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Abstract—Reliable and efficient spectrum sensing through
dynamic selection of a subset of spectrum sensors is studied.
The problem of selecting K sensor measurements from a set of
M potential sensors is considered where K � M . In addition,
K may be less than the dimension of the unknown variables of
estimation. Through sensor selection, we reduce the problem to
an under-determined system of equations with potentially infinite
number of solutions. However, the sparsity of the underlying
data facilitates limiting the set of solutions to a unique solution.
Sparsity enables employing the emerging compressive sensing
technique, where the compressed measurements are selected from
a large number of potential sensors. This paper suggests selecting
sensors in a way that the reduced system of equations constructs a
well-conditioned measurement matrix. Our criterion for sensor
selection is based on E-optimalily, which is highly related to
the restricted isometry property that provides some guarantees
for sparse solution obtained by �1 minimization. Moreover, the
proposed framework exploits a feedback mechanism to evolve
the selected sensors dynamically over time. The evolution aims
to maximize the reliability of the sensed spectrum.

Key-words: Sensor Selection, E-optimality, Restricted

Isometry Property (RIP), Matrix Subset Selection, Compres-

sive Spectrum Sensing and Sparse Recovery.

I. INTRODUCTION

In the last decade, complex systems containing very large

numbers of data-gathering devices were developed. An ex-

ample is wireless sensor networks. In such systems, the

processing unit has to deal with an excessively large number of

observations acquired by the various sensors. Often there exist

some redundancies within the sensed data and they should be

pruned. Sensor selection and sensor scheduling aim to address

this problem. In many applications the sensor selection task

is non-trivial and possibly consists of addressing an NP-hard

problem (i.e., there are
(M
K

)
possibilities of choosing K distinct

sensors out of M available ones). This essentially implies

that an optimal solution cannot be efficiently computed, in

particular when the number of sensors becomes excessively

large. A convex relaxation of the original NP-hard problem has

been suggested in [1]. The most prominent advantage of this

approach over other methods is its practicality, thanks to many

well-established computationally-efficient convex optimization

techniques. In addition to convex relaxation, a sub-modular

cost function as the criterion of sensor selection allows us to

take advantage of greedy optimization methods for selecting

sensors [2].

The existing studies on sensor selection mostly consider

heuristic approaches . For example, in [1] the volume of the re-

duced bases is considered. This method is called D-optimality.

In addition, A-optimality [3] and E-optimality [3] are suggested

as some other alternative heuristics already introduced in

convex optimization. These heuristics are presented without

any specific justification for sensor selection application. In

this paper we are going to exploit a criteria more judiciously

in favor of compressed sensing (CS) theoretical guarantees.

Inspired by the compressed sensing theory, this paper

suggests to design and optimize a sensor selection method.

The goal is to reduce a measurement matrix to only a small

fraction of its rows in order to optimize the proposed E-optimal

criterion.

The main contributions of the paper are summarized as

follows:

• The link between matrix subset selection, especially

volume sampling and sensor selection is investigated.

• The E-optimal criterion for matrix subset selection is

proposed, which results in a new sensor selection method,

• The suitability of the E-optimal criterion is discussed

which is an upper bound for RIP coefficients for com-

pressive sensing, and

• The reliability concept for power spectrum map is intro-

duced and it is exploited for reliable sensor selection.

Table I presents the employed notations throughout this

paper.

The rest of paper is organized as follows. Section II-C states

the problem of sensor selection and reviews some existing

methods. E-optimal sampling is introduced in Section III

and a new sensor selection method is proposed. Section IV

propose dynamic sensor selection based on the reliability.

The optimization method for solving the proposed problem

is explained in Section V. Section VI presents the simulation

results and Section VII concludes the paper.

Table I: Employed notations and variables in this paper.

Variable Type Notation

Constant Scalar X
Vector x

sth entry of Vector xs
Matrix X
Set X

Selected Rows of A by set X AX
Number of non-zero entries of x ‖x ‖0
Trace of Matrix X Tr(X )
Projection of X on its rows set T πT(X )
M number of potential sensors
K number of selected sensors
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II. BACKGROUND

This paper address a joint framework for spectrum sensing

with partial sensing from a big set of sensors. The partial data

are selected through a sensor selection procedure. Viewing

spectrum sensing and sensor selection together in a joint

problem is resulted to inspiring theoretical results in addition

to a new application.

The prerequisite background of the proposed framework is

reviewed in this section. The first subsection reviews com-

pressed sensing theory and then the system model of spectrum

sensing is introduced in the second subsection. The third

subsection introduces the sensor selection problem. The last

subsection review theoretical results in matrix subset selection

literature which is highly related to our proposed selection

method.

A. Compressed Sensing

Compressed sensing is a technique by which sparse signals

can be measured at a rate less than conventional Nyquist

sampling theorem. [4]. There exist vast applications of CS in

signal and image processing [5], channel estimation [6] and

spectrum sensing [7]. CS aims to recover a sparse vector, x,

using a small number of measurements y. The CS problem

can be formulated as,

x̂ = argmin
x

‖x‖0 s.t. y = Φx, (1)

where, ‖.‖0 represents the number of non-zero elements of a

vector. Φ ∈ RK×N is called measurement matrix that provides

us K measurements collected in y. Exact solution of the above

optimization problem is through the combinational search

among all possible subsets. Due to its high computational

burden, this algorithm is impractical for high dimension sce-

narios. Many sub-optimal algorithms have been proposed such

as OMP [8], smoothed �0 [9] and basis pursuit [10]. Basis

pursuit is based on relaxing �0 to �1 norm and is popular due

to theoretical guarantees and reasonable computational burden

[11]. The theoretical guarantees for �1 minimization arise from

several sufficient conditions based on some suggested metrics.

These include the mutual coherence [12], null space property

[13], spark [14] and restricted isometery property (RIP) [15].

Except for the mutual coherence, none of these measures can

be efficiently calculated for an arbitrary given measurement

matrix Φ. For example, the RIP requires enumerating over an

exponential number of index sets. RIP is defined as follows.

Definition 1. [15] A measurement matrix is said to satisfy
symmetric form RIP of order S with constant δS if δS is the
smallest number that

(1 − δS)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δS)‖x‖22, (2)

holds for every S-sparse x (i.e. x contains at most S nonzero entries).

Based on this definition several guarantees are proposed in

terms of δ2S , δ3S and δ4S in [16] and [17] in order to guarantee

recovering S-sparse vectors. By S-sparse we mean a vector

that has S non-zero entries. In [18] an asymmetric form of

definition 1 is introduced in order to more precisely quantify

the RIP.

Definition 2. [18] For a measurement matrix the asymmetric
RIP constants δLS and δU

S
are defined as,

δLS (Φ) = argmin
c>0

(1 − c)‖x‖22 ≤ ‖Φx‖22, ∀x ∈ XN
S ,

δUS (Φ) = argmin
c>0

(1 + c)‖x‖22 ≥ ‖Φx‖22, ∀x ∈ XN
S ,

(3)

where, XN
S

refers to the set of S-sparse vectors in RN .

Remark 1. [18] Although both the smallest and largest singu-
lar values of ΦSTΦS 1 affect the stability of the reconstruction
algorithms, the smaller eigenvalue is dominant for compressed
sensing in that it allows distinguishing between sparse vectors,
XN
S

, given their measurements by Φ.

B. Spectrum sensing problem statement

Cognitive radio (CR) is a promising solution to alleviate

today’s spectrum deficiency caused by an increased demand

for the wireless technologies [19, 20].The CR paradigm allows

the unlicensed or secondary users (SUs) to coexist with the

PUs. The SUs are allowed to access the spectrum provided

that they do not interfere with the licensed users. The under-

utilized spectrum bands that can be used by the SUs are called

spectrum holes [21]. An ideal CR is able to efficiently detect

and utilize spectrum holes.

Due to the scarce presence of active PUs and their narrow

band transmission, sparse recovery methods are exploited to

perform cooperative spectrum sensing [22, 23]. These ap-

proaches decompose the power spectrum density (PSD) of

CRs, in terms of some appropriate bases which are related

to the network topology and parameters.

We assume a network setup the same as that of [22].

Consider Ns points in a grid as the potential locations of

transmitters and M receivers in an area. The receivers receive

a superposition of transmitters signals. Figure 1 shows a setup

consisting Ns = 25 potential transmitters in which 2 of them

are active and there exist M = 60 sensors. The received

signals are contaminated by channel gain and additive noise,

represented by the following equation,

ym = aTmx + νm, ∀m = 1 . . .M, (4)

where, am contains the corresponding channel gains and νm
represents noise power at the mth receiver. Coefficients of x
correspond to the transmitted power at different grid points.

The following problem aims to estimate x collaboratively

using all the measurements [22].

x̂ = argmin
x

‖y − Ax‖22 + γ‖x‖1, (5)

in which, y and A are concatenation of ym and am respectively.

Each entry of x determines the contribution of the sth source on

the sensed data. Due to scarce presence of active transmitters

1
S represents a set with cardinality of S and ΦS represents the corresponding
selected rows of Φ.
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and their narrow band communication, ‖x‖1 is exploited which

encourages sparsity. It should be noted that by estimating x, we

will know the location and power of transmitters at different

frequency bands. These information enable us to build a radio

environment map [24].

C. Sensor Selection Problem Statement

Solving the sensor selection problem by evaluating the per-

formance for each of the possible choices of
(M
K

)
is impractical

unless the sizes are sufficiently small.

Suppose we want to estimate a vector x ∈ RN from M linear

measurements where each one is collected from a sensor,

corrupted by additive noise, given by

y = Ax + ν, (6)

where, y ∈ RM and A ∈ RM×N and ν is normally distributed

with zero mean and σ2 variance. In other words, we want to

only select just K rows of A to have K measurements out

of maximum M measurements. The corresponding rows of A
construct the measurement matrix, Φ, in compressed sensing

literature. The maximum likelihood (ML) estimator is given

by [1],
x̂ML = (AT A)−1AT y. (7)

The estimation error x − x̂ has zero mean and the covariance

matrix is equal to

ΣML = σ
2(AT A)−1. (8)

To involve selection operator in the equations let us first write

the ML solution as follows,

x̂ML = (
M∑
m=1

amaTm)
−1 M∑

m=1
ymam, (9)

where, aTm is the mth row of A. The estimation error is

distributed in a high dimensional ellipsoid that its center is

located at origin and its shape is according to the covariance

matrix of error [1]. Minimization of volume of this ellipsoid

(D-optimality) is the heuristic used in [1] that results in the

following problem:

ŵ = argmin
w

log det(
M∑
m=1

wmamaTm)
−1

,

subject to ‖w‖0 = K and w ∈ BM,

(10)

Figure 1: An example setup with 25 candidate points as transmitters.

where w determines whether or not each column is involved

and B = {0, 1}.
The practical algorithms alternative to the combinatorial

search are divided into two main categories, convex relaxation

and greedy selection. The first approach approximates the

search space to the nearest convex set and exploits convex

optimization methods to solve the problem, while greedy

methods gradually select suitable sensors or prune inefficient

ones.

D. Matrix subset selection

The sensor selection problem is highly related to col-

umn/row sub-matrix selection, a fundamental problem in ap-

plied mathematics. There exists many efforts in this area [25–

28]. Generally, they aim at devising a computationally efficient

algorithm in which the span of the selected columns/rows

cover the columns/rows space as close as possible. Mathemati-

cally, a general guarantee can be stated as one of the following

forms [26, 29],

E{‖A − πT(A)‖2F } ≤ (K + 1)‖A − AK ‖2F,
‖A − πT(A)‖2F ≤ p(K,M, N)‖A − AK ‖2F,

in which, πT(A) represents projection of rows of A on to the

span of selected rows indexed by T set. E indicates expectation

operator with respect to T, i.e., all the combinatorial selection

of K rows of A out of M are considered. Moreover, p(K,M, N)
is a polynomial function of the number of selected elements,

the number of columns and the number of rows. AK is the

best rank-K approximation of A that can be obtained by

singular value decomposition. The first form suggests the

distribution of potential sets for selection and it expresses an

upper bound for expected value of error. The second form

guarantees existence of a deterministic subset that bounds the

error by a polynomial function of the parameters.

Volume sampling is the most well-known approach to

achieve the desired selection that satisfies one of the afore-

mentioned bounds. The following theorem expresses the prob-

abilistic form volume sampling.

Theorem II.1 ([26]). Let T be a random K−subset of rows
of a given matrix A chosen with probability

Pr(T) = det(ATAT
T
)∑

|U |=K det(AUAT
U
)

Then,

E{‖A − πT(A)‖2F } ≤ (K + 1)‖A − AK ‖2F .
Volume sampling considers more probability of selection for

those rows whose volume is greater. The volume of a subset

of a matrix, AT, is proportional to the determinant of ATA
T
T

.

The same heuristic criterion in (10) aims to find the subset

which has the greatest volume. It indicates the most probable

subset according to volume sampling. It shows the relation

of volume sampling and sensor selection in which they are

solving the same problem. However this heuristic criterion is

not justified for ant specific task.
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Volume sampling and D-optimality pursue the same heuris-

tic objective. This heuristic does not promote a well-shaped

matrix for compressive sensing purposes based on RIP. How-

ever, the analysis of optimization w.r.t the RIP coefficient is not

an easy task due to the columns combinatorial behavior in ad-

dition to row selection for the basic sensor selection problem.

To eliminate the column combinations, we consider all of the

columns and consequently we come up with an optimization

problem w.r.t the minimum eigenvalue that is known as E-

optimality in the optimization literature [3]. Assume a simple

selection from rows of A ∈ R100×3. Each row of A, associated

with a sensor, corresponds to a point in R3. We are to select

2 sensors out of 100 based on D-optimality and E-optimality.

Both solutions are initialized by the same sensor (sensor 1)

and the criteria for the next selection varies. The D-optimal

solution aims to maximize the surrounded area (gray area in

Fig. 2) which is vulnerable to be an ill-shaped area while,

E-optimal solution comes up with a well-shaped area due to

maximizing the minimum eigenvalue (shaded area in Fig. 2).2

The following simple example illustrates the effect of E-

optimality. Consider two matrices,
[
2 0
0 0.5

]
and

[
1 0
0 1

]
. The

determinant of both matrices are equal, thus D-optimality does

not favor one over the other, however, the second matrix is

optimum based on E-optimality.

As we will see in the next section, for selection of K rows of

A ∈ RM×N , the E-optimal criterion is equivalent to optimizing

the RIP coefficient of order N , which is an upper bound for

any arbitrary order of RIP coefficients. In the next section E-

optimality will be exploited to develop a new sampling method

for which its performance guarantee is analyzed. E-optimal

criterion suggests optimization of an upper bound for a specific

order of RIP. Moreover, in this paper we suggest a method to

approximate a specific order of RIP. Based on it, a new RIP-

based sensor selection algorithm is proposed.

III. E-OPTIMAL SAMPLING

Remark 1 promotes us to develop a new matrix subset
selection method that reduces the matrix to have a well-
conditioned sub-matrices in the CS sense. The dominant
factor of RIP constant comes from the minimum eigenvalue
of the reduced matrix. It suggests to exploit the following
optimization problem for sensor selection,

ŵ = argmin
w

‖(
M∑
m=1

wmamaTm)
−1

‖,

subject to ‖w‖0 = K and w ∈ BM .

(11)

In which, ‖.‖ denotes the spectral norm of a matrix that

is defined as its maximum eigenvalue. The following lemma

shows that the minimum eigenvalue is an upper bound for δLS .

2The presented intuition about D-optimality and E-optimality relates to the
condition number of a matrix in linear algebra [30]. Diverged eigenvalues
results in a large condition number and an ill-conditioned system of equa-
tions; accordingly, we refer to the polygon of an ill-conditioned system of
equations as ill-shaped where the vertexes of shape are the rows of the matrix.
On the other hand, close eigenvalues correspond to a small condition number
and a well-conditioned system of equations. The corresponding polygon is
referred as well-shaped in Fig 2. Having well-conditioned matrices, is a
central concern in CS as evidenced by the role played by the RIP [31].

Figure 2: Comparison of D-optimality and E-optimality for selecting
2 sensors in the 3D space. The gray area is the maximum achievable
area by selecting the second sensor based on D-optimality. The
shaded area is a well-shaped polygon obtained by E-optimality.

Lemma III.1. For any A ∈ RM×N , the following inequality
holds.

1 − σmin(AAT ) = δLN (A) ≥ δLN−1(A) ≥ · · · ≥ δL2 (A).
Proof: It can be concluded directly by the interlacing property
of eigenvalues [32].

Lemma III.1 suggests that E-optimality, i.e., minimization

of δLN , actually minimizes an upper bound for an arbitrary

order of RIP coefficient.
Similar to volume sampling, we design a probability of

sampling according to their minimum eigenvalue.

Definition 3. Given a matrix A ∈ RM×N , E-optimal sampling

is defined as picking a subset of T with the following proba-
bility,

Pr(T) = σ2
min(AT)∑

|U |=K σ2
min(AU)

.

Definition 4. Given a matrix A ∈ RM×N , δ̄LK is defined as
one minus the mean of minimum eigenvalues of A’s sub-
matrices with K columns. Mathematically, it can be expressed
as follows,

δ̄LK (A) = 1 − E{σ2
min(AS)},

in which S indicates a subset of K columns of A.

Definition 5. [14] Given a matrix A ∈ RM×N , the spark of A
is defined as the smallest number of columns that are linearly
dependent. It can be stated as follows,

Spark(A) = min ‖x‖0 s.t. Ax = 0 and x � 0.

The upper bound for spark is the rank of matrix plus 1.

However any linear dependencies among some columns of the

matrix may decrease the spark. Based on the above definitions

we present the following theorem that expresses an upper

bound for projection error of E-optimal sampling.

Theorem III.2. Assume spark of A ∈ RM×N is greater than
K + 1. E-optimal selection of K rows implies

E{‖A − πT(A)‖2F } ≤
M − K

C(K + 1)
1 − δ̄L

K+1(AT )
1 − δ̄L

K
(AT ) ,
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Table II: Complexity of different selection strategies.

Algorithm Complexity

Convex Optimization [1] O(M3)
Volume sampling [25] O(KNM2logM)
Greedy Submodular Selection [2] O(MK3)
Greedy E-optimal selection O(MNK2)

where C is a positive number a function of the dependencies
of rows of A.

proof: First, let us write the expansion of expected value
operator according to the definition.

E{‖A − πT(A)‖2F } (12)

=
1∑

|T |=K σ2
min(AT)

∑
|T |=K

σ2
min(AT)‖A − πT(A)‖2F .

Based on the assumption on the spark of A, there exist a
positive constant, α, that satisfies the following equation for
every |T| = K and |S| = K + 1 in which T ⊂ S.

σ2
min(AS) = α σ2

min(AT)d(am, πT(A)).
Where am is the innovation of S w.r.t T and d(., .) represents

the Ecludian distance of a vector from a subspace. Let us take
summation on all of the possible combinations,

∑
|S |=K+1

σ2
min(AS) =

∑
|T |=K

σ2
min(AT)

M∑
m=1
αmd(am, πT(A)) (13)

≥ C
∑
|T |=K

σ2
min(AT)‖A − πT(A)‖2F,

where C is the minimum value of αm’s for all of the possible
combinations. The assumption on the spark guarantees the
existence of a positive constant. Note that the summation of the
distances for all of the rows A’ can be stated as the Frobenius
norm. Let us re-write the obtained inequality as follows,∑

|T |=K
σ2

min(AT)‖A − πT(A)‖2F ≤ 1
C

∑
|S |=K+1

σ2
min(AS)

Dividing both sides of the inequality by
∑
|T |=K σ2

min(AT) results
in E{‖A − πT(A)‖2F } in the left side. After a simple simplification
in terms of the coefficients introduced in Definition 2 and Definition
4, the right side turns into the desired expression. Please note the
defined CS coefficients in (3) work on the columns while we are to
select some rows. �

E-optimal sampling implies an upper bound for the expec-

tation of projection error in a probabilistic manner. However,

we need to select some sensors deterministically. To this aim,

we propose the following problem.

S = argmax
S

λmin(ASAT
S
).

Algorithm 1 shows an iterative greedy method to solve this

problem. Actually, this algorithm is an approximation for the

maximum likelihood estimator in which the likelihood comes

from the suggested probability in Definition 3.
Table II compares computational burden of three well-

known selection methods with the proposed method. Convex

relaxation is not able to work effectively for big data sets since

Algorithm 1 Greedy E-Optimal Sensor Selection

Require: A and K
Output: The selected set S.

1: Initialization: S with a random sensor

2: for k = 1, · · · ,K
3: for m = 1, · · · ,M
4: T = S

⋃{m}
5: p(m) = σmin(AT)
6: end

7: sk = argmax
m

p(m)
8: S = S

⋃
sk

9: end

the complexity of the algorithm grows with M3 [1]. Com-

plexity of volume sampling also depends on M2. Likewise,

complexity of greedy algorithms which process data one-by-

one increase linearly w.r.t size of data.

IV. RELIABILITY ESTIMATION AND DYNAMIC SENSOR

SELECTION

Collaborative sensor networks may collect redundant in-

formation which results in a larger number of sensor nodes

than is needed. While, pruning unnecessary data is essential,

Algorithm 1 is measurement-independent and it reduces the

underlying equations of the network to shrink the equations to

a well-conditioned set of sub-equations regardless of dynamic

of the network. This measurement-independent approach is op-

timal in an averaged sense, i.e., for different possible measure-

ments. It is appropriate for a static regime or initialization of

a dynamic sensor selection. This section proposes a dynamic

sensor selection framework which considers measurements for

sensor selection. First of all, let us define the dynamic sensor

selection systematically as follows,

Definition 6. (Dynamic Sensor Selection) [33]: For a given

model M on the data, determine set S such that the estimation

error of the rest of sensors, Sc , is minimized. The estimation

is obtained based on the model, M, and observed sensors, S.

We assume the compressed sensing model (4) for power

spectrum sensing as described in Section II-B. Let us denote

the obtained spectrum power vector by the subset S of sensors

at time t as xt
S
. A proper selection of S enables to predicting

the power spectrum throughout the network’s area.

In order to keep track of the network’s dynamic, we propose

to sample most of the nodes in a low rate mode; while some

selected nodes should provide us with data sampled at a high

rate enabling estimation of a high temporal resolution power

spectrum map. In this framework, there is no completely

switched off sensors, but we collect data from low-sampling

rate sensors to dynamically select the sensors with high

sampling rate. Therefore, we have two following types of

sensors in our proposed framework,

1) High-sampling-rate selected (active) sensors: These are a

small fraction of sensors selected by an underlying sensor

selection mechanism in order to access real-time data
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and generate a dynamic power spectrum map. The active

sensors report their sensing at rate fh = 1 sample per

time block.

2) Low-sampling-rate sensors: All sensors collect and report

their data in a low-rate mode, resulting in less bandwidth

and power consumption. The low-rate data enables us

to validate the estimated power spectrum map. The low-

sampling sensors report their sensing at rate fl = 1
nl

sample/time. I.e., 1 sample per nl time blocks is collected.

It should be mentioned that the measurements from low-

sampling rate sensors will not contribute in estimating

x. They will be used to determine the reliability of

estimation as we will discus below.

The dynamic sensor selection aims to select some sensors as

the active-mode set. The rest of sensors are marked as power

efficient low sampling rate sensors. If the active set is selected

properly, the rest of sensors can be predicted accurately by the

assumed model and the active selected sensors. The ability

of sensing is assumed same for all sensors and only the

sensing time is different. However, different bandwidth for

sensing can be considered in a more sophisticated framework

which is out of scope of this paper. Selected sensors contain

sufficient information enabling them to predict the rest of

sensors by the assumed model on the spectrum (4). Low

sampling rate data may cause obsolete information vulnerable

to large deviation from the model. Moreover, changes in the

dynamic of network also may cause large deviations between

the model’s estimation and the low sampling rate data. The

following expression defines a new metric called reliability
for sensor m at time t.

r (t)m =
exp(−σ(t − tm))

1 + |ym − E (t)(m, S)|2 . ∀m ∈ {1, · · · ,M} (14)

in which,

E (t)(m, S) = aTmx
(t−1)(S)

In (14), x(t−1)(S) is the estimation of power propagation

at time t − 1 based on collected data from active sensors

indexed by S. Moreover, E (t)(m, S) is the estimation of the

measurement of mth sensor at time t. σ is a temporal forgetting

factor. tm is the last time that sensor m is sampled and the

corresponding measurement is ym. The reliability of each

sensor consists of two terms. The numerator indicates how

fresh is our observation. Obsolete data results in unreliable

observation. The denominator shows the power of model

for estimation of unseen regions. Accurate estimation of the

observation of sensor m using the active demonstrates that

the sensor m has a reliable sensing. The proposed dynamic

sensor selection framework is illustrated in Fig. 3. We propose

to consider the reliability of sensors in the sensor selection

procedure in order to determine a proper subset which is able

to compensate large model’s error for the low-rate sampled

sensors. Mathematically speaking, the static E-optimal sensor

selection algorithm is modified as follows,

S = argmax
|S | ≤K

λmin(ASAT
S
) + γ‖uS‖22, (15)

Figure 3: The main framework of the proposed reliability based
sensor selection.

in which, γ is the regularization parameter and um = r−1
m

represents unreliability and uS is the sub-vector of u indexed

by set S. The superscript (t) is removed due to simplicity of

notation. It means we are looking for unreliable sensors to

select them for the next time slot in order to compensate the

model’s error.

V. OPTIMIZATION AND COMPLEXITY

In order to cast the dynamic sensor selection (15) in a

tractable formulation, first let us rewrite the minimum eigen-

value as the following problem.

λmin(A) = min‖Ax‖22 s.t. ‖x‖2 = 1. (16)

Problem (15) can be written in the following form,

W (t) = argmax
W

min
x
‖WAx‖22 + γ‖Wu(t) ‖22 s.t. (17)

‖x‖2 = 1 ,Wi j ∈ {0, 1}, ‖wk ‖0 = 1 and ‖wm‖0 ≤ 1.

In which W ∈ RK×M reduces the matrix A ∈ RM×N by

some selected rows. wk represents the k th row of W and wm

indicates the mth column of W . The last constraint ‖wm‖0 ≤ 1
avoids repetitive selection of the same row (sensor). This

problem implies eigenvalue optimization over combination of

rows of A that it is shown to be NP-hard [34]. Accordingly,

we propose a greedy algorithm to solve (17).

Algorithm 2 shows the steps of our proposed greedy al-

gorithm to solve the obtained optimization problem. This

algorithm optimizes the reduction matrix row-by-row where

the reliability of the non-selected sensors are being considered.

Assume the algorithm aims to select a new sensor at the k th

iteration. Up to current iteration, k − 1 sensors already are

selected. The algorithm evaluate the non-selected sensors one-

by-one in order to find the sensor that maximizes the objective

function. The objective function is a weighted summation

of the minimum eigenvalue of the restricted set of rows

(sensors) and their corresponding unreliability weights. To

evaluate each sensor we need to compute the most dominant

k eigen components which implies performing singular value

decomposition (SVD). However, truncated SVD up to the k th

component will be sufficient. An online algorithm is proposed

that observes the non-selected sensors with a low sampling

rate as depicted in Fig. 3. In each sequence, the observed set

of sensors is updated as well as their corresponding reliability
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Algorithm 2 Reliable E-optimal Sensor Selection

Require: A, S, K and r
Output: The selected set S and reduction matrix W .

Initialization: W = 0 ∈ RK×M and S = ∅
for k = 1, · · · ,K (Optimization of the k th row of W )

for ∀m ∈ Sc
SVD: A(S⋃

m, :) = VTΛU
x∗ = U(:, k)
p(m) = ‖Ax∗‖22 + γu(m)

end

sk = argmax
m

p(m)
S = S

⋃
sk and W k,sk = 1

end for

weights. The first step to update the reliability is estimating

the propagation using only the current active sensors. To this

aim the following problem must be solved.

x(t)(S) = argmin
x

‖W (t)(y − Ax)‖22 + λLASSO ‖x‖1. (18)

Here λLASSO regularizes sparsity and W indicates the

reduction matrix to the selected set S. Those sensors whose

measurements are matched with the estimated power density

map are marked as reliable. A consistent definition is proposed

in (14) which considers the deviation of actual measurements

from the estimation of the model as a metric for reliability.

The subscript t is removed in Algorithm 2 for simplification.

Algorithm 3 shows the overall process of spectrum sensing

using the selected sensors.

The bottleneck of complexity order of Algorithm 2 at

the k th iteration is performing a truncated singular value

decomposition to obtain the first k eigen components. Thus,

the complexity of the algorithm in the k th iteration will be

O(kMN2) [35]. Therefore, selection of K sensors implies

complexity order of O(K2MN2).
Algorithm 3 Spectrum Sensing using Dynamic Sensor Selection

Require: A, S, K , λ, fl and λLASSO.

Output: Power spectrum for each time x(t).
Initialization: S = Output of Algorithm 1 and x(S) =
Result of Problem (18)

2: for a new time block (t)
sample M × fl sensors

4: Update tm = t for the sensed sensors

Update reliability using (14)

6: S
(t) = Output of Algorithm 2

x(t)(S(t)) = Result of Problem (18)

8: end for

VI. EXPERIMENTAL RESULTS

The simulations are performed for collaborative spectrum

sensing. The setup for generating data are employed from

[22]. Our goal is to estimate vector x that indicates transmitted

spectrum power at some candidate points.

For the first simulation suppose we have potentially 300
sensors and they are estimating an x ∈ R36 that has only 5

active transmitters. The location of sensors are derived from

a uniform distribution and the active transmitters are selected

randomly and the results are averaged for 200 different re-

alizations. The following linear measurements are sensed by

sensors m = 1 . . .M ,

ym = aTmx + νm,

where, νm indicates additive white Gaussian noise. ams shows

the sth entry of am is the channel gain between the mth

sensor and the sth potential source. The channel gain between

two points is assumed by one over squared distance of two

points. Since, the ability of sensors is considered the same

over spectrum, thus the simulations are performed for a single

spectrum band. The same procedure can be performed for

multi-band spectrum regime independently. Figure 4 shows the

performance of different static algorithms versus the number

of selected sensors. Static refers to measurement-independent

methods. In this experiment the SNR is set to +20dB. Suc-

cessful recovery is defined as true estimation of the support of

sparse vector using the measurements. Problem (18) is solved

200 for each algorithm. The Sparse solution is obtained using

the iterative re-weighted least square algorithm [36]. As it can

be seen in Fig. 4, E-optimal based sensor selection has the

best performance.

Fig. 5 exhibits the effect of involving reliability on the static

sensor selection. Suppose there are 300 potential sensors and

the low-sampling rate is set equal to 1
30 . It means in each time

block 10 new measurements contribute to construct the relia-

bility weights (14). Observation of new measurements of one

time block makes an improvement in normalized estimation

error; similarly, usage of 5 time blocks significantly improves

the performance to be close to the estimation after 30 time

blocks in which all the sensors are observed. The forgetting

factor is set to 0 as the state of network is not changed

during observation of 30 time blocks. Thus, aggregating the

measurements without the forgetting factor is optimum. The

normalized error, ‖x∗ − x(S)‖2/‖x∗‖2, is defined as the criterion

for performance, where, x∗ is the ground truth solution.

Fig. 6 visualizes the error of spectrum sensing in the area

of network for the setup of Fig. 5. We are to choose 8 sensors.

Fig. 7 shows that the error of estimation is significantly

decreased by setting γ = 0.7 for the setup of Fig. 5. However,

an efficient value of γ depends on the problem setup and
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Figure 4: Performance of different static sensor selection algorithms
in terms of number of selected sensors.
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Figure 6: The error of estimated spectrum in the area of interest.
(Left) E-optimal, Algorithm 1. (Middle) Reliable E-optimal, Algo-
rithm 2 after sensing in one time block. (Right) Reliable E-optimal,
Algorithm 2 while all the sensors are sensed after 30 time blocks. γ
is assumed 0.7

should be tuned. Setting γ = 0 is equivalent to the static

E-optimal sensor selection. Simulation shows the proposed

reliable sensor selection performs better than the static sensor

selection for a relatively wide range of γ, i.e., the problem is

not very sensitive to well-tuning of this parameter.

In addition to power spectrum map, the proposed framework

is able to generate a new network profile which can provides

us trustworthy of the estimated spectrum for each point of the

network. We call this side output reliability map. Interpolation

of the estimated reliability of sensors throughout the network’s
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Figure 7: MSE error versus different values of γ.

Figure 8: Reliability maps of 4 time blocks illustrate how the
proposed framework evolves in time in order to select adapted sensors
to the dynamic of network after state transition. Sensors within
unreliable (red) areas have more chance of selection.
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Figure 9: (a) A dynamic network with 3 states for the location of
active PUs. The shaded blue squares represent active PUs. (b) The
effect of reliable sensor selection for compensation of the model error
in the reliable sensor selection procedure.
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Figure 10: The effect of reliable sensor selection for compensation
of the model error in the reliable sensor selection procedure.

area, generates the reliability map. Fig. 8 visualizes the tempo-

ral effect of dynamic sensor selection using the reliability map.

Unreliable areas are indicated by red and blue areas represent

reliable estimation of spectrum. Reliable sensor selection aims

to compensate unreliability by considering more chance for

red regions. In the next time slot the error for those regions

are compensated. In this figure, each state of the network

corresponds to a specific set of active PUs.

Fig. 9a shows the location of active PUs for a dynamic

network with 3 states. There are 90 time blocks and the state

of network is changed in blocks 24 and 59. The forgetting

factor is set to 0.1/(ΔT) in which ΔT is the time difference

of two consecutive time blocks. Fig. 9b and Fig. 10 show the

performance of sensor selection in terms of average network

reliability and the spurious error of spectrum sensing which is

defined by ‖ x̂spurious‖1 = ∑
i�x∗ support |x(S)i |. As it can be seen,

the reliability is increased and the undesired power propagation

is decreased by exploiting the dynamic framework, especially

for the second state.
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VII. CONCLUSION

The problem of sensor selection is considered and its rela-

tion to existing work on matrix subset selection is elaborated.

We developed a new subset selection method as an extension

of the well-known volume sampling. Our criteria is based on

E-optimality, which is in favor of compressive sensing theory.

We extended the static E-optimal sensor selection to a dynamic

sensor selection method that exploits the measurements in an

online manner. The experimental results indicate the efficiency

of our suggested sensor selection algorithm in cognitive radio

networks’ spectrum sensing.
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