribution of the

probability of existing an edge) which is,

Πi ∼ β
(

1

m
,
m− 1

m

)

. (10)

Assuming vertices of set X are iid, the subscript i can be

dropped. Therefore, p(δ) is obtain putting the probability of
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Π > δ where Π is distributed based on (10). By substitut-

ing (6), (8), and (7) in (3), Equation (2) follows. Therefore,

we can work backwards and set the threshold δ such that pf

remains less than any arbitrary small value.

C. Non-ideal Sensing

In the previous sections, we assumed that SUs have ideal

sensing abilities. This assumption is far from the reality and

considering the effects of false alarm Pfa and miss-detection

Pmd may greatly undermine our findings. Consequently, the

performance of proposed algorithms in Section III-A should be

evaluated under more realistic conditions. In [15], it has been

shown that the learning algorithm that is used to update the

probability distribution in local nodes is completely robust to

Pfa and Pmd. To guarantee that the performance of the sensing

algorithms will not be significantly degraded by considering

the effects of false alarm and miss-detection, we increase

the threshold of selecting an edge. Increasing the threshold

makes the underlying graph more dense and increases the

chance that correctly sensed channels are chosen for future

sensing attempts. For sake of simplicity, we assume that all

SUs have the same probability of false alarm as well as the

same probability of miss-detection. Therefore, the threshold of

probability for connecting an edge between any two vertices

should be increased. The amount of increase in p(δ) to

compensate the effect of miss-detection, p(δ), is

p(δ) = (1− p(δ))Pmd. (11)

The effect of false alarms can be seen as an increase in missing

opportunities and reduction in the algorithm’s performance.

IV. EXPERIMENTAL RESULTS

In this section, we provide the simulation results for findings

in Sections III. The simulation parameters for this experiment

are given in Table I. In Table I, NPU0
represents the number

of PU channels that initially are busy.

TABLE I
SPECTRUM SENSING SIMULATION PARAMETERS

Parameter Value Parameter Value Parameter Value

n [1, . . . , 15] a00 0.9 NPU0
5

m 10 a11 0.9 T 1000

In Figure 4 the performances of Algorithms 1 and 2 is

compared with the non-cooperative and the parallel cooper-

ative scheme [9]. We have depicted the sampling success rate

versus the number of SUs. Sampling success rate is the ratio of

the number of successful sensing attempts to the total number

of sensing attempts in all SUs. In non-cooperative (greedy)

setup, no cooperation is carried out among the sensing nodes.

Each node based on its own history, which is generated locally

using Alg1 [15], decides to sense the best possible channel.

The drawback of this non-cooperative method is missing the

opportunities. Consider the scenario that a few PU channels

are observing an empty channel for a long period of time,

this causes the adaptive algorithm to repeatedly increase the

probability of choosing that channel for sensing for all of the

SUs. Obviously, SUs have to compete for those good channel

and the unsuccessful SUs will remain with no available

channel although, it may also exist some relatively worse PU

channels that are empty during that time slot. These channels

are sensed by none of the SUs due to greedy sensing algorithm

which causes inefficient sensing diversity.

In parallel cooperative sensing a set of SUs are assigned

to sense the spectrum and find an empty PU channel. To

have a fair comparison, we calculated the success rate as

the ratio of success of all of selected SU in one attempt to

total attempts for this case. The number of sensing SUs are

optimized according to the rate maximization analysis that is

provided in [9].

In Figure 4, when the number of SUs is small the perfor-

mance gap between the cooperative and the non-cooperative

algorithms are considerable while increasing the number of

SUs and consequently decreasing the opportunities this gap

starts closing. As it can be seen in Figure 4, the parallel

cooperative scheme [9] performs better than Algorithm 1

which is based on thresholding. It should be noted that in

Algorithm 1 only one sensing attempt in one specific SU is

performed. While in parallel sensing [9] for finding an empty

channel, multiple SUs perform the sensing. It can be seen

that by increasing the number of SUs, the chance of finding

opportunities decreases in parallel sensing scheme and falls

below Algorithm 1. In addition the communication overhead

among the SUs and CN in Algorithm 1 is minimized that can

be very important factor in large CR networks.
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Fig. 4. Performance of Sensing algorithms with different matching scheme
versus the greedy sensing method.

In Figure 5, we have obtained the values of optimal thresh-

old over the probability of connecting an edge for Algorithm 1.

We have used (2) to find the values of threshold by defining

two confidence levels, pf = 95% and pf = 99%, for

the graphs to satisfy the Hall’s theorem condition. We have

shown the optimal threshold versus the different number of

PU channels, m. For this experiment, we have assumed PU

activity statistics are similar to Table I and for each point in

the graph the value of n is assume equal to the average number
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of free PU channels (i.e. n = m/2).

For example, given m = 20, n = 10, NPU0
= 10, and

A = [ 0.9 0.1
0.1 0.9 ], we find the probability of having a graph

that does not satisfy the Hall’s theorem condition, pf . This

probability is given by (2). To find the exact value of pf , we

should define a threshold over the probability of connecting

an edge. We set this threshold equal to δ = 0.2. Therefore,

using (10) and (2), we find pf = 0.13 which means among all

possible bipartite graphs 87% of the time the Hall’s theorem

condition holds and a complete matching can be found. The

10
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Number of PU channels (m)

T
h
re

sh
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 (
δ
)

95% confidence level
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Fig. 5. Selecting the optimal threshold (n = m/2).

effects of non-ideal sensing are depicted in Figure 6. In this

Figure, we have represented the performance of proposed

algorithms considering the effects of miss-detection and false

alarm probabilities. In this experiment the number of SUs are

fixed (i.e. n = 10) and the rest of the parameters are equal

to the values in Table I. For each algorithm two values of

false-alarm probabilities are considered (Pfa = [0.05, 0.1])
and the sampling success rate are calculated versus different

values of miss-detection probabilities. As we have expected,

Algorithm 2 is degraded more than Algorithm 1 due to miss-

detection. The reason for this observation is the ability of

Algorithm 1 to increase the value of threshold based on (11),

to avoid performance degradation. It can be inferred from

Figure 6 that both of the proposed algorithms are robust to

Pmd and Pfa.
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Fig. 6. The effects of false alarm and miss-detection on the sensing success
rate of the proposed algorithms.

V. CONCLUDING REMARKS

In this paper, we have considered the problem of

cooperative-parallel spectrum sensing in cognitive radio net-

works. The challenging conditions of implementing an agile

radio requires efficient and effective spectrum sensing tech-

niques that maximize the chance of finding empty channels

and minimize the sensing time simultaneously. In this work

we have combined parallel cooperation in cognitive radios

with efficient sensing techniques to develop two cooperative-

parallel spectrum sensing algorithms that can be used to jointly

sense and allocate spectrum holes to the secondary users.

These algorithms require a central node to perform the channel

allocation for efficient sensing. The central node solves the

corresponding bipartite matching problem and determines the

optimal channel sensing for each secondary user. The results

of this paper shows that employing the represented algorithms

greatly increases the efficiency of channel sensing by increas-

ing the success rate of sensing. It also increases the system

efficiency by finding the maximal opportunities for sensing.
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