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Abstract—Recently, novelcompressive sensing (CS) techniques In this paper, we mainly focus on the construction of new
have been employed to concurrently perform compression and measurement matrices for compressive imaging applicgtion
image sampling. Since an image hasparse representation in - \ye assume that an imageis directly sampled in the spatial

some proper transform basis, such agliscrete cosine transform - . - . .
(DCT) and wavelet transform, we can reconstruct it from its un- domain. Clearly, images contain at least amain subject

dersampled random projections calledmeasurements employing that communicates the information of the image and attracts
CS techniques. viewers attention. For instance, the quality of the face pér
We consider the fact that the area in an image that contains te  jmages in a digital photograph library is more importanintha

main subject, such as the face in a portrait, is more importabto ¢ yagt of the image and attracts viewers attention. Thegef
viewers. We employ an existing algorithm from image processg

area to find the area of the images that corresponds the main We adopt a ”OYema'n SUbJ?Ct dgtectloalgquthm _[7] from .
subject, and propose to directly apply unequal compressive image processing area to identify the main subject and this
sampling on coefficients of this area. With this setup, the mia  part of the image is assumed to be more important than the
subject is reconstructed with a higher accuracy, while thedss rest of the image. Next, we propose to desigr amatrix
important areas are slightly degraded. Unequal compresse/ ooy that the area of the image embracing the main subject of
imaging is mainly inspired by a previous work by Rahnavard . . . . .
et al. on unequal error protection rateless codes. the image is more protected.. Thls_con§|deraply improves t_he
perceptual quality of the main subject in the image which is
. INTRODUCTION more important than the rest of the image. To the best of our
Conventional image compression algorithms as used Knowledge, this is the first work that modifies teacoding
digital cameras, directly take a snapshot of the whole imaghase (measurement generation) of CS to provide unequal
coefficientgpixels). Next, by projecting the image coefficienterror protection property (UEP) for the CS technology on
into another basis, e.gdiscrete cosine transforDCT) in images.
JPEG, a sparse representation of the image with many clos&his paper is organized as follows. Section II, briefly
to zero entries is obtained [1]. These small coefficients magviews the related work. In Section Ill, we describe our UEP
be discarded without causing perceptual loss of image tyualalgorithm for CS on images and evaluate its performance.

and result in a compressed image. Finally, Section IV concludes the paper.
Consider anv/N x v/ N image with N coefficientsz €
RY (i.e.z = [v1,79,73--- ...wN]). Further, lets € RV ( Il. RELATED WORK

i.e. s = [s1,52,s3...sy]) be the sparse representation 0f Dense measurement matrices have been used in most of
in DCT or waveletbasis¥ € RV*V e,z = Us. Such a the early CS algorithms [8], [2]. In most algorithms, such
sparse representation is actually the compressed tramsfor  dense measurement matrices are constructed in such a way
with only K < N significantcoefficients and mangear-zero that the entries in each row are selected independently from
coefficients.Compressive sensin@sS) techniques exploit the some distribution such as Bernoulli or Gaussian. Such dense
described compressibility of the images and show that we maeasurement matrices however have major disadvantages on
recover the image from only M < N random projections the required encoding and decoding times. The scrambled
(measurements), whefd > O(K log N) [2]. Fourier ensemble (SFE) [9], [10] have been proposed for
The M random projections are generated py= ¢z = compressive imaging applications and were shown to provide
®Us, where® € RM*Y s called measurement (projectionfast CS computation. However, these matrices are also dense
matrix. Examples of measurement matrices are matrices withd hence they still require huge buffer sizes.
entries randomly selected frodw-1,0,—1} or N(0,1) [2]. Low density parity check (LDPC) like measurement matri-
Image reconstruction can be done by finding the estimateces have, recently, been proposed as they provide fastieigcod
from the system of linear equations = ®W¥s. This is an and decoding times as a result of fast matrix multiplicagion
underdetermined system with infinitely many solutions.dsh [11], [12], [13]. In contribution [12], a binary sparse mea-
been shown thag, the estimate of, is the solution to the surement matrix is proposed which has a fixed number of
following ¢; optimization problem [3-6]: ones in each column. Such sparse measurement matrices were
L also shown to perform as good as dense Gaussian and Fourier
matrices when used with LP decoding. Furthermore, the LP
where||s|j; = Zfil |s;|. Finally, the reconstructed image isdecoding is shown to be faster when sparse measurement
obtained byz = V3. matrices are used.

3 = argmir[s|[1, s.t.y = ®Vs,



All these proposed matrices recover each coefficients of
a given signal with equal probability. We, however, propose
a sparse measurement matrix which provides CS with a
functionality of recovering different signal coefficiemgth
different probabilities.

lll. UEP FORMAIN SUBJECT INIMAGES (a) Image PPL2.  (b) Image PPL10.  (c) Image PPL11.

In this section, we propose a compressive imaging algo- ==
rithm, which samples images non-uniformly, so as to provide |
more recovery quality for the region of interest (ROI) of
images.

A. Non-Uniform Importance of Areas in Images

It is known that compressive sampling is performedas (d) Image PPL12. () Image PPL17.  (f) Image PPL20.
dz. Wherey is the measuremeny, is the measurement matrix

andz is the object of interest (image). In practice most images Fig- 2. Main subject detection algorithm output on sampleges.
have a main subject, usually located in the center of the @nag

which is of interest to the viewer. Therefore, we may saaific

the quality of less important areas of the image, e.g., YIurg. Non-Uniform Protection of Important Areas

background that convey less important information to impro ) S ) _
the quality of the area containing the main subject. For this SParse Gaussiap matrix is implemented in our algorithm

scenario, we propose UEP measurement matbix for the @S Sparse matrices perform alm_ost as good as dense ones
non-sparse representation of image coefficientto provide and further provide less computatlonal complexity for CE[1
more protection on the more important areas of images. A§e performance comparison between dense and sparse
we later see, the degradation in the less important areas whealrices is shown in Figure 3. This figure shows the VIF

a UEP® is employed is usually not perceived by viewers(?f Lena images reconstructed with dense Gaussian, sparse

while the improvement made in the important image part fzaussian and sparse binafynatrices when different number
significantly noticeable. of measurementsy{) are taken. The number of measurements

To implement our proposed idea, we adopt a novel ma#i€ chosen to represent smadl( = 2000, M = 4000),
subject detection algorithm proposed in [7]. This algarith Medium (4 = 6000) and large {/ = 8000) number of
outputs the area of the image that contains the main subjéBgasurements. The entries of the sparse and dense Gaussian
Therefore, the coefficients of that represent the part of Matrices are taken from independent and identically tisteid
the image identified as the main subject are considered (hkd-) Gaussian distribution while the entries of the rsga
MICs and the rest of coefficients are considered as LICs.Ainary ¢ matrix are zeros and ones. The spagsenatrices
is important to note that the MIC coefficients might not b&' constr_ucted with 8 non-zero entries in each row which are
found in continuous locations and could be spread throughdl@ced uniformly at random.
the signalz. We have exemplified this in Lena’s image in AS it could be seen from Figure 3, there is only small
Figure 1, where the image has been divided into five blockaerformance loss when using sparse measurement matrices.
The shaded area in vectorcorrespond to Lena’s face (MICs).Sparse Gaussiafn matrix is implemented for our algorithm
Further, we perform the main subject detection algorithm §€cause such matrices are incoherent with any basis oftypars

[7] on images from Microsoft Research databassd shown % With high probability (universality property) [12]. Furth
the results in Figure 2. more, employing a sparse allows us to desig® matrices to

provide UEP. Moreover, as we later see the slight performanc
loss of spars@ matrices, as compared to the dense ones, only
Vector x occurs withequal error protection(EEP) setup and UER-
s A MICs N surpasses the reconstruction performance of a dénse
Let L < N be the number of non-zero entries in each row

¥ N
= |4 5 | of sparsed. In an EEP setup with a spargetheseL non-zero

= elements are placed uniformly at random across the columns
R A .
MIC LICs of each row and independent of other rows. Therefgrg,

area the element on thé'" row and;'* column of ® is an entry
from iid Gaussian distribution or a zero with probabiliti%s
and X2£, respectively. This would clearly provide a uniform
capturing ofz coefficients byl measurementsgy.

However, as we discussed in the previous section, we have

Lhttp://research.microsoft.com/en-us/projects/olsjassrecognition/ the knowledge of where the important coefficients are latate

Fig. 1. Main subject detection and distribution of its cepending
coefficients inz.



In the next subsections, we obtain the optimal values for

—=— Sparse Gaus. the parameters of our proposed algorithm, implement the
0.9} - 'gsgffe%‘?ﬁ;y . algorithm on the sample images and evaluate its performance

C. Optimal Parameter values

Several experiments were carried out using the sample
images, shown in Figure 2, in order to find the optimal value
for the different parameters involving the proposed U&P
Figure 4 shows the reconstruction quality of Lena image at
different L and k;; values whemy ~ 0.15 at M = 6000 and
M = 8192.

VIF

2000 3000 4000 5000 6000 7000 8000
M

Fig. 3. comparison of VIF for dense and sparse Gaussian aestri

in z. Consequently, employing the idea of UEP erasure coding
from [14, 15], we propose to concentrate tlie non-zero
elements of® at its columns which sample the important
coefficients ofz. With this setup, more important coefficients
are incorporated in the generation of more measurements.
Therefore, in CS reconstruction they will be recovered gith
higher accuracy.

Therefore, for the sake of simplicity and without loss of
generality we assume that coefficients ofr are grouped into
two levels of importance Let o fraction of N coefficients be
more important coefficienfgVICs) and1 — « fraction beless
important coefficient§LICs). Clearly,n; = aN columns of
® capture MICs and the rest; = (1 — «)N capture LICs.

Let P, be the probability that an element in the columns
of a particular row of¢ which captures an MIC will be a
non-zero. And letP, be the probability that an element in the
columns of a particular row of which captures an LIC will
be a non-zero. Further, let us defifle = %2 and P, = L,
wherek,; andk;, = % are theprotection levelsClearly,
UEP- and EERP matrices are built by setting,,; > kr and
kym = ki = 1, respectively. Fig. 4. VIF of reconstructed Lena image at M=6000 and M=8182iffferent

For all simulations presented in this paper, we assumers and L values.
regularbasis pursuitBP) reconstruction algorithm [6] (which
is designed employing linear progrqmming techniques) isAs it could be seen from Figure 4, different values of
employed to solve the CS reconstruction problem: L result in similar reconstruction quality for all;; values.
However, the CPU time is significantly higher when a large
value of L is used. Figure 4 also shows that the quality

Among the image quality assessment measures, we emp? he_MIOs_ increases while that of thé/Cs decreases
the visual information fidelity(VIF) [16] as it is able to wrien Increasing the value . However,_thg _performance
measure image quality that relates with visual percephiame of neither theM ICs nor theLIC's show significant change

that VIF of a reconstructed image varies betweeand 1 with various L values. As it could be seen in the figure, this

where a value closer tb shows a closer reconstructed imag er:auonfhlg.flfs observel;j at ngMh: 6000 a}nd]t\ﬁ . 8195' f
to the original image. e only difference observed when varying the number o

measurements/ is the graph as a whole moves up for larger
5 _ _ M values and it moves down for smaller values. Similar
We may also consider more than two levels of importance. kewe | btained f Il the i . d with

this only increases the complexity of the problem while mapioving the resu .tS were obtained for all the images experimented witn,

contribution. for different number of measurememé¢ and also when the

(b) M=8192

& = argmin|z;, s.t.y = ®z. (2)



wavelet basis is used as the basis of spargityd row weight shown in Figure 2 approximately covers%20of the whole

of 16, L = 16, is thus chosen to be the optimal row weightmage ¢ = 0.2). The size of the ROIs (main subject) was

in order to achieve fast encoding/decoding process. purposely made to be of this small size by adopting a slight
Another parameter that is important for UEP on CS is thmodification in the MSD algorithm [7]. Moreover,ka,; value

size of the image that is selected to be the region of interestk,,; = 5 andk,; = 4 are used according to the size of the

(ROI) as compared to the size of the whole image, which ROls of the sample images.

represented byv. Figure 5 below shows the reconstruction

quality of Lena image at differentz and k»; values when D. Relationship between parameters and image quality

M= 8192’ L =16 and implementing the DCT as the basis In this subsection, we discuss how the reconstructed image
of sparsity, . quality varies with the number of measuremets, and the
protection levelk,,. It has been mentioned earlier that results
similar to those shown in Figures 4 and 5 are obtained for
different number of measurements/. From the theory of
CS, it is known that the reconstruction error decreases when
the number of measuremenid,, is increased. As a result, it is
clear that even though similar pattern as that of Figuresd4 an
5 is obtained with differenf\/ values, the actual VIF values
increase wher/ is large and decrease whé# is small. This

is clearly seen in Figure 4.

Figure 6 shows the reconstruction quality of the Lena image
at different number of measurements]. The results are
presented for EEPk(; = 1) and UEP kj; = 4). The row
weight is set to a value of 16, = 16, in both cases. A very
important observation that could be made from Figure 6 is the
successfulness of UEP. More precisely, it could be seen that
Fig. 5. VIF of reconstructed Lena image at M=8192 and L=16different the quality of the ROI (VIF of MICs) is significantly better
a andkys values. than the background (VIF of LICs). Moreover, the background
ié recovered with a quality that is as good as the EEP.

As it could be seen from Figure 5, a small size of ROI coul
be reconstructed in such a way that the ROI is recovered with
a quality better than the background whereas the backgrount 1
is also reconstructed with an acceptable quality. Wheréhas,
quality of the background significantly drops to an unaccept
able level when large ROIls are used. This is because, as th 0.8f
size of the ROI is large, most non-zeros would be allocated

. . 7k

for columns ofp sampling the ROI while the rest columns i
have insufficient non-zero entries to successfully samipde t 0.61
background. Note that the MICs represent the ROI while the
LICs represent the background.

Another interesting relationship could be observed betwee 0.4¢
ks values andV/ IC sizes from Figure 5. It could be seen that : : : : : :
it is possible to reconstruct large ROIs with a quality bretite 2000 3000 4000 5000 6000 7000 8000 9000
M

background while the background is also reconstructed with

an acceptable quality by using smali; values. In Figure 5, Fig. 6. Reconstruction quality of Lena image fbi; = 4, L = 16 and

for example, the quality of the LICs is very low for= 0.25 & ~ 0.15 at different M values.

when k); = 4. However, it could be seen that the LICs are

reconstructed with a significantly better quality when the Figure 7 further emphasizes the relationship between the

value is decreased thy; = 3. The trade off is that when a VIF of ROIs (MICs) and background (LICs) which could also

smallerk,; value is used, the difference between the qualitye observed in Figure 5. The result shown in Figure 7 is for the

of MICs and LICs decreases witty; = 1 being EEP where Lena image whe/ = 8192, « ~ 0.15 and L = 16. It could

the ROI and the background have similar qualities. be seen from this figure that the quality of the ROI increases
As it could be seen in Figure 5, the maximum MIC size thathen highk;,; values are used where as the background is

results in acceptable recovery of LICs folkg, value of 4 is recovered with a quality as good as that of EER(= 1).

obtained whenv ~ 0.2 (i.e. when the ROI covers 20 of the It should however be noted that the size of the ROl must be

whole image coefficients). Similar result was obtained for a@ppropriate according to the the discussion in SectiorClII-

kas value of 5. The largest of the ROIs for the sample imagésr this relationship to hold.



1 ‘ ‘ ‘ ‘ ‘ VIF of MIC has increased from.85 (for dense EERP) to 1
(a perfect reconstruction), while the VIF of LIC has a small
decrease from.81 to 0.85. Therefore, the deterioration in the
—o—MIC . .
0.95¢ —m-vic [l background may not even be noticed even though the region of
- @ -EEP interest (ROI) has been reconstructed with a quality veogesl
to the original. This could be clearly seen in Figure 8, where
a sample image reconstructed with our proposed algorithm
is presented along with reconstructions resulting from the
085t | sparse and dense EHEP-matrices atM = 6000 for visual
comparison. Note that, sineeis not equal for all the sample
--" ‘_= images, we can see various reconstruction improvements for
s 5 25 3 35 4 different images in Table I. As MIC area becomes smaller, its
Ear corresponding reconstruction quality increases and tladitgu

of LIC is more preserved.

(a) MSD on original image. (b) Reconstruction by EER-

0.9F

VIF

Fig. 7. Reconstruction quality of Lena image for M = 8192 and: 0.15
at differentk), values.

E. Representative Results

We perform our simulations with optimal parameters o
images shown in Figure 2. We first resize all images to a siz|
of 128 x 128, resulting a total number of 16,384 coefficients
(IV = 16, 384). Then, the optimal parameter values discusse
in subsection IlI-C are used to obtain the simulation result
presented in this subsection. The number of measuremesht ug
for results presented in Table | & = 6000. A row weight
value of L = 16 is used for all simulations while &y, value
of kp=5 is used for all the images except for sample image
PPL12 and PPL20. A, value ofk;;=4 is used for PPL12
and PPL20 due to their large values (please refer Table |
for the « values of the images).

In Table I, we compare the VIF of MIC area, LIC area,
and the whole image for UEB- encoding versus encoding
with sparse and dense EHE. The VIF for EEP is computed
for the whole image. On the other hand, the VIF for UEP ig
computed for the image as a whole and also for the MICs an
LICs separately. The VIF computed for the part of an image
identified as the ROI, which is shown under a rectangle in
Figure 2, is shown as the VIF for the MIC. In a similar wayrig. 8. Reconstruction quality comparison of UBReersus dense and sparse
the VIF computed for the whole image excluding the maiREP#s for sample image PPL2. Here,= 16384 andm = 6000.
subject is shown as the VIF for the LIC whereas the VIF of
the whole image is shown as total VIF.

(c) Reconstruction by dense. (d) Reconstruction by UER-

From Figure 8, we can see that the ROI has been recovered
with higher quality than the rest of image, while the degrada

TABLE | o . L -
VIF oF CSRECONSTRUCTION PERFORMANCE EMPLOYINEEP® anp  tiON in the background is not significant. Similar resultsreve
UEP-D. obtained for all the sample images as shown in Table I.
Images PPL2 | PPL10 | PPL11 | PPL12 | PPL17 | PPL20
o 0.18 | 0.13 | 0.17 | 021 | 0.17 | 0.19 IV. CONCLUSION
EEp | _Sparse® || 0.83 | 0.67 | 0.75 | 0.69 | 0.81 0.8 ) )
Dense® || 0.85 | 0.64 | 0.78 | 0.71 | 0.82 | 0.77 In this paper, we proposed to incorporate theequal
MIC 1 0.98 | 0.99 | 0.96 1 0.97 | error protection(UEP) ideas from error correction codes into
UEP [ LIC 081 | 064 | 0.74 | 069 | 0.84 | 0.76 ; ; ; ; ;
Tot] 5ot oo o o Ccompressive sensin@S) algorithm for image reconstruction.

We proposed a novel measurement matrix construction for

CS encoding phase whehigher protectioncan be assigned
From Table I, we can see that when UBHs employed in to more important coefficients. It is well-known that images

the encoding phase a considerable improvement is obtaimeddsually have an area, known amin subjectwhich communi-

the region of interest (ROI) at the expense of a small qualibates most of the image information. Therefore, we employed

loss in the background. For instance, for the image PPL2, taewell-known main subject detection algorithm to identify



the main subject of imageries. Next, we proposed to captyfie3]
this area with better quality by incorporating its coeffiti

into more number of measurements. We observed that this
would significantly improve the reconstruction quality bt [14]
area containing the main subject, while resulting in slight
degradation in the less important areas such as background.
Therefore, we have been able to better protect the region of
interest of images by employing our proposed structure [f5]
UEP-9.
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