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Abstract—Recently, novelcompressive sensing (CS) techniques
have been employed to concurrently perform compression and
image sampling. Since an image hassparse representation in
some proper transform basis, such asdiscrete cosine transform
(DCT) and wavelet transform, we can reconstruct it from its un-
dersampled random projections calledmeasurements employing
CS techniques.

We consider the fact that the area in an image that contains the
main subject, such as the face in a portrait, is more important to
viewers. We employ an existing algorithm from image processing
area to find the area of the images that corresponds the main
subject, and propose to directly apply unequal compressive
sampling on coefficients of this area. With this setup, the main
subject is reconstructed with a higher accuracy, while the less
important areas are slightly degraded. Unequal compressive
imaging is mainly inspired by a previous work by Rahnavard
et al. on unequal error protection rateless codes.

I. I NTRODUCTION

Conventional image compression algorithms as used in
digital cameras, directly take a snapshot of the whole image
coefficients(pixels). Next, by projecting the image coefficients
into another basis, e.g.,discrete cosine transform(DCT) in
JPEG, a sparse representation of the image with many close
to zero entries is obtained [1]. These small coefficients may
be discarded without causing perceptual loss of image quality
and result in a compressed image.

Consider an
√
N ×

√
N image withN coefficientsx ∈

R
N ( i.e. x = [x1, x2, x3 · · · ...xN ]). Further, lets ∈ R

N (
i.e. s = [s1, s2, s3...sN ]) be the sparse representation ofx
in DCT or waveletbasisΨ ∈ R

N×N , i.e., x = Ψs. Such a
sparse representation is actually the compressed transform of x
with onlyK ≪ N significantcoefficients and manynear-zero
coefficients.Compressive sensing(CS) techniques exploit the
described compressibility of the images and show that we may
recover the imagex from only M ≪ N random projections
(measurements), whereM ≥ O(K logN) [2].

The M random projections are generated byy = Φx =
ΦΨs, whereΦ ∈ R

M×N is called measurement (projection)
matrix. Examples of measurement matrices are matrices with
entries randomly selected from{+1, 0,−1} or N (0, 1) [2].
Image reconstruction can be done by finding the estimateŝ

from the system of linear equationsy = ΦΨs. This is an
underdetermined system with infinitely many solutions. It has
been shown that̂s, the estimate ofs, is the solution to the
following ℓ1 optimization problem [3–6]:

ŝ = argmin‖s‖1, s.t. y = ΦΨs, (1)

where‖s‖1 =
∑N

i=1
|si|. Finally, the reconstructed image is

obtained byx̂ = Ψŝ.

In this paper, we mainly focus on the construction of new
measurement matrices for compressive imaging applications.
We assume that an imagex is directly sampled in the spatial
domain. Clearly, images contain at least onemain subject
that communicates the information of the image and attracts
viewers attention. For instance, the quality of the face part of
images in a digital photograph library is more important than
the rest of the image and attracts viewers attention. Therefore,
we adopt a novelmain subject detectionalgorithm [7] from
image processing area to identify the main subject and this
part of the image is assumed to be more important than the
rest of the image. Next, we propose to design aΦ matrix
such that the area of the image embracing the main subject of
the image is more protected. This considerably improves the
perceptual quality of the main subject in the image which is
more important than the rest of the image. To the best of our
knowledge, this is the first work that modifies theencoding
phase (measurement generation) of CS to provide unequal
error protection property (UEP) for the CS technology on
images.

This paper is organized as follows. Section II, briefly
reviews the related work. In Section III, we describe our UEP
algorithm for CS on images and evaluate its performance.
Finally, Section IV concludes the paper.

II. RELATED WORK

Dense measurement matrices have been used in most of
the early CS algorithms [8], [2]. In most algorithms, such
dense measurement matrices are constructed in such a way
that the entries in each row are selected independently from
some distribution such as Bernoulli or Gaussian. Such dense
measurement matrices however have major disadvantages on
the required encoding and decoding times. The scrambled
Fourier ensemble (SFE) [9], [10] have been proposed for
compressive imaging applications and were shown to provide
fast CS computation. However, these matrices are also dense
and hence they still require huge buffer sizes.

Low density parity check (LDPC) like measurement matri-
ces have, recently, been proposed as they provide fast encoding
and decoding times as a result of fast matrix multiplications
[11], [12], [13]. In contribution [12], a binary sparse mea-
surement matrix is proposed which has a fixed number of
ones in each column. Such sparse measurement matrices were
also shown to perform as good as dense Gaussian and Fourier
matrices when used with LP decoding. Furthermore, the LP
decoding is shown to be faster when sparse measurement
matrices are used.



All these proposed matrices recover each coefficients of
a given signal with equal probability. We, however, propose
a sparse measurement matrix which provides CS with a
functionality of recovering different signal coefficientswith
different probabilities.

III. UEP FOR MAIN SUBJECT IN IMAGES

In this section, we propose a compressive imaging algo-
rithm, which samples images non-uniformly, so as to provide
more recovery quality for the region of interest (ROI) of
images.

A. Non-Uniform Importance of Areas in Images

It is known that compressive sampling is performed asy =
Φx. Wherey is the measurement,Φ is the measurement matrix
andx is the object of interest (image). In practice most images
have a main subject, usually located in the center of the image,
which is of interest to the viewer. Therefore, we may sacrifice
the quality of less important areas of the image, e.g., blurry
background that convey less important information to improve
the quality of the area containing the main subject. For this
scenario, we propose UEP measurement matrix (Φ) for the
non-sparse representation of image coefficientsx, to provide
more protection on the more important areas of images. As
we later see, the degradation in the less important areas when
a UEP-Φ is employed is usually not perceived by viewers,
while the improvement made in the important image part is
significantly noticeable.

To implement our proposed idea, we adopt a novel main
subject detection algorithm proposed in [7]. This algorithm
outputs the area of the image that contains the main subject.
Therefore, the coefficients ofx that represent the part of
the image identified as the main subject are considered as
MICs and the rest of coefficients are considered as LICs. It
is important to note that the MIC coefficients might not be
found in continuous locations and could be spread throughout
the signalx. We have exemplified this in Lena’s image in
Figure 1, where the image has been divided into five blocks.
The shaded area in vectorx correspond to Lena’s face (MICs).
Further, we perform the main subject detection algorithm of
[7] on images from Microsoft Research database1 and shown
the results in Figure 2.
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Fig. 1. Main subject detection and distribution of its corresponding
coefficients inx.

1http://research.microsoft.com/en-us/projects/objectclassrecognition/

(a) Image PPL2. (b) Image PPL10. (c) Image PPL11.

(d) Image PPL12. (e) Image PPL17. (f) Image PPL20.

Fig. 2. Main subject detection algorithm output on sample images.

B. Non-Uniform Protection of Important Areas

Sparse Gaussianφ matrix is implemented in our algorithm
as sparseφ matrices perform almost as good as dense ones
and further provide less computational complexity for CS [12].
The performance comparison between dense and sparseφ

matrices is shown in Figure 3. This figure shows the VIF
of Lena images reconstructed with dense Gaussian, sparse
Gaussian and sparse binaryφ matrices when different number
of measurements (M ) are taken. The number of measurements
are chosen to represent small(M = 2000, M = 4000),
medium (M = 6000) and large (M = 8000) number of
measurements. The entries of the sparse and dense Gaussian
matrices are taken from independent and identically distributed
(i.i.d.) Gaussian distribution while the entries of the sparse
binary φ matrix are zeros and ones. The sparseφ matrices
are constructed with 8 non-zero entries in each row which are
placed uniformly at random.

As it could be seen from Figure 3, there is only small
performance loss when using sparse measurement matrices.
Sparse Gaussianφ matrix is implemented for our algorithm
because such matrices are incoherent with any basis of sparsity
ψ with high probability (universality property) [12]. Further-
more, employing a sparseΦ allows us to designΦ matrices to
provide UEP. Moreover, as we later see the slight performance
loss of sparseΦ matrices, as compared to the dense ones, only
occurs withequal error protection(EEP) setup and UEP-Φ
surpasses the reconstruction performance of a denseΦ.

Let L≪ N be the number of non-zero entries in each row
of sparseΦ. In an EEP setup with a sparseφ, theseL non-zero
elements are placed uniformly at random across the columns
of each row and independent of other rows. Therefore,φi,j

the element on theith row andjth column of Φ is an entry
from iid Gaussian distribution or a zero with probabilitiesL

N

and N−L
N

, respectively. This would clearly provide a uniform
capturing ofx coefficients byM measurements (y).

However, as we discussed in the previous section, we have
the knowledge of where the important coefficients are located
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Fig. 3. comparison of VIF for dense and sparse Gaussian matrices.

in x. Consequently, employing the idea of UEP erasure coding
from [14, 15], we propose to concentrate theL non-zero
elements ofΦ at its columns which sample the important
coefficients ofx. With this setup, more important coefficients
are incorporated in the generation of more measurements.
Therefore, in CS reconstruction they will be recovered witha
higher accuracy.

Therefore, for the sake of simplicity and without loss of
generality we assume thatN coefficients ofx are grouped into
two levels of importance2. Let α fraction ofN coefficients be
more important coefficients(MICs) and1−α fraction beless
important coefficients(LICs). Clearly,n1 = αN columns of
Φ capture MICs and the restn2 = (1 − α)N capture LICs.

Let P1 be the probability that an element in the columns
of a particular row ofφ which captures an MIC will be a
non-zero. And letP2 be the probability that an element in the
columns of a particular row ofφ which captures an LIC will
be a non-zero. Further, let us defineP1 = kM

N
andP2 = kL

N
,

wherekM andkL = 1−αkM

1−α
are theprotection levels. Clearly,

UEP- and EEP-Φ matrices are built by settingkM > kL and
kM = kL = 1, respectively.

For all simulations presented in this paper, we assume a
regularbasis pursuit(BP) reconstruction algorithm [6] (which
is designed employing linear programming techniques) is
employed to solve the CS reconstruction problem:

x̂ = argmin‖x‖1, s.t. y = Φx. (2)

Among the image quality assessment measures, we employ
the visual information fidelity(VIF) [16] as it is able to
measure image quality that relates with visual perception.Note
that VIF of a reconstructed image varies between0 and 1,
where a value closer to1 shows a closer reconstructed image
to the original image.

2We may also consider more than two levels of importance. However,
this only increases the complexity of the problem while not improving the
contribution.

In the next subsections, we obtain the optimal values for
the parameters of our proposed algorithm, implement the
algorithm on the sample images and evaluate its performance.

C. Optimal Parameter values

Several experiments were carried out using the sample
images, shown in Figure 2, in order to find the optimal value
for the different parameters involving the proposed UEPφ.
Figure 4 shows the reconstruction quality of Lena image at
differentL andkM values whenα ≈ 0.15 at M = 6000 and
M = 8192.
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Fig. 4. VIF of reconstructed Lena image at M=6000 and M=8192 for different
kM andL values.

As it could be seen from Figure 4, different values of
L result in similar reconstruction quality for allkM values.
However, the CPU time is significantly higher when a large
value of L is used. Figure 4 also shows that the quality
of the MICs increases while that of theLICs decreases
when increasing the value ofkM . However, the performance
of neither theMICs nor theLICs show significant change
with variousL values. As it could be seen in the figure, this
relationship is observed at bothM = 6000 andM = 8192.
The only difference observed when varying the number of
measurementsM is the graph as a whole moves up for larger
M values and it moves down for smaller values. Similar
results were obtained for all the images experimented with,
for different number of measurementsM and also when the



wavelet basis is used as the basis of sparsity,ψ. A row weight
of 16, L = 16, is thus chosen to be the optimal row weight
in order to achieve fast encoding/decoding process.

Another parameter that is important for UEP on CS is the
size of the image that is selected to be the region of interest
(ROI) as compared to the size of the whole image, which is
represented byα. Figure 5 below shows the reconstruction
quality of Lena image at differentα and kM values when
M = 8192, L = 16 and implementing the DCT as the basis
of sparsity,ψ.
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Fig. 5. VIF of reconstructed Lena image at M=8192 and L=16 fordifferent
α andkM values.

As it could be seen from Figure 5, a small size of ROI could
be reconstructed in such a way that the ROI is recovered with
a quality better than the background whereas the background
is also reconstructed with an acceptable quality. Where as,the
quality of the background significantly drops to an unaccept-
able level when large ROIs are used. This is because, as the
size of the ROI is large, most non-zeros would be allocated
for columns ofφ sampling the ROI while the rest columns
have insufficient non-zero entries to successfully sample the
background. Note that the MICs represent the ROI while the
LICs represent the background.

Another interesting relationship could be observed between
kM values andMIC sizes from Figure 5. It could be seen that
it is possible to reconstruct large ROIs with a quality better the
background while the background is also reconstructed with
an acceptable quality by using smallkM values. In Figure 5,
for example, the quality of the LICs is very low forα = 0.25
when kM = 4. However, it could be seen that the LICs are
reconstructed with a significantly better quality when thekM

value is decreased tokM = 3. The trade off is that when a
smallerkM value is used, the difference between the quality
of MICs and LICs decreases withkM = 1 being EEP where
the ROI and the background have similar qualities.

As it could be seen in Figure 5, the maximum MIC size that
results in acceptable recovery of LICs for akM value of 4 is
obtained whenα ≈ 0.2 (i.e. when the ROI covers 20% of the
whole image coefficients). Similar result was obtained for a
kM value of 5. The largest of the ROIs for the sample images

shown in Figure 2 approximately covers 20% of the whole
image (α ≈ 0.2). The size of the ROIs (main subject) was
purposely made to be of this small size by adopting a slight
modification in the MSD algorithm [7]. Moreover, akM value
of kM = 5 andkM = 4 are used according to the size of the
ROIs of the sample images.

D. Relationship between parameters and image quality

In this subsection, we discuss how the reconstructed image
quality varies with the number of measurements,M , and the
protection levelkM . It has been mentioned earlier that results
similar to those shown in Figures 4 and 5 are obtained for
different number of measurements,M . From the theory of
CS, it is known that the reconstruction error decreases when
the number of measurements,M , is increased. As a result, it is
clear that even though similar pattern as that of Figures 4 and
5 is obtained with differentM values, the actual VIF values
increase whenM is large and decrease whenM is small. This
is clearly seen in Figure 4.

Figure 6 shows the reconstruction quality of the Lena image
at different number of measurements,M . The results are
presented for EEP (kM = 1) and UEP (kM = 4). The row
weight is set to a value of 16,L = 16, in both cases. A very
important observation that could be made from Figure 6 is the
successfulness of UEP. More precisely, it could be seen that
the quality of the ROI (VIF of MICs) is significantly better
than the background (VIF of LICs). Moreover, the background
is recovered with a quality that is as good as the EEP.
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Fig. 6. Reconstruction quality of Lena image forkM = 4, L = 16 and
α ≈ 0.15 at differentM values.

Figure 7 further emphasizes the relationship between the
VIF of ROIs (MICs) and background (LICs) which could also
be observed in Figure 5. The result shown in Figure 7 is for the
Lena image whenM = 8192, α ≈ 0.15 andL = 16. It could
be seen from this figure that the quality of the ROI increases
when highkM values are used where as the background is
recovered with a quality as good as that of EEP(kM = 1).
It should however be noted that the size of the ROI must be
appropriate according to the the discussion in Section III-C
for this relationship to hold.
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Fig. 7. Reconstruction quality of Lena image for M = 8192 andα ≈ 0.15

at differentkM values.

E. Representative Results

We perform our simulations with optimal parameters on
images shown in Figure 2. We first resize all images to a size
of 128 × 128, resulting a total number of 16,384 coefficients
(N = 16, 384). Then, the optimal parameter values discussed
in subsection III-C are used to obtain the simulation results
presented in this subsection. The number of measurement used
for results presented in Table I isM = 6000. A row weight
value ofL = 16 is used for all simulations while akM value
of kM =5 is used for all the images except for sample images
PPL12 and PPL20. AkM value ofkM =4 is used for PPL12
and PPL20 due to their largeα values (please refer Table I
for theα values of the images).

In Table I, we compare the VIF of MIC area, LIC area,
and the whole image for UEP-Φ encoding versus encoding
with sparse and dense EEP-Φs. The VIF for EEP is computed
for the whole image. On the other hand, the VIF for UEP is
computed for the image as a whole and also for the MICs and
LICs separately. The VIF computed for the part of an image
identified as the ROI, which is shown under a rectangle in
Figure 2, is shown as the VIF for the MIC. In a similar way,
the VIF computed for the whole image excluding the main
subject is shown as the VIF for the LIC whereas the VIF of
the whole image is shown as total VIF.

TABLE I
VIF OF CS RECONSTRUCTION PERFORMANCE EMPLOYINGEEP-Φ AND

UEP-Φ.

Images PPL2 PPL10 PPL11 PPL12 PPL17 PPL20
α 0.18 0.13 0.17 0.21 0.17 0.19

EEP
SparseΦ 0.83 0.67 0.75 0.69 0.81 0.8

DenseΦ 0.85 0.64 0.78 0.71 0.82 0.77

UEP
MIC 1 0.98 0.99 0.96 1 0.97

LIC 0.81 0.64 0.74 0.69 0.84 0.76

Total 0.87 0.68 0.77 0.71 0.84 0.85

From Table I, we can see that when UEP-Φ is employed in
the encoding phase a considerable improvement is obtained for
the region of interest (ROI) at the expense of a small quality
loss in the background. For instance, for the image PPL2, the

VIF of MIC has increased from0.85 (for dense EEP-Φ) to 1
(a perfect reconstruction), while the VIF of LIC has a small
decrease from0.81 to 0.85. Therefore, the deterioration in the
background may not even be noticed even though the region of
interest (ROI) has been reconstructed with a quality very close
to the original. This could be clearly seen in Figure 8, where
a sample image reconstructed with our proposed algorithm
is presented along with reconstructions resulting from the
sparse and dense EEP-Φ matrices atM = 6000 for visual
comparison. Note that, sinceα is not equal for all the sample
images, we can see various reconstruction improvements for
different images in Table I. As MIC area becomes smaller, its
corresponding reconstruction quality increases and the quality
of LIC is more preserved.

(a) MSD on original image. (b) Reconstruction by EEP-Φ.

(c) Reconstruction by denseΦ. (d) Reconstruction by UEP-Φ.

Fig. 8. Reconstruction quality comparison of UEP-φ versus dense and sparse
EEP-φs for sample image PPL2. Here,n = 16384 andm = 6000.

From Figure 8, we can see that the ROI has been recovered
with higher quality than the rest of image, while the degrada-
tion in the background is not significant. Similar results were
obtained for all the sample images as shown in Table I.

IV. CONCLUSION

In this paper, we proposed to incorporate theunequal
error protection(UEP) ideas from error correction codes into
compressive sensing(CS) algorithm for image reconstruction.
We proposed a novel measurement matrix construction for
CS encoding phase wherehigher protectioncan be assigned
to more important coefficients. It is well-known that images
usually have an area, known asmain subject, which communi-
cates most of the image information. Therefore, we employed
a well-known main subject detection algorithm to identify



the main subject of imageries. Next, we proposed to capture
this area with better quality by incorporating its coefficients
into more number of measurements. We observed that this
would significantly improve the reconstruction quality of the
area containing the main subject, while resulting in slight
degradation in the less important areas such as background.
Therefore, we have been able to better protect the region of
interest of images by employing our proposed structure of
UEP-Φ.
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