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Abstract—In this paper, we introduce non-uniform

compressive sensing (NCS), a novel compressive sensing

(CS) technique that enables non-uniform recovery of

sparse signals coefficients from their undersampled

random projections. This is in contrast to the conven-

tional CS techniques and is of great interest in many

practical applications in which coefficients of a signal

may have unequal importance levels. We design NCS by

modifying the CS sampling phase and our simulation

results indicate that by properly tuning the parameters

of NCS, desired non-uniform recovery is attainable. The

coefficients with more importance are recovered with a

higher probability compared to uniform CS, in return

for a slight performance loss in the recovery of less

important coefficients. To make the theoretical analysis

of NCS tractable, we further study NCS under a simple

decoder and confirm that desired non-uniform recovery

can be achieved by NCS.

Moreover, we demonstrate that NCS can provide

unequal recovery time. This means that different parts

of signal x can reach a target reconstruction quality

at different time spans from the beginning of the

measurement stream. NCS is mainly inspired by a

previous work by Rahnavard et al. on unequal-error-

protection rateless codes.

I. INTRODUCTION

Emerging compressive sensing (CS) techniques [1,

2] provide means to recover a compressible signal

from its undersampled random projections also called

measurements. Let θ ∈ R
n be the representation of

signal x ∈ R
n (x = [x1x2 . . . xn]T ) in transform

basis Ψ ∈ R
n×n, i.e., x = Ψθ. It is said that x is

compressible in Ψ if the magnitude of the coefficients

of θ, after being sorted based on their absolute value,

decay faster than ci−
1

τ , where 0 < τ ≤ 1 and

c is a constant [2–5]. A larger τ shows a higher

compressibility. Similar to [5], we can also make θ
sparse by keeping its k ≪ n significant coefficients

and setting the rest of n−k coefficients to zero. Such
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a signal is referred to as a k-sparse signal. CS is

comprised of the two following key steps:

Signal Sampling: The random projections (mea-

surements) are generated by y = Φx, where Φ ∈
R

m×n is a well-chosen random matrix, called projec-

tion matrix (aka measurement matrix), and y ∈ R
m

is the measurement vector. We can see that the ith

measurement, yi =
∑n

j=1 ϕi,jxj , where ϕi,j is the

entry on the ith row and jth column of Φ.

Signal Recovery: Signal reconstruction can be

done by obtaining the estimate θ̂ (and accordingly x̂ =
Ψθ̂) from the system of linear equations y = ΦΨθ.

This is an underdetermined system with infinitely

many solutions. However, the knowledge of θ being

a sparse signal allows us to have a successful recon-

struction with high probability from m = O(k log n)
measurements by solving the ℓ1 optimization problem

given by [1–3, 6]

θ̂ = argmin‖θ‖1, s.t. y = ΦΨθ, (1)

where ‖θ‖1 =
∑n

i=1 |θi|. The ℓ1 optimization problem

(1) can be solved with linear programming techniques

such as basis pursuit (BP) [6].

To the best of our knowledge, all existing CS

studies have merely considered equal importance for

all the coefficients of x. Therefore, all xi’s are equally

treated and are recovered with the same probability

in the recovery phase. However, in many practical

applications signal coefficients may have unequal

importance levels. For instance, if x represents the

temperature readings of a sensor network deployed in

a field, we may be more interested in monitoring a

certain area’s temperature with a higher accuracy.

In this paper, we propose non-uniform compressive

sensing (NCS) for non-uniform recovery of signal

coefficients based on their importance levels. Our

approach is based on a novel design for the projection

matrix Φ such that the measurements capture more

important coefficients with higher probabilities. In
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NCS, the decoding can remain intact and conventional

CS reconstruction algorithms such as BP may be

employed. To design NCS, we adopt ideas from the

previous work on rateless codes with unequal-error-

protection (UEP) property [7, 8] in which the encod-

ing phase of rateless codes is modified to provide

UEP.

This paper is organized as follows. In Section II,

we review the related work. In Section III, we propose

NCS and evaluate its performance and properties by

extensive simulations. In Section IV, we theoretically

analyze NCS for a case with a simple and suboptimal

recovery scheme. Finally, Section V concludes the

paper.

II. RELATED WORK

A great portion of the work on CS has been

devoted to enhance the performance of signal recovery

by introducing new reconstruction algorithms [9–16].

However, the signal sampling process in CS and the

type of projection matrices that are employed have

not evolved as much.

In the early work on CS [2, 17], the measurement

matrices are chosen to be dense matrices with entries

selected independently from some distribution such as

Bernoulli or Gaussian. Sparse measurement matrices

have also been proposed as they provide low encoding

and decoding complexity [12, 18–20]. Such sparse

measurement matrices are shown to perform almost

as good as dense Gaussian and Fourier matrices under

certain conditions.

However, the aforementioned work can only pro-

vide uniform reconstruction of signal’s coefficients.

Further, these CS schemes mostly focus on signal

reconstruction phase rather than signal sampling as in

NCS. To the best of our knowledge this work is the

first to propose a novel design for projection matrices

to provide non-uniform recovery of signal coefficients.

III. NCS DESIGN

Following rateless codes [21], we may view the

coefficients of x and the measurements y in a CS

scheme as vertices of a bipartite graph G, where

coefficients are information nodes and measurements

are encoded nodes. The coefficient xi is connected to

measurement yj with an edge of weight ϕj,i.

Conventionally, the measurement matrix Φ has been

considered to be a dense matrix with its entries chosen

randomly from N (0, 1) or {+1,−1} with equal prob-

abilities. For a dense Φ, all measurements have edges

connected to all coefficients. Hence, all coefficients

would have degree (the number of edges connected

to a node) m and all measurements would have

degree n. Therefore, all coefficients are included in

all measurements and the probability of their recovery

will be the same. Consequently, a dense Φ may only

provide uniform protection for all coefficients. Figure

1 shows G when Φ is a dense matrix.

y1 y2 ym

x1 x2 x3 xn

n

m

ϕ1,3 ϕ2,3

Fig. 1. Bipartite graph representing the sampling phase in

a CS scheme. Circles and squares represent coefficients x and

measurements y, respectively, where y = Φx.

To design non-uniform CS, we employ the ideas

from UEP rateless codes [7, 8]. In UEP rateless

coding, the encoded nodes in the bipartite graph have

more edges connected to more important information

nodes. Therefore, more important information nodes

are included in more encoded nodes and the proba-

bility that their decoding is successful increases. We

employ the same idea and propose to incorporate more

important coefficients in a larger number of mea-

surements or equivalently sample them with a higher

frequency. This leads to non-uniform distribution of

edges over the information nodes (coefficients) in G.

Clearly, this can be possible only if the measurement

matrix is sparse. Therefore, similar to [5, 12, 18, 19],

we consider a sparse Φ with L ≪ n nonzero entries

per row selected from {+
√

n
L
,−
√

n
L
} with equal

probabilities. To infuse non-uniform recovery, these

non-zero entries need to be non-uniformly distributed

over each row of Φ.

Let us partition n coefficients of x into r sets

s1, s2, . . . , sr with decreasing importance levels and

sizes α1n, α2n, . . . , αrn such that
∑r

i=1 αi = 1. Let

pj(n)1 be the probability that an edge emanating from

a measurement is connected2 to a particular coefficient

in sj , for j = 1, 2, . . . , r. Clearly,
∑r

j=1 pjαjn = 1.

By setting appropriate values for pj’s we can adjust

the frequency that measurements capture coefficients

1The special case p1 = . . . = pr = 1

n
, results in the previously

studied uniform CS.
2Parallel edges could occur but asymptotically its probability is

negligible.
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in sj’s and provide non-uniform recovery. Such an

ensemble of NCS is specified by parameters L, n, m,

α = {α1, . . . , αr}, and p = {p1, . . . , pr}. Figure 2

depicts how non-uniform selection of coefficients in

bipartite graph G is performed.
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Fig. 2. Non-uniform selection of signal coefficients by measure-

ments in NCS.

Clearly, the higher pj is chosen, the more coef-

ficients from sj are contributing to a measurement.

Therefore, the resulting measurement matrix ΦU =
[Φ1|Φ2| . . . |Φr] is comprised of r sub-matrices Φj of

size m×αjn, for j ∈ {1, 2, . . . , r}. An entry in Φj is

non-zero with probability Lpj . Hence, a higher value

of pj maps to a higher density of non-zero entries in

Φj . Figure 3 shows the structure of ΦU .

ΦU =

α1n α2n αrn

Φ1 Φ2 Φr

m × n

Fig. 3. Submatrices of ΦU in NCS. A darker color corresponds

to a denser matrix.

In the proposed NCS, only the sampling phase has

been changed compared to conventional CS schemes

and the decoding has not been altered. However,

the question that arises here is, whether employing

ΦU satisfies CS requirements similar to a dense Φ.

Authors in [5] showed that for signals that are sparse

in Fourier transform basis with ϕi,j’s satisfying

E[ϕi,j ] = 0, E[ϕ2
i,j ] = 1, and E[ϕ4

i,j ] =
n

L
, (2)

and

L ≥

{

1 if 0 < τ < 1,
log n if τ = 1.

(3)

the CS reconstruction employing a sparse Φ results in

almost the same reconstruction accuracy of a dense

Φ. Further, [22] showed that sparse Φ matrices can

be employed with any orthonormal dense Ψ. Conse-

quently, we only need to show that ϕi,j’s of ΦU satisfy

(2) and select L to satisfy (3).

Lemma 1: Elements of a measurement matrix

ΦU = [Φ1|Φ2| . . . |Φr] of NCS with parameters L,

n, m, r, α, and p satisfy (2).

Proof: We note that each entry of sub-matrix

Φj = [φj ] is zero, +
√

n
L

, or −
√

n
L

with probabil-

ities 1 − Lpj , Lpj/2, and Lpj/2, respectively. For

q ∈ {1, 2, . . . , n} and qj ∈ {1, 2, . . . , αjn} we have

E[φi,q] =
r
∑

j=1

αjE[φj
i,qj

] = 0,

E[φ2
i,q] =

r
∑

j=1

αjE[(φj
i,qj

)2] =
r
∑

j=1

αjnpj = 1,

E[φ4
i,q] =

r
∑

j=1

αj

(Lpj

2
(
n

L
)2 +

Lpj

2
(
n

L
)2
)

=
n2

L

r
∑

j=1

αjpj =
n

L
.

Thus, the entries of ΦU satisfy (2).

In the next section, we evaluate the properties of

NCS.

A. Performance Evaluation of NCS

In this section, we consider a special case of NCS

in which a signal x has two importance levels (r = 2)

and compare the performance of NCS to the perfor-

mance of uniform CS (in which L non-zero elements

in each row of Φ have been distributed uniformly).

Assume n1 = αn is the number of more important

coefficients (MICs), which reside in the first part of

x, and n2 = (1−α)n is the number of less important

coefficients (LICs). To infuse non-uniform recovery,

we set p1 = kM

n
and p2 = kL

n
for some 0 < kL ≤ 1

and kM = 1−(1−α)kL

α
. This ensures p1 ≥ p2 (higher

recovery for MICs).

For our simulations, we assume α = 0.15, x
has length n = 103, and it is a k-sparse signal in

DCT domain with k = 102. Therefore, we randomly

generate θ with k = 102 nonzero entries with τ = 7
8

[23] and find x from x = Ψθ. With this value of τ ,

we have L ≥ 1 from (3). In our simulations, we will

show that the performance is indeed insensitive to the

exact value of L and we set L = 100.
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We perform the CS sampling (encoding) employ-

ing ΦU and perform the reconstruction (decoding)

employing the conventional basis pursuit CS recon-

struction to obtain an estimate of the encoded sig-

nal x̂. We plot the normalized reconstruction error

(NRE) of MICs and LICs given by
‖x

MIC
−x̂

MIC
‖2

‖x
MIC

‖2

and
‖x

LIC
−x̂

LIC
‖2

‖x
LIC

‖2

versus the simulation parame-

ters, where xMIC = [x1x2 . . . xαn]T and xLIC =
[xαn+1xαn+2 . . . xn]T . In the first simulation, we fix

the number of measurements to m = 300 and plot

NRE of MICs and LICs versus kM as illustrated in

Figure 4. We should note that kM = 1 corresponds to

uniform CS.
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k
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N
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E

 

 

LIC

MIC

Uniform CS

Fig. 4. NREs for MICs and LICs versus kM . Note that kM = 1
corresponds to the NRE of uniform CS.

Figure 4 shows that as kM increases MICs are

recovered with a higher accuracy compared to LICs.

Therefore, the desired non-uniform recovery has been

provided for MICs and LICs. Moreover, the non-

uniformity can be easily adjusted by appropriately set-

ting kM . As an example, we observe that at kM = 4,

MICs are recovered with 35% higher accuracy com-

pared to uniform CS (kM = 1), while the performance

loss of LICs is less than 10%.

Next, we fix kM = 4 and plot NREs of MICs

and LICs versus the number of measurements m as

illustrated in Figure 5. We have also included NRE

for unifrom CS (kM = 1).

Figure 5 can be interpreted in two ways. First, we

can assume the number of measurements is fixed.

Hence, for a given m we see that MICs have been

recovered with a much better accuracy compared to

the uniform CS, while there is a slight performance

loss in the reconstruction of LICs. On the other hand,

we may target for a fixed NRE and observe that MICs

achieve the target NRE with fewer measurements. To

100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

m

N
R

E

 

 

LIC

MIC

Uniform CS

Fig. 5. NRE versus m for NCS. The dashed line corresponds to

the NRE of uniform CS.

elaborate more on this property, we have also plotted

the number of measurements required to achieve the

target error rate of NRE=0.1 for MICs and LICs

versus kM in Figure 6. Figure 6 shows that MICs

achieve NRE=0.1 with about 20% less number of

measurements than LIC. This can actually provide

unequal recovery time (URT). This means that differ-

ent parts of signal x can reach a target reconstruction

quality at different time spans from the beginning of

the measurement stream.

1 1.5 2 2.5 3 3.5 4 4.5 5
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k
M

m

 

 

LIC

MIC

Fig. 6. The number of required measurements m versus kM for

MICs and LICs to reach NRE= 0.1. Clearly, kM = 1 corresponds

to uniform CS.

In Figure 7(a), we plot NREs versus the row weight

L when kM = 2.5 and m = 300. We observe that

NREs are almost insensitive to row weight L and the

reconstruction error remains almost constant.

In Figure 7(b), we plot NREs versus the sparsity

s = k
n

, by varying k. We observe that NRE is

an increasing function of s. This is expected since

increasing s results in a less compressible (less sparse)

signal. However, we observe that non-uniform recov-
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ery is still effectively provided for MICs and LICs

compared to uniform CS.
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(a) Plot of NRE versus row weight L.
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(b) Plot of NRE versus sparsity of s = k

n
.

Fig. 7. NRE versus L and s = k

n
. Dashed line corresponds to

the NRE of uniform CS.

In the next section, to make the asymptotic anal-

ysis of NCS tractable, we assume a simple iterative

decoder is employed at the reconstruction phase.

IV. ANALYSIS OF NCS BASED ON A SIMPLE

DECODER

In this section, we consider a simple iterative

decoder based on group-testing CS reconstruction

algorithms [18, 24] referred to by Decoder-I1. In

group-testing based CS reconstruction algorithms it

is assumed that x is k-sparse (Ψ = In). Similar

to [18, 24], we assume that L = n
k

. Since x is

sparse, there is a high probability that measurements

capture L zero valued coefficients and obtain a value

of zero. Therefore, Decoder-I performs the following

two steps and iterates until no more coefficients can

be recovered.

1) Find all measurements yi = 0, i ∈
{1, 2, . . . ,m} and set N(yi) to zero, where

N(yi) denotes the set of coefficients of x that

are adjacent to yi in graph G. This is because

the non-zero coefficients have real values. Thus,

it is almost impossible that the addition of some

non-zero coefficients results in exact zero.

2) Find the measurements with only one unknown

neighbor and recover the value of that neighbor

accordingly.

We analyze the recovery probability of coefficients

in set sj employing Decoder-I. It should be noted that

Decoder-I is similar to the belief propagation iterative

decoding of rateless codes over erasure channels [21]

with the additional step that all the neighboring coef-

ficients of a zero-value measurement are set to zero.

We can rephrase the Decoder-I steps for our anal-

ysis as following. At every decoding iteration, 0 or

1 messages are sent along edges from coefficients to

measurements and vice-versa. A measurement sends a

1 to a neighboring coefficient if and only if it is able to

recover the coefficient’s value. Similarly, a coefficient

sends a 1 to its neighboring measurements if and only

if its value has been recovered. In other words, a

coefficient sends a 1 to a neighboring measurement

if and only if it has received at least one message

with value 1 from its other neighboring measurements.

Therefore, we can say that the coefficients indeed do

the logical OR operation. Moreover, a measurement

sends 0 to a neighboring coefficient if and only if

(i) the measurement is a non-zero measurement (this

is imposed as a result of the first step of decoding

in Decoder-I) and (ii) it has received at least one

message with value 0 from its other neighboring

coefficients. Accordingly, we infer that measurements

do a combination of logical AND and OR operations.

Hence, we can extend the And-Or tree analysis

technique, which has been used to analyze UEP

rateless codes [7], to fit our problem and find the

probability that a coefficient in sj is not recovered (its

value evaluates to 0) after l decoding iterations. Let us

first obtain the decoding probability of the coefficients

for uniform CS, i.e., pi = 1
n
,∀i. Similar to [7, 8],

we choose a tree Tl, a subgraph of G, as follows.

We choose an edge (v,w) uniformly at random from

1The decoders in [18, 24] have additional steps compared

to Decoder-I. However, we employ Decoder-I for making the

analytical study tractable.
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all edges in G. Call the coefficient v connected to

edge (v,w) the root (depth 0). The subgraph of G
induced by v and all neighbors of v within distance

2l after removing the edge (v,w) is shown to be a

tree asymptotically [25]. In Tl, the children of v are

at depth 1, their children at depth 2, and so forth.

Nodes at depths 0, 2, 4, . . . , 2l are coefficients and the

nodes at depths 1, 3, 5, . . . , 2l − 1 are measurements.

Performing l iterations of Decoding-I corresponds to

considering the logical operations by the nodes (as

explained above) in the tree Tl. If the root evaluates

to logical 0 it means that the corresponding coefficient

has not been recovered and vice versa. Let zl be the

probability that the root of Tl evaluates to 0 (is not

recovered) after l decoding iterations for asymptotic

case (n → ∞). The following lemma formulates zl.

Lemma 2: Assume a k-sparse signal x of length

n is encoded with a uniform CS, whose measurement

matrix Φ has L non-zero entries uniformly distributed

over each of its rows. Let zl be the probability that

a coefficient in x is not recovered after l decoding

iterations employing Decoder-I. We have z0 = 1 and

zl =δ

(

1 − β
(

1 − zl−1

)

− (1 − s)

[

β
(

1 − s
)

− β
(

(1 − s)(1 − zl−1)
)

]

)

, l ≥ 1,

(4)

where β(x) = xL−1, δ(x) = eL m

n
(x−1), and s = k

n
.

Proof: Proof is straightforward and similar to [7,

Lemma 3]. We only emphasis that a measurement at

depth i + 1 sends a 1 to a coefficient at depth i if

either all its OR-node children at depth i + 2 send

it a value 1 (second step of decoding in Decoder-I)

or the measurement has a zero value (first step of

decoding in Decoder-I). Considering the probability

of these two events and subtraction of the probability

of their intersection a measurement sends a 1 to a

coefficient with probability β(1−zl−1)+(1−s)β(1−
s) − (1 − s)β((1 − s)(1 − zl−1)). Further, δ(x) can

be easily obtained considering that the degree of co-

efficients (asymptotically) follows Poisson distributed

with mean Lm
n

.

Next, we extend Lemma 2 to NCS with r impor-

tance levels.

Lemma 3: Assume a k-sparse signal of length n
is encoded with a non-uniform CS with parameters

L, m, n, α, and p. Let zl,j be the probability that

a coefficient in sj is not recovered after l decoding

iterations employing Decoder-I. We have

zl,j =δj

(

1 − β
(

1 −
r
∑

i=1

piαinzl−1,i

)

− (1 − s)

[

β
(

1 − s
)

− β
(

(1 − s)

× (1 −
r
∑

i=1

piαinzl−1,i)
)

]

)

, l ≥ 1,

(5)

where z0,j = 1, β(x) = xL−1, and δj(x) =
epjLm(x−1).

Proof: The proof is similar to Lemma 2 and

[7, Lemma 3] and considering that the degree of

coefficients in sj follows Poisson distribution with

mean pjLm.

Definition 1: Define non-uniform gain Gl,i,j ,
yl,i

yl,j
. This parameter compares the recovery probabili-

ties of coefficients in si and sj . A larger Gl,i,j shows

a higher decoding probability of coefficients in sj in

comparison with the coefficients in si.

It can be shown that

Gl,i,j = exp

[

(pj − pi)mL

(

β(1 −

r
∑

i=1

piαinzl−1,i)

− (1 − s)
[

β(1 − s) − β((1 − s)

× (1 −

r
∑

i=1

piαinzl−1,i))
]

)

]

, l ≥ 1.

We can see that for l ≥ 1, Gl,i,j > 1 if and only

if pj > pi. Therefore, we can provide our desired

non-uniform CS recovery by carefully tuning pj, j ∈
{1, 2, . . . , r} and setting a higher pj for sj’s with more

importance levels.

A. Special Case with r = 2

In this section, a special case of NCS with Decoder-

I and parameters r = 2, L, n, m, α1 = α, α2 = 1−α,

p1 = kM

n
, and p2 = 1−p1 is investigated analytically.

Let zl,M and zl,L denote the recovery probabilities of

MICs and LICs at lth decoding iteration employing

Decoder-I, respectively. From Lemma 3, we have

z0,M = z0,L = 1 and for l ≥ 1
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zl,M = exp

(

−
kMLm

n
β

(

1 − (1 − α)kLzl−1,L − αkMzl−1,M

)

− (1 − s)

[

β
(

1 − s
)

− β
(

(1 − s)

× (1 − (1 − α)kLzl−1,L − αkMzl−1,M )
)

]

)

,

(6)

zl,L = exp

(

−
kLLm

n
β

(

1 − (1 − α)kLzl−1,L − αkMzl−1,M

)

− (1 − s)

[

β
(

1 − s
)

− β
(

(1 − s)

× (1 − (1 − α)kLzl−1,L − αkMzl−1,M )
)

]

)

,

(7)

with β(x) = xL−1.

In Figure 8, we evaluated the analytical results

given by (6) and (7) for the probabilities that MICs

and LICs are not recovered versus m . We have also

depicted the probabilities that LICs and MICs are not

recovered after l decoding iterations employing a real

implementation of Decoder-I. In our simulations we

set n = 104, k = 100, L = 100, α = 0.15, and

kM = 3. Our asymptotic results in Figure 8 show that

MICs are recovered with a much higher probability

compared to LICs and confirms that desired non-

uniform recovery can be provided employing NCS.
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Fig. 8. The probability that coefficients in MICs and LICs are

not recovered after l iterations of Decoder-I.

V. CONCLUSION

In this paper, we introduced non-uniform com-

pressive sensing (NCS), which enables non-uniform

recovery of the coefficients of sparse signals based

on their random projections. NCS is inspired by a

previous work on rateless codes with unequal-error-

protection property. A novel non-uniform sampling

phase is designed such that the measurements cap-

ture the more important coefficients with a higher

frequency. In this way, these coefficients are recov-

ered with a higher precision compared to the less

important coefficients. In NCS, only the encoding

phase has been modified and the decoding remains

intact. Therefore, any form of conventional CS recon-

struction algorithm may be employed in the decoding

phase of NCS. We showed that by employing NCS

the desired higher reconstruction accuracy for more

important parts of the signal can be obtained while

the degradation in the reconstruction quality of the

less important parts of data remains insignificant.

To make the theoretical analysis of NCS tractable,

we also studied NCS under a simple (and suboptimal)

decoding that is partly similar to the iterative decoding

of rateless codes and analyzed NCS performance

asymptotically by employing an extended And-Or tree

analysis technique. Analytical results confirmed that

the desired non-uniform recovery can be achieved by

properly tuning NCS parameters.
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