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Abstract—In this paper, we proposeCStorage a fully distributed
and efficient data storage scheme for wireless sensor networks
(WSNs) based oncompressive sensing (CS) techniques. CStorage
requires much smaller number of transmissions compared to the
existing algorithms by exploiting thecompressibility of the natural
signals along with the broadcast property of wireless channels.
In CStorage, after a probabilistic readings disseminationphase,
each node obtains onecompressed sample (measurement) of the
network’s readings, which are later queried in part by a data
collector to recover all readings. We find the optimal parameters
of CStorage and show that it considerably decreases the total
number of required transmissions for distributed data storage.

I. I NTRODUCTION

To increase the data persistence in wireless sensor networks
(WSNs), it has been proposed to disseminate sensors readings
throughoutthe network such that a data collector can query
any small subsetof nodes to obtain all sensors’ readings [1,
2]. However, existing algorithms either ignore thecorrelation
andcompressibilityof the readings, require routing tables and
cannot be distributively implemented, or incur a large number
of transmissions.

It has been shown that signals collected in WSNs from
natural phenomena are highly compressible due to their strong
spacial correlation [3–5]. Therefore, such compressible signals
including N readings fromN network nodes can be recon-
structed from onlyM ≪ N compressed samples(measure-
ments) of the signal employingcompressive sensing(CS) tech-
niques [6, 7]. On the other hand, wireless channels have the
inherentbroadcastproperty, henceprobabilistic broadcasting
(PBcast) [8, 9] can be effectively utilized to disseminate nodes’
readings in the networks with minimal transmissions.

Utilizing the two aforementioned properties, we propose
an efficient and flexiblecross-layer data storage algorithm
referred to ascompressive sensing data storage(CStorage),
which considerably reduces the number of required trans-
missions for distributed data storage in WSNs. In CStorage,
when the data dissemination phase using PBcast is finished a
data collector can queryM ≪ N measurements fromany
set of M nodes and recover allN readings. CStorage is
fully scalable and distributed since nodes independently make
decisions without employing any routing table.

The paper is organized as follows. Section II provides a
brief review on compressive sensing, PBcast, and the related
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work. In Section III, we propose CStorage. In Section IV
we evaluate the performance of CStorage and compare it to
existing algorithms. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we provide the necessary background to
design CStorage.

A. Compressive Sensing in WSNs

Let us consider a WSN withN nodes collecting a natural
signalx = [x1x2 . . . xN ]T , wherexi represents the reading of
the ith sensor. Due to spacial correlation of sensor readings
x may be represented by aK-sparsesignalθ with only K ≪
N large coefficients in someappropriate transform basisΨ,
wherex = Ψθ [4, 5, 10]. More precisely, when the coefficients
of θ are sorted based on their absolute magnitude, they decay
faster thanCi−

1

β for 0 < β ≤ 1 and a constantC [4, 5, 10].
Consider a natural signalx collected from a WSN that is

K-sparse in some proper basisΨ. CS techniques are able
to recoverx from only M ≪ N random projections(also
called measurements or compressed samples) ofx, where
M ≥ O(K log N) [6, 7]. Generally, CS is composed of two
following key components.

Signal Sampling: The random projections are generated by
y = Φx, whereΦ is a well-chosenM × N random matrix,
called projection matrix.

Signal Recovery: Signal reconstruction can be done by
finding the estimatêθ (and accordinglŷx = Ψθ̂) from the
system of linear equationsy = ΦΨθ. This is an underde-
termined system with infinitely many solutions. However, the
knowledge ofθ being a sparse signal allows us to have a
successful reconstruction w.h.p. It is shown thatθ̂ can be
estimated via solving theℓ1 optimization problem given by
[6, 7, 11, 12]

θ̂ = argmin‖θ‖1, s.t. y = ΦΨθ, (1)

where ‖θ‖1 =
∑N

i=1 |θi|. The ℓ1 optimization problem (1)
can be solved with linear programming techniques calledbasis
pursuit (BP) [12]. Later, we employ CS in CStorage design.

B. Probabilistic Broadcasting: PBcast

Consider a WSN withN nodesrandomly deployed over
a field of sizeA = 1 × 1. To ensure the connectivity of the
network we assume all nodes have identical transmission range



of r2
t >

A ln(N)
πN

[13], and two nodes can communicate if their
Euclidian distance is less thanrt.

In PBcast, a nodeni broadcastsits readingxi instead of
routing it to a specific neighbor. Therefore, all neighbors of
the ni receivexi and would be able to store it (in CStorage
a compressed measurements is stored instead of readings as
will be discussed later). Each node that has receivedxi for
the first time will rebroadcastit with probability p and this
probabilistic forwarding continues. Figure 1 shows the average
fraction of network nodesR(p) that receive a particular
reading after the PBcast and the total number of transmissions
Nt(p) versus the forwarding probabilityp for a connected
WSN with N = 104 andrt = 0.02568.
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Fig. 1. The fraction of nodes receiving a readingR and the number of
transmissionsNt versus forwarding probabilityp for PBcast.

As we see in Figure 1, atp ≈ 0.24 a large fraction of
nodes receive the broadcast of readingxi. Moreover, we can
observe that although increasingp beyondp ≈ 0.24 does not
significantly contribute to the delivery ofxi, it considerably
increases the number of transmissions (almost linear inp).
Therefore a well-chosen small forwarding probabilityp∗ =
0.24 would be sufficient to ensure a large fraction of nodes in
a network have received a reading.

It has been shown thatp∗ is close to the probabilitypG that a
giant componentappears in the network, where asymptotically
pG ≈ 1.44

Nr2

t

[8, 9]. For our given network topology withN =

104 andrt = 0.02568 we havepG = 0.23. Therefore,p∗ can
be approximated withpG whenN is large enough.

C. Related Work

Authors in [14] and [15] have proposed to employgossiping
and random walks, respectively, to disseminated reading in a
large-scale WSN and form measurements at nodes. As we
later show, CStorage outperforms these algorithms in the of
measurements due to efficient utilization of PBcast.

Authors in [2, 16, 17] have proposed data storage algorithms
for sensor networks based onerror correctioncodes. Although
these algorithms are efficiently designed, they have not exploit
the compressibility of the signals in a sensor network to reduce
the number of transmissions.

Finally, authors in [3–5, 10, 18] have considered the com-
pressibility of the data collected. However, they have assumed
that either routing tables are available or the measurements are

collected at a central sink. Therefore, these schemes cannot be
implemented in a distributed large-scale WSN.

III. PROPOSEDALGORITHM: CSTORAGE

In this section, we propose and discuss CStorage.

A. CStorage

In CStorage, nodenj , j ∈ {1, 2, . . . , N}, maintains a CS
measurementyj, whereyj is formed asyj = φjx and φj is
an N-dimensional row vector. LetΦtot = [φT

1 φT
2 . . . φT

N ]T and
y

tot
= [y1y2 . . . yN ]T . Further, letϕj,i be the element at the

jth row and theith column of Φtot. CStorage steps are as
follows:

1) Ns ≥ M nodes randomly select themselves as a source
node and broadcast their readings to their neighbors.

2) Upon the reception of readingi (xi) for the first time,
nodel performs the following:

a) Choosesϕl,i = +1 or −1 with equal probabilities
and addsϕl,ixi to yl.

b) Broadcastsxi with probabilityp (PBcast).
When the transmissions are finished, aΦtot with approx-

imately Ns non-zero entries per row (for a large enoughp)
andy

tot
= Φtotx have been distributed in the network nodes.

Therefore, a data collector may gatherM measurements
y ∈ R

M and the correspondingφj ’s from an arbitrary set
of M nodes and obtain the measurement matrixΦc ∈ R

M×N

(by putting together theM collected rows ofΦtot). Next, the
data collector obtainŝx an estimate ofx employing BP via
solving (1).

Note that in CStorage the only information the network
nodes need to know is the value ofNs (or equivalently the
probability Ns

N
where a node selects itself as a source node)

and the value ofp, which may be preprogrammed into nodes
before the network deployment.

B. FormingΦtot Employing CStorage

Let us consider a small network withN = 5 nodes as
shown in Figure 2 and investigate one PBcast. Clearly, at the
beginning,Φtot is an all-zero5× 5 matrix. Assume that node
n1 broadcasts its readingx1 (see Figure 2). Sincen2 and
n3 are in the transmission range ofn1, they would receive
x1. Node n2 multiplies x1 by ϕ2,1 and addsϕ2,1x1 to y2.
Similarly, n3 multiplies x1 with ϕ3,1 and addsϕ3,1x1 to y3.
The resultingΦtot matrix at this step is given by (2).

Φtot =







ϕ1,1 0 0 0 0
ϕ2,1 0 0 0 0
ϕ3,1 0 0 0 0
0 0 0 0 0
0 0 0 0 0







(2)

At this point, n2 and n3 independently decide whether to
broadcastx1 with probabilityp or not. Assume thatn2 decides
to broadcastx1. Noden4 would receivex1 and addsϕ4,1x1

to y4. However, we assume thatn3 and n4 decide not to
rebroadcastx1. Thus, the PBcast ofx1 is over and the matrix
Φtot obtains the form of (3). Note that in Figure 2, we have
shown the transmitting nodes with a dark color, while the rest
of the nodes are shown by white color.
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Φtot =







ϕ1,1 0 0 0 0
ϕ2,1 0 0 0 0
ϕ3,1 0 0 0 0
ϕ4,1 0 0 0 0
0 0 0 0 0







(3)

1

2

3 5

4

x1

x1

x1

Fig. 2. Network withN = 5 andn1 transmittingx1 employing PBcast.

The same procedure is performed forNs source nodes
selecteduniformly at random. Therefore, forp ≈ p∗ ≈ pG

the resultingΦtot andΦc from CStorage have approximately
Ns non-zero entries placed uniformly at random in each row.
Further, generating a denseΦc with N non-zero entries per
row imposes a large communication load, i.e.,Nt(p) × N

transmissions. As a result, generating asparseΦc is of interest
since the number of transmissions would significantly reduce.

C. Selection of Transform BasisΨ

In [11, 19] authors showed that for any dense orthonormal
Ψ, e.g., Fourier transform basis, the number of required
measurements for the recovery of aK-sparse signal can be
obtained fromM ≥ C′K log4 N , where C′ is a constant.
This implies that if the signal is compressible in some dense
orthonormal basis we may employ a sparseΦ with at least
one non-zeroplaced independently and randomly per row and
satisfy CS conditions [11]. Therefore, we may also employ a
sparseΦc to decrease the number of transmissions in CStorage
without deteriorating the CS reconstruction performance as
long as the rows ofΦc are randomly selected, or equivalently
are linearly independent.

The basisΨ, under which the signal is sparse or compress-
ible, depends on the nature of the physical phenomenon. For
example, in [5] it was shown that the temperature readings of
a sensor network are compressible indiscrete cosine transform
(DCT) basis. Therefore, without loss of generality in the rest
of our paper we assume thatΨ is the DCT transform basis
(while it also may be any other dense orthonormal basis).

D. Optimum Values ofNs and p

On one hand,p and Ns affect the properties of theΦtot

generated in the network, and on the other hand, they directly
determine the number of transmissions performed in CStorage,
i.e., ntot = Nt(p)×Ns. Hence, we need to find the optimum
values ofp andNs for which the minimumntot is obtained
while Φc matrix hasM independent rows.

Assume that CStorage has been performed with parameters
Ns and p. Clearly, we would have non-zero entries only in
the columns ofΦc that correspond toNs source nodes that
broadcast their own reading. Further, the rest ofN − Ns

columns are all zero and may not contribute in forming
independent rows forΦc. As shown in Figure 3, consider the
submatrixΦs ∈ R

M×Ns of Φtot formed by selecting theNs

columns ofΦtot corresponding to theNs nodes broadcasting
their readings, andM rows corresponding toM measurements
obtained by data collector. Clearly, ifΦs hasrank at leastM ,
then the rows ofΦs and consequentlyΦc are independent.

Φtot ∈ R
N×N

M

Φs ∈ R
M×Ns

Ns

Fig. 3. The submatrixΦs ∈ R
M×Ns derived fromΦtot.

We formulate the rank ofΦs as a function of the ratio of
nodes receiving a particular transmissionR(p) (see Figure 1)
andNs in the following theorem.

Theorem 1:Let Φtot be the measurement matrix generated
one row per node employing CStorage. Further, letΦs be
the submatrix fromΦtot by selecting any desiredM rows
andNs columns corresponding toNs source nodes.r(j) the
expectedrank of the matrixΦs afterjth transmission out ofNs

transmissions of CStorage is given by the following recursive
equation:

r(0) = 0,

r(j) = 1 − (1 − R(p))M−r(j−1)

+ r(j − 1), j ∈ {1, 2, . . . , Ns}.

(4)

Proof:
Clearly, if the network nodes uniformly receive a reading

PBcast thenR(p) would also be the probability that each node
receives the reading. However, generally the dissemination
is not uniform, e.g., nodes on the border of network would
receive fewer readings. LetRNs

(p) denote the probability that
a node receives allNs transmissions. Clearly, in a uniform
distribution RNs

(p) = R(p)Ns . However, authors in [8, 9]
found the bounds onRNs

(p) in a network where a ratio of
R(p) nodes non-uniformly receive a PBcast as follow:

R(p)Ns ≤ RNs
(p) ≤ R(p).

It is worth noting that the bounds become tighter asN →
∞. Therefore, we consider the worst case and assume that
all nodes of the network uniformly receive each PBcast with
probabilityR(p).

Let t(j) denote the probability that at least one independent
row is added toΦs after jth PBcast. Further, letr(j) be the
expected value of the rank ofΦs. At the beginning,Φs is an
all-zero matrix; hence it has rank0, i.e., r(0) = 0. When the
first broadcast is performed, if at least one node out ofM

nodes of interest receives this broadcast the rank of the matrix
Φs increases to1. There is also a possibility that none of
these nodes receive this broadcast. For the first transmission,
we would havet(1) = 1− (1−R(p))M . Therefore, regardless
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of the value assigned to allϕi,j ’s in the first transmission,
one independent rowis added toΦs by this transmission with
probability t(1). Hence the expected number of independent
rows of Φs becomesr(1) = 1 × t(1).

If at least one node out ofM nodes of interest has received
the first transmission, the next broadcast should be received by
one node out ofM −1 nodes so that the rank ofΦs increases
to 2. Therefore, we need to receive the second transmission by
M − 1 nodes given that the first transmission was successful.
Consequently, the second transmission should be received by
at least one of theM − r(1) nodes in expectation so that a
new independent rowcan be added toΦs.

However, a new independent row would not be added to
Φs if and only if the following event occurs. Assume an
arbitrary set of nodes have received the first transmission.In
addition, assumeexactlythe same set of nodes have received
the second transmission. Further, assume that all these nodes
have selected the same randomϕi,j in the second reception
as they selected in the first reception. In this case, all the rows
of Φs with non-zero entries would look alike, hence the rank
remains1. However, it is not hard to show that such a rare
event happens with probability

N
∑

l=1

[

(N

l

)

R(p)l(1 − R(p))N−l

]2 [

(N

l

)

2l

]−1

,

which is almost equal to zero for practical values ofN .
Therefore, a new independent row is indeed added toΦs

if one of theM − r(1) nodes in expectation receive the new
transmission. Therefore, we havet(2) = 1−(1−R(p))M−r(1)

and r(2) = r(1) + 1 × t(2). Similarly, r(j) can be found
recursively asr(j) = r(j −1)+1× t(j) with t(j) = 1− (1−
R(p))M−r(j−1) as given in the Theorem 1.

As an example, we setN = 104 andM = 700 and employ
Theorem 1 along with the values ofR(p) given in Figure 1
to find the rank ofΦs versusp andNs as shown in Figure 4.
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Fig. 4. r(Ns)
M

versusp andNs.

Figure 4 shows that forNs ≥ M the rank of matrixΦs

approaches toM for a large enoughp. More importantly, it
shows that asNs increases a suitable matrix can be generate
with a smallervalue ofp. Consequently, we see an interesting
trade-off since increasingNs linearly increases the total
number of transmissions, i.e.,Ns×Nt(p), while it non-linearly
reduces the requiredp and consequentlyNt(p) andntot.

Based on the results observed in Figure 4, we find the total
number of transmissionsntot = Ns ×Nt(p) for the values of
p and Ns for which r(Ns)

M
≥ 0.9999 versusNs − M + 1 in

Figure 5 (we have plottedntot versusNs − M + 1 to have
a better view on the values close toNs = M on a log-scale
axis). Note that we have not fixedp to obtain the curve in
Figure 4, but rather relaxed the value ofp and searched for
the minimumntot.
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Fig. 5. The total number of transmissionsntot required to generate a suitable
Φs andΦc with r(Ns)

M
≥ 0.9999 versusNs − M + 1.

The aforementioned trade-off betweenNs andp with ntot

can be observed in Figure 5, and we can see that the number
of transmissions is minimized whenNs is slightly larger than
M . Figure 5 shows thatntot is minimized for Ns = 702,
which is obtained forp = 0.24 = p∗.

IV. PERFORMANCEEVALUATION OF CSTORAGE

We generate a compressible signal withβ = 7
8 similar to

[4] and obtain a compressible signal byx = Ψθ. We run
our simulation for a randomly deployed WSN as described
in Section II-B withN = 104, M = 700, andrt = 0.02568.
Figures 6(a) and 6(b) show the normalized reconstruction error
‖x−x̂‖2

‖x‖2

and ntot employing CStorage versusp for various
Ns’s, where x̂ is the reconstructed estimate ofx at data
collector.

Figure 6(a) confirms that the minimum requiredp is about
p∗ = 0.24. Further, we can see that forNs slightly larger than
M = 700 the reconstruction ofx is almost as good as the
ideal case with a denseΦc. Therefore, increasingNs further
does not reduce the reconstruction error while it considerably
increases the total number of transmissionsntot (Figure 6(b)).
Moreover, we can see that due to the correlation of data in our
network with onlyM ≈ 0.07N measurements allN readings
have been reconstructed.

Further, we compare the total number of transmissionsntot

employing the same WSN employing various data storage
algorithms that do not need routing tables in Table I. Note that
in the last row of Table I we have evaluated the number of
required transmissions if CStorage was implemented utilizing
random walksas employed in [2, 15, 17] instead of PBcast.
Note that the signal reconstruction quality in all algorithms is
equal. Table I shows that we have decreased the number of
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transmissions more thanone orderof magnitude compared to
existing protocols. This is an excellent reduction in the number
of transmissions that results in energy saving to a great extent
and enhances the lifetime of the WSN while it does not add
any more memory requirement or computational complexity
to sensor nodes.
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(a) Normalized reconstruction error
‖x−x̂‖2
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for different values ofp andNs.
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(b) Total number of transmissionsntot for different values ofp andNs.

Fig. 6. Normalized signal reconstruction error andntot versusp and Ns

for DCT basis.

TABLE I
COMPARISON OFntot IN CSTORAGE WITH EXISTING ALGORITHMS.

Protocol ntot Notes
CStorage 1.545 × 106 -
Flooding 108 ntot = N2

Gossiping 8.4 × 109 1200 gossips per
measurement [14]

CStorage with
1.93 × 108 ntot = C1N log(N)

random walks ×Ns, C1 = 3 [2]

V. CONCLUSION

In this paper, we introduced a novel and fully distributed
data storage scheme referred to asCStoragefor wireless sensor
networks (WSNs) employing novelcompressive sensing(CS)
techniques. In CStorage,Ns nodes fromN ≫ Ns total
nodes disseminated their readings employingprobabilistic
broadcastingthroughout the network, hence all nodes acquire
a randomcompressedsample of these readings. Next, a data
collector needs to collect onlyM ≪ N measurements to
restore allN readings utilizing CS. We found the optimal

parameters of CStorage and showed thatNs needs to be
slightly large thanM to achieve the minimum number of
required transmissions, which is considerably lower than the
required number of transmissions in existing protocols for
distributed data storage in WSNs. In the future work, CStorage
will be extended considering the spatio-temporal correlation of
the readings.
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