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Abstract—In this paper, we proposeCStorage a fully distributed ~ work. In Section Ill, we propose CStorage. In Section IV

and efficient data storage scheme for wireless sensor netwa we evaluate the performance of CStorage and compare it to

(WSNs) based orcompressive sensing (CS) techniques. CStorage qyisting algorithms. Finally, Section V concludes the pape
requires much smaller number of transmissions compared tote

existing algorithms by exploiting the compressibility of the natural 1
signals along with the broadcast property of wireless channels.

In CStorage, after a probabilistic readings disseminationphase, In this section, we provide the necessary background to
each node obtains oneompressed sample (measurement) of the design CStorage.

network’s readings, which are later queried in part by a data
collector to recover all readings. We find the optimal paraméers . Lo
of CStorage and show that it considerably decreases the tdta A. Compressive Sensing in WSNs

number of required transmissions for distributed data storage. Let us consider a WSN witlv' nodes collecting a natural
signalz = [z122 ... 2x]T, wherexz; represents the reading of
the i*" sensor. Due to spacial correlation of sensor readings
To increase the data persistence in wireless sensor netwarknay be represented bykasparsesignald with only K <
(WSNSs), it has been proposed to disseminate sensors readilvglarge coefficients in somappropriatetransform basisp,
throughoutthe network such that a data collector can quetyherez = W¢ [4, 5, 10]. More precisely, when the coefficients
any small subsedf nodes to obtain all sensors’ readings [1¢f ¢ are sorted based on their absolute magnitude, they decay
2]. However, existing algorithms either ignore tberrelation faster thanC'i™ 5 for 0 < 8 < 1 and a constan€' [4, 5, 10].
andcompressibilityof the readings, require routing tables and Consider a natural signal collected from a WSN that is
cannot be distributively implemented, or incur a large nemb K -sparse in some proper basis CS techniques are able
of transmissions. to recoverz from only M <« N random projections(also

It has been shown that signals collected in WSNs frogalled measurements or compressed samples}, ohere
natural phenomena are highly compressible due to theingtroV > O(K log N) [6, 7]. Generally, CS is composed of two
spacial correlation [3-5]. Therefore, such compressiigieads following key components.

including NV readings fromN network nodes can be recon- Signal Sampling: The random projections are generated by
structed from onlyM < N compressed samplémeasure- y = ®z, where® is a well-chosenV/ x N random matrix,
ments) of the signal employirgmpressive sensi(@S) tech- called projection matrix.

niques [6, 7]. On the other hand, wireless channels have theSignal Recovery: Signal reconstruction can be done by
inherentbroadcastproperty, hencerobabilistic broadcasting finding the estimate (and accordinglyz = ¥6) from the
(PBcast) [8, 9] can be effectively utilized to disseminatdes’ system of linear equationg = V6. This is an underde-
readings in the networks with minimal transmissions. termined system with infinitely many solutions. Howeveg th
Utilizing the two aforementioned properties, we proposénowledge of@ being a sparse signal allows us to have a
an efficient and flexiblecross-layer data storage algorithm successful reconstruction w.h.p. It is shown tatan be
referred to ascompressive sensing data stora@@Storage), estimated via solving thé; optimization problem given by
which considerably reduces the number of required trar6; 7, 11, 12]
missions for distributed data storage in WSNs. In CStorage,

when the data dissemination phase using PBcast is finished a

data collector can query/ < N measurements frorany
set of M nodes and recover alN readings. CStorage is
fully scalable and distributed since nodes independenéigam
decisions without employing any routing table.

The paper is organized as follows. Section Il provides B Probabilistic Broadcasting: PBcast
brief review on compressive sensing, PBcast, and the telate

. BACKGROUND AND RELATED WORK

I. INTRODUCTION

0 = argminl|f)1, sty =ove, (1)

where [|0]], = Zfil |0;|. The ¢, optimization problem (1)
can be solved with linear programming techniques caileslis
pursuit (BP) [12]. Later, we employ CS in CStorage design.

Consider a WSN withN nodesrandomly deployed over
This material is based upon work supported by the Nationaérse a field of sizeA =1 x 1. To ensur? the_ ConneCUV'.ty pf the
Foundation under Grant No. ECCS-1056065. network we assume all nodes have identical transmissiageran



of T? > AN
Euclidian distance is less than.

In PBcast, a node; broadcastsits readingx; instead of

Aln(N)

[13], and two nodes can communicate if theicollected at a central sink. Therefore, these schemes theno

implemented in a distributed large-scale WSN.

Ill. PROPOSEDALGORITHM: CSTORAGE

routing it to a specific neighbor. Therefore, all neighbofs o ) ) )
the n; receivez; and would be able to store it (in CStorage !N this section, we propose and discuss CStorage.
a compressed measurements is stored instead of reading;\'ag;smrage

will be discussed later). Each node that has receivefbr
the first time will rebroadcastit with probability p and this
probabilistic forwarding continues. Figure 1 shows therage

fraction of network nodesR(p) that receive a particular
reading after the PBcast and the total number of transnnissi&ggt
versus the forwarding probability for a connected /

Ni(p)
WSN with N = 10* andr; = 0.02568.
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Fig. 1. The fraction of nodes receiving a readifgand the number of
transmissionsV; versus forwarding probability for PBcast.

As we see in Figure 1, gb =~ 0.24 a large fraction of
nodes receive the broadcast of readiygMoreover, we can
observe that although increasipgoeyondp = 0.24 does not
significantly contribute to the delivery af;, it considerably
increases the number of transmissions (almost linegp)in
Therefore a well-chosen small forwarding probability =
0.24 would be sufficient to ensure a large fraction of nodes
a network have received a reading.

It has been shown that is close to the probability“ that a

giant componenappears in the network, where asymptoticall

p L1 [8, 9]. For our given network topology withV' =

10* andr, = 0.02568 we havep® = 0.23. Thereforep* can
be approximated with“ when N is large enough.

G ~

~

C. Related Work
Authors in [14] and [15] have proposed to emplpyssiping

In CStorage, node;,j € {1,2,..., N}, maintains a CS
measuremeny;, wherey; is formed asy; = ¢;x and ¢; is
an N-dimensional row vector. L@&t;,; = [¢1 ¢3 ... ¢%]T and
= [y1y2...yn|T. Further, letp,,; be the element at the
row and thei** column of ®,,,. CStorage steps are as
follows:

1) N, > M nodes randomly select themselves as a source

node and broadcast their readings to their neighbors.

2) Upon the reception of reading(x;) for the first time

node! performs the following:
a) Choosesy;; = +1 or —1 with equal probabilities
and addsp; ;z; to y;.
b) Broadcastsr; with probabilityp (PBcast).

When the transmissions are finished®a,, with approx-
imately N, non-zero entries per row (for a large enough
andgtot = &,z have been distributed in the network nodes.
Therefore, a data collector may gath&f measurements
y € RM and the corresponding;’s from an arbitrary set
of M nodes and obtain the measurement matixe RM*N
(by putting together thé/ collected rows ofd,,;). Next, the
data collector obtaing an estimate ofc employing BP via
solving (1).

Note that in CStorage the only information the network
nodes need to know is the value &f; (or equivalently the
probability J}’V where a node selects itself as a source node)
and the value of, which may be preprogrammed into nodes
mefore the network deployment.

B. Forming ®,,; Employing CStorage

Let us consider a small network witl = 5 nodes as
¥hown in Figure 2 and investigate one PBcast. Clearly, at the
beginning,®;,; is an all-zeros x 5 matrix. Assume that node
ny broadcasts its reading; (see Figure 2). Sincer, and
ng are in the transmission range of, they would receive
z1. Node ny multiplies 1 by ¢21 and addsps 121 to yo.
Similarly, ng multiplies z; with @3, and addsps ;z; to ys.
The resulting®,,; matrix at this step is given by (2).

andrandom walksrespectively, to disseminated reading in a p11 0 0 0 O
large-scale WSN and form measurements at nodes. As we o _ | 8 8 8 8 )
later show, CStorage outperforms these algorithms in the of Y O

measurements due to efficient utilization of PBcast.

0 0 0 0 O

Authorsin [2, 16, 17] have proposed data storage algorithmsAt this point, no and n3 independently decide whether to

for sensor networks based error correctioncodes. Although

broadcast;; with probabilityp or not. Assume that, decides

these algorithms are efficiently designed, they have ndbéxp to broadcast:;. Noden, would receiver; and addsp, 121

the compressibility of the signals in a sensor network taiced
the number of transmissions.

to y4. However, we assume that; and n, decide not to
rebroadcast;. Thus, the PBcast of; is over and the matrix

Finally, authors in [3-5, 10, 18] have considered the cond,,; obtains the form of (3). Note that in Figure 2, we have

pressibility of the data collected. However, they have amsl
that either routing tables are available or the measuresazat

shown the transmitting nodes with a dark color, while thé res
of the nodes are shown by white color.



columns of®,,,; corresponding to théV; nodes broadcasting

0 0 0 O . . i
Z;*i 00 0 0 their readings, and/ rows corresponding td/ measurements
Bror=| w31 0 0 0 0 (3) obtained by data collector. Clearly, 4f; hasrank at least)M,
%0%1 8 8 (0] (0] then the rows ofp, and consequentlp. are independent.
e N (I)tot c RNXN
<Ds c R]\/IXNS
M

Fig. 2. Network withN = 5 andn transmittingz; employing PBcast.

The same procedure is performed fof, source nodes (_ p N
selecteduniformly at random Therefore, forp ~ p* ~ p©
the resulting®,,; and ®. from CStorage have approximately
N, non-zero entries placed uniformly at random in each row. Fig. 3. The submatrixp; € RM*Ns derived from®or.

Further, generating a dende. with N non-zero entries per \ye formulate the rank o, as a function of the ratio of

row imposes a large communication load, i.8,(p) X N nodes receiving a particular transmissiBify) (see Figure 1)
transmissions. As a result, generatingparsed. is of interest an4 \7_ in the following theorem.

since the number of transmissions would significantly reduc Theorem 1:Let ®,,; be the measurement matrix generated

C. Selection of Transform Basik one row per node employing CStorage. Further, dgt be

In [11, 19] authors showed that for any dense orthonormtgle submatrix frome®y,; by gelectlng any desired/ ’rows
. i : aéwd N, columns corresponding t&; source nodes:(j) the
¥, e.g., Fourier transform basis, the number of require

. expectedank of the matrix®, after j*" transmission out oiV,
measurements for the recovery offé&sparse signal can betransmissions of CStorage is given by the following recrsi
obtained fromM > C”Klog4 N, whereC’ is a constant. 9 9 y 9

This implies that if the signal is compressible in some denseguatlon:

orthonormal basis we may employ a spafisevith at least r(0) =0, v
one non-zerplaced independently and randomly per row and r(j) =1— (1 - R(p))M "0~V 4)
satisfy CS conditions [11]. Therefore, we may also employ a +r(i—1),7€{1,2,...,Ns}.

sparsed. to decrease the number of transmissions in CStorage prgof:

without deteriorating the CS reconstruction performanse a Clearly, if the network nodes uniformly receive a reading
long as the rows of. are randomly selected, or equivalentlyoBcast therz(p) would also be the probability that each node
are linearly independent. receives the reading. However, generally the dissemimatio
The basis¥, under which the signal is sparse or compresgs not uniform, e.g., nodes on the border of network would
ible, depends on the nature of the physical phenomenon. Fggeive fewer readings. Léty, (p) denote the probability that
example, in [5] it was shown that the temperature readings §fhode receives alV, transmissions. Clearly, in a uniform
a sensor network are compressibleliscrete cosine transform distribution Ryy_(p) = R(p)™+. However, authors in [8, 9]
(DCT) basis. Therefore, without loss of generality in thetrefound the bounds oty (p) in a network where a ratio of
of our paper we assume that is the DCT transform basis () nodes non-uniformly receive a PBcast as follow:
(while it also may be any other dense orthonormal basis).

Ns < < )
D. Optimum Values oN,; and p R(p)™ < R, (p) < R(p)

On one handp and N, affect the properties of thé,,; It is worth noting that the bounds become tighterMs—
generated in the network, and on the other hand, they directb. Therefore, we consider the worst case and assume that
determine the number of transmissions performed in CS¢gragll nodes of the network uniformly receive each PBcast with
i.e., nyr = Ne(p) x Ns. Hence, we need to find the optimunprobability R(p).
values ofp and N, for which the minimumn,,; is obtained Let¢(j) denote the probability that at least one independent
while ®. matrix hasM independent rows. row is added tob, after j** PBcast. Further, let(;) be the

Assume that CStorage has been performed with parame&xpected value of the rank df,. At the beginning®, is an
N, and p. Clearly, we would have non-zero entries only irall-zero matrix; hence it has rarik i.e., »(0) = 0. When the
the columns of®, that correspond taV, source nodes that first broadcast is performed, if at least one node ouf\bf
broadcast their own reading. Further, the rest/df— N, nodes of interest receives this broadcast the rank of thexmat
columns are all zero and may not contribute in forming, increases tol. There is also a possibility that none of
independent rows fo®.. As shown in Figure 3, consider thethese nodes receive this broadcast. For the first transmissi
submatrix®, € RM*N: of ®,,, formed by selecting théV, we would havet(1) = 1 — (1 — R(p))™. Therefore, regardless



of the value assigned to afh; ;'s in the first transmission, Based on the results observed in Figure 4, we find the total
one independent rovs added tod, by this transmission with number of transmissions,,; = N, x Ny(p) for the values of
probability ¢(1). Hence the expected number of independeptand N, for which “&<) > (.9999 versusN, — M + 1 in
rows of &, becomes (1) =1 x ¢(1). Figure 5 (we have plotted;,; versusN; — M + 1 to have
If at least one node out a¥/ nodes of interest has receivedh better view on the values close M, = M on a log-scale
the first transmission, the next broadcast should be red¢dye axis). Note that we have not fixea to obtain the curve in
one node out ofi/ — 1 nodes so that the rank df, increases Figure 4, but rather relaxed the value @fand searched for
to 2. Therefore, we need to receive the second transmissionthg minimumsmno;.
M — 1 nodes given that the first transmission was successful.
Consequently, the second transmission should be received  ,x10
at least one of thé/ — r(1) nodes in expectation so thata ¢
new independent rowan be added tab,. 18
However, a new independent row would not be added t
@, if and only if the following event occurs. Assume an _16
arbitrary set of nodes have received the first transmisgion. S

addition, assumexactlythe same set of nodes have receiver Lar 1

the second transmission. Further, assume that all thesesnor | |

have selected the same randagr); in the second reception

as they selected in the first reception. In this case, alldlesr 1 ‘ ‘

of ®, with non-zero entries would look alike, hence the rani 10° 10' No— M+1 10” 10°

remainsl. However, it is not hard to show that such a rare T

event happens with probability Fig. 5. The total number of transmissions, required to generate a suitable
_ @, and®. with “N=) > 0.9999 versusN, — M + 1.

XN: [(];[)R(p)l(l - R(p))Nflr [(];7)21] 17

=1 The aforementioned trade-off betwe&h andp with n;u
which is almost equal to zero for practical valuesMf can be observed in Figure 5, and we can see that the number

Therefore, a new independent row is indeed added to of transmissions is minimized whe¥i;, is slightly largerthan

if one of the M — r(1) nodes in expectation receive the nGV\Mh'_ I:]igurebS _shc(;vx;s thfmtot ii nlinimized for N, = 702,
transmission. Therefore, we hat(@) = 1— (1— R(p))M—r(1) Which Is obtained fop = 0.24 =p".
and 7(2) = r(1) +1 x ¢(2). Similarly, »(j) can be found IV. PERFORMANCEEVALUATION OF CSTORAGE
recursively as(j) =r(j —1)+ 1 xt(j) with ¢(j) =1—(1— ) ) o
R(p))M-"G-1 as given in the Theorem 1. - We generate a compressible signal with= g similar to

As an example, we sé¥ = 10* and M = 700 and employ [4] ar_ld obt_ain a compressible signal by = ¥6. We run
Theorem 1 along with the values @(p) given in Figure 1 OUr simulation for a randomly deployed WSN as described

to find the rank ofd, versusp and N, as shown in Figure 4. in Section II-B with N’ = 10, M = 700, andr; = 0.02568.
Figures 6(a) and 6(b) show the normalized reconstructicor er

! —— N, = 690 ”ﬁ;ﬂ'z and n;,; employing CStorage versys for various
— N, = 695 NJs, where ¢ is the reconstructed estimate of at data
09951 _& N, = 700 1 collector.
—%— N, =701 Y Figure 6(a) confirms that the minimum requirgds about
Q; 009l BN, =702 |. i p* = 0.24. Further, we can see that fo¥, slightly larger than
< —-©-N, =72 ' M = 700 the reconstruction of is almost as good as the

+

0085k ideal case with a densé.. Therefore, increasingy, further
does not reduce the reconstruction error while it consllgra
increases the total number of transmissiopg (Figure 6(b)).
0%16 o017 018 o010 02 o021 o022 023 o2 o2s Moreover, we can see that due to the correlation of data in our
P network with onlyM =~ 0.07N measurements alV readings
have been reconstructed.
Further, we compare the total number of transmissiags
Figure 4 shows that forv, > M the rank of matrix®, employing the same WSN employing various data storage
approaches tad/ for a large enougtp. More importantly, it algorithms that do not need routing tables in Table I. Nog th
shows that asV, increases a suitable matrix can be generaite the last row of Table | we have evaluated the number of
with a smallervalue ofp. Consequently, we see an interestingequired transmissions if CStorage was implemented untjiz
trade-off since increasingN; linearly increases the total random walksas employed in [2, 15, 17] instead of PBcast.
number of transmissions, i.6V,, x N;(p), while it non-linearly Note that the signal reconstruction quality in all algamithis
reduces the requireg and consequentlyV;(p) andni;. equal. Table | shows that we have decreased the number of

Fig. 4. % versusp and N;.



transmissions more thaime orderof magnitude compared to parameters of CStorage and showed that needs to be
existing protocols. This is an excellent reduction in thenber slightly large thanM to achieve the minimum number of
of transmissions that results in energy saving to a greanextrequired transmissions, which is considerably lower than t
and enhances the lifetime of the WSN while it does not addquired number of transmissions in existing protocols for
any more memory requirement or computational complexitlistributed data storage in WSNSs. In the future work, CSjera
to sensor nodes. will be extended considering the spatio-temporal coriatadf

the readings.
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