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Abstract—Data loss is inevitable in multi-hop wireless sensor
networks. Multiple packet erasures during transmission can
necessitate the use of error-control mechanisms for loss recovery.
Energy consumption is also very critical in embedded sensor
networks. These problems are even more severe in wireless
camera sensor networks (WCSNs), owing to the large data
size. Compressive Sampling (CS) turns out to be an effective
solution on both the issues. The compression obtained through
the linear projections allows transmission of lesser bits than
the original. The inherent randomness in CS makes the system
tolerant to losses without requiring transmission of redundant
parity bits. Both these characteristics help us on saving up on
energy. However, using conventional CS on embedded WCSNs
has some implementation related challenges. WCSNs mainly find
applications in surveillance systems. This requires the snapshots
to be large enough to encompass a wide field of view; requiring
image sizes at least QVGA or more. The processor memory and
the recovery time of L1 optimization, needed for CS recovery,
are non-linear with respect to the data size; hence large images
hinder the applicability of CS in practical cases.

In this paper, we address the issues which may affect the
practical usability of CS and provide a CS framework suitable for
WCSNs. In order to enable the processing of such large images we
propose a block-wise sampling approach, which helps to reduce
both the memory overhead and the recovery time. For sampling
matrices we use binary sparse random matrices instead of dense
matrices, so as to reduce the encoding and decoding times and the
computational overheads. Moreover, to further reduce the time
factor we employ very sparse matrices (row weight equal to one)
and show that they still provide good quality images. We have
tested our propositions on WCSNs that include Imote2 sensor
nodes equipped with IMB400 multimedia boards, on which we
have analyzed the loss resilience of our proposed framework and
have also provided an estimate of the energy saved.

I. INTRODUCTION

WCSNs are embedded systems capable of capturing and

transmitting snapshot or streaming multimedia over a multi-

hop network. These features make them suitable for surveil-

lance and monitoring; applications which demand longevity

of operation while maintaining a certain degree of quality of

service. The different challenges in design and implementation

of multimedia sensor networks have been summarized in [1].

Power consumption has been a fundamental concern in

traditional wireless sensor networks (WSNs) and is even

more critical in WCSNs with the voluminous multimedia data

adding to the strain on the transmission costs. This makes

efficient transmission schemes a necessity for WCSNs to

operate for long durations. Data loss has been a notorious

problem in the wireless domain and it gets aggravated in

sensor networks because of the harsh environments and a

limited power source. Excessive losses can even make com-

plete transmissions useless. Forward error correction (FEC)

and automatic repeat request (ARQ) schemes are available to

combat erasures, but they could be complex and impose large

overheads.

The emerging field of compressive sensing (aka compressive

sampling) [2], [3], turns out to be an effective solution to

both these problems and also suitable for implementation

in the sensor networks domain. The theory of compressive

sampling enables us to generate samples of a sparse signal

through linear random projections such that the compressed

signal is much smaller than the original. This signal can be

recovered using the fact that the L1 minimization of a CS

signal can provide the sparsest solution. This helps to mitigate

the challenge of reducing the transmission costs. Because

of the inherent randomness in the sampling stage, random

erasures make little difference to the overall signal statistics

making the CS data resilient to losses.

On the other hand, using CS for WCSNs has some practical

difficulties. WCSNs are being developed with prospective

applications in surveillance and monitoring. This requires the

cameras to capture images over a wide field of view, which

also requires large images to be processed. It is known that

the recovery algorithms of CS data such as the Basis Pursuit

have a complexity of O(N3) [4], where N is the length of

the original signal. This makes the compression and recovery

of large images computationally intensive with long recovery

times. These factors hinder the use of conventional CS in

practical WCSN applications and hence new approaches need

to be introduced.

In this paper we attempt to address issues which hinder

the applicability of CS on an actual WCSN system and

provide solutions to these problems through a CS frame-

work implemented on an Imote2 Wireless Sensor node and

a IMB400 Multimedia board. We test our framework and

suggest optimum CS parameters that can be used. Also, we

analyze its loss resilience and provide a probable estimate of

the energy saving.

II. RELATED WORK

As mentioned before the inherent randomness and signal

compression can solve both the limited power and data



loss problems simultaneously, making CS an ideal choice

for WSNs. Performance of CS for erasure coding has been

discussed in [5].In this work the authors propose a Compres-

sive oversampling approach to compensate for the expected

erasure to maintain a target signal quality. This work has

been extended in [6], where the oversampling is performed

for expected loss due to bit-errors too, along with channel

erasure, leading to some improvement in the reconstruction

quality. The premise of this Oversampling approach is that

the target signal quality is known. The problem here is that in

a practical WCSN application, determining a target quality

is not possible, because it is a no-reference system. Also,

a standard compression ratio at the transmitter cannot be

assumed because through erasure analysis we found that the

number of samples required for a given reconstruction quality

varies with the type of image captured. Thus, the compression

at the camera will depend on the image being captured and

hence will vary as per application.

Conventional CS schemes suggest a dense random projec-

tion matrix for signal sampling. However, it was shown later

that binary and sparse random matrices have a good perfor-

mance as well and are very convenient for implementation. [7]

and [8] have a very good analysis on binary sparse random

matrices and discuss the special properties of binary sparse

projection matrices, especially the impact of the sparsity of

the matrix (low column weight in their case), in the recon-

struction as well as the recovery time. The findings in these

studies can be related to our work for theoretical analysis. [9]

proposes a block compressed sensing approach for improving

the recovery time and memory storage. The approach in [9]

involves using a sampling matrix similar to an FIR filter to

generate CS measurements from the traversed portion of the

image. For reconstruction, a minimum mean squared error

estimation is used to obtain an initial linear estimation and

then use some non-linear techniques for refinement. Using this

approach in sensor networks is difficult because of the filter

type implementation to generate samples, which increases the

computation time and cost. Moreover, the performance of the

linear estimation in presence of erasures is not known.

In this paper we provide solutions to aforementioned prob-

lems and present a CS framework that is suitable for imple-

mentation on an actual embedded sensor node.

III. COMPRESSIVE SAMPLING FOR WIRELESS CAMERA

SENSOR NETWORKS

A. Compressive Sampling Overview

The theory of compressive sampling defines sampling as

y = Φx, where x is a signal of length n that is sparse over

some proper basis, y is the measurement vector of length

m << n and Φ is the sampling (projection) matrix, which

generates the random linear projections. At the recovery phase,

x can be recovered by solving an l1 minimization [3].

Images are not sparse in the spatial domain, but they are

sparse in some other transform domains such as the wavelet

or DCT. Hence, image x is made sparse by s= ΨTx, where

s is the sparse representation of x and Ψ is an orthonormal

basis. If these transformations have to be performed on a

sensor node then it would be detrimental in terms of power

consumption and operational latency, because of the added

computations. Here CS holds an advantage as the data need

not be sparse while sampling; measurements can be taken

in the original dense domain (i.e., y = Φx). It is only at

the receiver that the transform basis needs to be known. The

signal can be reconstructed by finding s (and accordingly

x = Ψs )from the system of linear equations y = ΦΨs. This

is an underdetermined system with infinitely many solutions.

However, the sparsity of s allows us to have a successful

reconstruction with a high probability. It was shown in [2] that

s can be estimated via solving the following `1 optimization

problem

ŝ = argmin ‖ s ‖l1 s.t. y = ΦΨs. (1)

B. Selecting CS parameters

1) Measurement Matrix Φ: The main condition that a

measurement matrix has to satisfy to get the best samples

from a signal is the Restricted Isometry Property (RIP) [3].

There are a number of matrices which satisfy this property,

some which are dense matrices such as the Gaussian random

matrices, constructed by selecting i.i.d random variables from

a Gaussian distribution. Same is the case with the Bernoulli

matrix. These matrices have a very good performance but the

measurements will be expensive to generate on a resource-

constraint embedded processor. Hence, another class of ma-

trices called Sparse Binary matrices are used. Sparse binary

matrices have a performance comparable to dense matrices

as shown by [7]. Their compression process comprises of

random selection and addition of a small subset of signal

components, hence they are easy and fast to compute. This

makes sparse matrices better than the dense matrices for em-

bedded applications. The total number of signal components

added to generate one measurement is equal to the weight

of the corresponding row in the sampling matrix. For our

implementation we use a constant row binary matrix.

2) Orthonormal Basis Ψ: As mentioned earlier, the signal

can be compressed in its dense domain, just that the domain

of sparse transformation should be known at the receiver. But

from (1) we can see that the orthonormal (transform) basis

needs to be available in its matrix form during the recovery.

This constraint arises because we are sampling in the dense

domain. The problem with this additional constraint is that,

higher dimensional wavelet transforms are not available in a

matrix form and hence cannot be used. The basis that can be

represented in a matrix form are the 1D Haar, Discrete Cosine

Transform (DCT) and Discrete Fourier Transform (DFT).

There is another property of CS that a pair of measurement

matrix and orthonormal matrix have to satisfy for a good

quality reconstruction; the mutual coherence. The coherence

between the measurement matrix (Φ) and orthonormal matrix

(Ψ) is defined as,

µ(Φ,Ψ) =
√
n
1≤i≤m,1≤j≤nmax |< Φi,Ψj >|, (2)



where Φi’s are rows of Φ and Ψj’s are columns of Ψ. Thus,

the coherence measures the correlation between the rows of Φ
and the columns of Ψ. In CS low coherence value pairs of Φ
and Ψ are required [10]. Therefore, even though the selection

of the orthonormal basis depends on its ability to sparsify

the original signal, it also depends on the sampling matrix

used; for optimum results. The binary sparse matrix is highly

coherent with the 1D Haar matrix; hence even though an image

has a better sparse representation in the Haar wavelet, it cannot

be used. Between DCT and DFT, the DCT performs better

than DFT because of the better energy compaction. Hence,

we employed the DCT matrix as the orthonormal basis.

Mutual Coherence also helps in setting up another param-

eter, the row weight of the sparse matrix. As seen earlier the

row weight will determine how many pixels are combined

together to generate one sample. Intuitively, it seems like a

higher row weight will ensure more original signal elements

being combined and hence a better result; however, this is

not entirely correct. The results with a higher row weight

are better, but as the row weight increases, so does the

coherence between the DCT and Sparse sampling matrix as

shown in Figure 1. Because of these two opposing effects, the

improvement in quality with row weight is not significant
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Mutual Coherence as a function of Row weight for a pair of Binary Sparse and DCT matrix

Fig. 1. Mutual coherence vs row weight of the measurement matrix

C. Block-wise Sampling

From (1) it is clear that Ψ is required to be known at the

base station for the exact recovery of the original signal. The

Ψ being used here is a DCT matrix. Suppose an image has

a width of w and height h. The DCT matrix Ψ will be of

size w ∗ h × w ∗ h. In a double precision format, this matrix

requires w2∗h2∗8 bits of memory storage. This is a very huge

requirement, considering that the smallest practically used size

is the QVGA(320x240), which may require about 6 Gigabytes

of Random Access Memory(RAM) Storage. Another problem

that arises from large image sizes is the recovery time of `1
optimization. The recovery time holds a non-linear relationship

with the vector size it operates on. For a size of QVGA,

this time may go in the order of 2-3 hours. This makes

CS incompetent for practical implementation. Also, these

problems will become exponentially worse as image sizes

increase.

Using a 2D DCT is an option, but it puts a constraint

of using only square images. Hence, as a solution to these

problems, we propose a block-wise sampling scheme, where

samples are taken from the image vector in a block-wise

manner. Measurements taken from each block are independent

of the other block. Since the vector length reduces, both

problems of memory and recovery time are solved. But the

quality of reconstruction depends on the length of the block;

larger the size, better the image quality [3]. Hence, there is a

trade-off between the image quality and the recovery time, for

which both the parameters need to be optimized.

IV. IMPLEMENTATION

A. On the camera sensor node (transmitter)

We implement our proposed schemes on an Imote2 sensor

node along with the IMB400 multimedia board, which bears

the camera. The image type is gray scale, hence a uint8 data

type is sufficient to store a single pixel. Each packet comprises

of a header field and a 64 byte (64 pixel) payload. For

compressive sampling, two operations have to be performed

to generate a measurement; first random selection of pixels

and second addition of those selected pixels. For random

selection, a pseudo-random generator is implemented using a

Multiplicative Congruential Generator. The default generators

were not used in order to use the same generators at the

transmitter and the receiver. A multiplicative congruential

generator is simple to implement, while generating a good

pseudo random sequence, hence it is suitable for implemen-

tation on an embedded platform. A seed is a number fed

to the pseudo random number generator at the start of each

generation cycle, which ensures the repeatability of the random

sequence. We use the packet numbers as the seeds to ensure

uniqueness. After random selection, these pixels are added

together, up to the row weight; to generate one measurement.

These measurements are then packetized and this data is sent

to the next hop node.

B. At the base-station

At the base-station we need to recover the original signal

from the compressed signal. For that we need to know the

information about the random combinations of the recieved

measurements. In order to obtain the correct combinations,

two conditions need to be satisfied. The first is to use of the

same pseudo random generator used at the transmitter and

the second is to provide the correct seed to the generator.

We comply with the first condition by implementing the same

multiplicative congruential generator on MATLAB. For the

second condition, we use the packet number as the seed. Use

of the packet number as the seed ensures uniqueness in the

seed values and also no extra seed values need to be conveyed

through the payload. From these seeds we construct a sampling

reconstruction matrix (Φ′) for the received data. This matrix is

different from the one at the transmitter since, because of the

losses, the transmitted data is not same as the received one.

The matrix is constructed from the fact that each measurement

corresponds to one row and each randomly generated number

corresponds to a column. Each row is filled until it reaches



its row weight. Thus, we build the matrix (Φ′) from the

received data. The dimensions of (Φ′) are m′xn, where m′

is the number of received measurements. This received signal

is recoverable because, due to the inherent randomness, in

spite of the losses the overall statistics of the matrix do not

change. It is this property that contributes to the loss resilience

of CS. Now with the sampling matrix and the orthonormal

matrix available, the original signal can be recovered from the

measurements using l1 optimization as given in equation (1).

C. Block-wise sampling

The only information available about the image array is

its starting address. The task is to take CS samples from

each block independently. Segmenting the image vector into

an actual block-wise structure would be cumbersome and the

process will have a high latency factor. A faster and simpler

way of block-wise sampling is to select from a range within

the block size instead of the image size and the addressing

done with respect to the block’s starting address. This ensures

that only one block is sampled at a time. Once samples are

taken from the block, the block start address is incremented

by an amount equal to the block size, ensuring that the

next set of selections are made from the next block. Thus,

block-wise sampling is performed by virtue of simple additive

computations,which take the least processing power.

V. EXPERIMENTS AND ANALYSIS

As mentioned earlier, the sampling part has been imple-

mented on an Imote2 sensor node.The image is compressively

sampled for transmission over the wireless channel. The radio

chip used, CC2420 has a CRC (Cyclic Redundancy Check)

check field. If the CRC check fails, the packet is marked and

the TinyOS module discards the packet. Thus, the channel can

be modeled as a Packet Erasure Channel.

�

Fig. 2. Experimental Setup

The base-station receives the data and it is read into MAT-

LAB using its serial reader interface. The recovery of CS

data has been done using the Basis Pursuit implemented using

MATLAB 7.1(R2010a) on an Intel Xeon 3GHz processor. The

SPGl1 package is used for l1-norm minimization.

For analyzing the quality of reconstruction of the images,

we use the Structural Similarity Index (SSIM) as the metric.

This is a widely used reference based image quality assessment

technique [11]. To obtain a reference image, we first take an

uncompressed no loss snapshot of the object under considera-

tion. All the future reconstructed images are compared against

this reference image.

A. Block size vs Quality and Recovery Time

In this experiment we show the effect of the block size and

row weight on the quality of reconstruction and recovery time.

A longer block gives better quality while a smaller one takes

less memory and has a lower recovery time.

The experiment has been done on a 128x128 Lenna image,

since this is the largest size of single image that could

be computed without block-sampling, as more memory was

required to store the large Ortho-normal matrix.

The number of samples taken are 50 percent of the original

TABLE I
PERFORMANCE FOR VARIABLE BLOCK SIZE AND ROW WEIGHT

No.of blocks SSIM SSIM Time(s) Time(s)
Rwt 10 Rwt 1 Rwt 10 Rwt 1

1 0.9221 0.9203 1600 625

2 0.9215 0.9168 1514 236

4 0.9234 0.9149 974 181

8 0.9164 0.9100 228 68

16 0.9168 0.9004 78 30

image. Through these results it can be seen that the blocks

size has a huge impact on the recovery time, due to the non-

linear relationship. Similarly, the row weight is also a major

factor in the recovery time. The important thing here is that

the difference in quality between the best case result (block

size 1, row weight 10) and the worst case (block size 16, row

weight 1) is tolerable, but with significant gain in time. Thus,

depending on application and requirement these parameters

can be selected.

B. Reconstruction performance with variable row weight on

real image

The results of increasing row weight can also be seen for the

images obtained from the sensor cameras.The reference image

is shown in fig. (3a). Since the object is close to the camera,

the image is dense, with a number of details being captured.

The quality of the reconstructed image can be observed from

the number of details preserved.

The original size of these images is 320x240(QVGA), hence

the length of the image vector is 76800 pixels. These images

have been taken at 70 percent (53760) measurements of the

total image size, with a block size of 7680 pixels per block.

As seen in the reconstruction performance, figure (4), there

is almost no perceptive difference between the images. Their

SSIM values are 0.9512, 0.9396 and 0.9239 and the time taken

in minutes is 145.9, 88.2 and 27.6 for row weights 5,2 and 1

respectively. From these results it is clear that with row weight,

the quality does not improve much but there is significant

gain in time. This makes a very sparse binary matrix (row

weight=1) a very useful proposition.
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Fig. 3. Reference images
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Fig. 5. Erasure performance for dense image

C. System performance in case of erasures

In this experiment we test the loss resilience of the sensor

network system. For this we use one camera sensor taking

snapshot data. It passes this data through a series of interme-

diate nodes to the base-station. The packets are routed using a

simple address based scheme. Even though intermediate nodes

act just as transceivers, packet erasure is observed because

of the CRC check drop and ambient noise. The variation in

erasure was obtained by changing the number of hops and the

distance between the nodes, keeping the transmission power

constant.

The experiment has been performed on two types of images,

one image is a close-up snapshot of an object, we call this

a spatially dense image fig. (3a). This image contains a

lot observable features, which can be referred for subjective

analysis. We can observe the system performance as per

the reconstruction of these features. Another image is one

capturing a wider area, hence the image is spatially sparse fig.

(3b). The image reconstruction results can be seen in figures

(5) and (6). The low degree is 10 percent erasure, moderate 30

and high being 60 percent erasure. These images have been

taken at initial compression of 70 percent, so the received data

will be much less, for example,the effective percentage data

received for 60 percent erasure, will be around 21 percent of

the image size. Considering that such small amount of data

is received the reconstruction quality is good, especially as

compared to the performance of the uncompressed image fig.

(3c). From both the image types we can observe that even

for moderate erasures the system performance is very good.

This is better analyzed through a plot of the SSIM’s of the

reconstructed images as a function of the erasure shown in

fig. (7). From the plot we can see that the sparse image has

a smoother degradation, even though its original quality is a

bit less. This shows that the reconstruction performance also

depends on the type of image under consideration.

D. Energy Saved

We call CS an energy efficient mechanism. The approximate

savings for one image transmission are: if we transmit at 3dBm
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power level at which the Energy/bit for transmission is ap-

proximately 105nJ/b [12] then at 70 percent compression, we

transmit only 53760 bytes. Therefore, bits reduced with respect

to original (76800-53760)*8= 184,320 bits. This corresponds

to approximately 19 mJ per node per transmission.

The Imote2 has a DSP co-processor along with main

processor, making it difficult to calculate the consumption per

instruction cycle. But the instruction overhead imposed by the

multiplicative congruential generator used for CS includes two

extra modulus operations, two additions and 1 multiplication.

The processors used are known for very low power operation

hence these additional instructions should not consume much

and a sizable energy conservation should be expected over a

large network.

VI. CONCLUSION

In this paper we propose a framework for implementing

Compressive Sampling on a WCSN platform,such that it will

bring CS closer to real time application requirements. As part

of the framework we suggest the use of very sparse binary

random matrices (row weight 1). They are ideal for hardware

implementation, reduce the number of bits transmitted and also

help to reduce the recovery time. We also suggest a block-

wise sampling approach to reduce the recovery time and the

storage memory requirements at the receiver. We support our

propositions through experimental results which show that our

proposed system does not degrade the quality of reconstruction

by much, but the recovery time reduces significantly. Thus our

framework overcomes some important factors that hinder the

practical implementation of CS on WCSNs.
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