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Abstract—Efficient spectrum sensing is one of the key features increases sensing efficiency [4—6]. In [6], we took a graph-
that allows the implementation of fully agile cognitive rado theoretic approach to solve the CSS problem in a centralized
networks. In this paper, we present an efficient coordinated way by finding a one-to-one matching between SUs and PU

spectrum sensing algorithm for wideband large-scale cogtive h | i f a bipartit h) at h isieq t
radio networks. Our approach is based on clustering secondg channels (as vertices of a bipartite graph) at each senianeg

users according to their spectrum sensing results and perfming . .
the spectrum sensing tasks collaboratively within each chter. In large-scale cognitive radio networks (CRNs), such as

In addition, the clusters can collaborate with each other to Wireless regional area networks (WRANSs), a channel may be
achieve an optimal distributed spectrum sensing across the busy in one location while it is empty in another location
network. We set up a cognitive radio framework and evaluate ar  within the network. Such conflicting channel sensing result

proposed algorithm using numerical simulations. We show tat  pinger the CSS capability to determine the spatial spectrum
the proposed algorithm increases the successful channelnsing

rate at a reasonable computational cost. holes and thus degrade the performance of CSS. Similar to
the case of ad-hoc networks, CRNs can be scaled down
|. INTRODUCTION by clustering the SUs [7]. Clustering the SUs enhances the

Cognitive radio (CR) is a promising solution to alleviatgperformance of spectrum sensing in CRNs. This is because the
today’s spectrum deficiency caused by an increased dem&ids that are far apart most likely have uncorrelated sensing
for the wireless technologies [1]. Therefore, CR was pregosresults, and they will be assigned to different clusterseréh
to mitigate the under-utilization of the spectrum and to eakore, they sense the PUs’ activities from two distant |amati
spectrum allocation more efficient [1, 2]. According to tha&vhich helps to determine the locally available spectrunesol
CR paradigm, in addition to the existing licensed users.gda.kln CRNs, clustering has been used to increase the sensing
primary users (PUs)) of the spectrum, a new type of useiability [7-10] by assigning the SUs within a cluster to
called unlicensed users or secondary users (SUs) is defirgghse the same channel. In addition, clustering is emplyed
These users are allowed to access the spectrum given fiegluce the network management traffic [11, 12]. Nevertisgles
they do not interfere with the licensed users. The undere study has focused on the clustering issues in CSS.

utilized spectrum bands that can be used by the SUs are calledo buti i thi b ved
spectrum holes [2]. ur contributions in this paper can be summarized as

The ideal CR can efficiently detect and utilize spectrur,fr?llovc\j’,s'thStt’ ;V%gﬁo?#:e a quqﬂgic fodr cluitlerin.g S|Ust
holes. Spectrum sensing, which is responsible for finding the !N @ distributed ¢ - [NIS MErc 1S based on the simiiasitie
spectrum holes, is one of the key tasks in cognitive radﬁBthe $Us' previous channel sensing results. Qsmg th|$|_met
networks (CRNSs). Finding more spectrum holes means m a:;éljgrr;;gﬁ{;/ \(,:v(;tnhneitelgvglzagngsﬂ(z Ccsll;séig%?esalgg'g‘g‘
opportunities for SUs to transmit their own data. Due to t o X
unknown activities of PUs, SUs should periodically sen§8022§;182;|3t’h§rgugheszlgjazrswv;’t';?r?l:a::hheCTS;(;:OWI;”O% ﬂ:)ie
the_entire widebgnd spectrum during the very ghort tm{t% employ a graph—.theory—in’spired CSsS procedL’Jre bgserzj on
available for sensing [3]. To tackle this probleooordinated aur previous work [6]. Our proposed scalable algorithm sig
spectrum sensing (CSS) was proposed [4—6]. In CSS, spectrum__. X ' e
is divided into several narrow subbands or channels, and"fjcantly increases the rate of successful channel sensing
central unit (a.k.a. the base station (BS)) assigns each SU &g rest of this paper is organized as follows. In Section I,
unique channel to sense in each sensing time slot (the R introduce the PU-SU coexistence in the spatially distet
is divided into frames and each frame consists of sensing affiNs and we define the spectrum sensing efficiency factor for
access slots). In other words, different SUs will be assigne crNs, In Section 111, we propose the clustering algorithm fo
sense different channels. Accord|_nglyZ several channigllbev spectrum sensing using the highly connected subgraph-selec
sensed by the SUs at one sensing time slot, and the sengjgg method from graph theory literature. Section IV consai
results (whether the sensed channebisy or empty) will oy proposed coordinated spectrum sensing for spatiadly di
be sent to the BS. It has been shown that CSS significanilibyted CRNS. In Section V, we provide the simulation resul

This material is based upon work supported by the Nationaérgse a_nd the performance evaluation of the proposed algomhm'
Foundation under Grant No. ECCS-1056065 and CCF-0915994. Finally, Section VI concludes the paper.



1. WIDEBAND SPECTRUM SENSING IN CRNS In the case of non-distributed CRNs, due to the long range

Establishing the coexistence of PUs and SUs is the mc?étp.us trar;smntgrls_, all SUs are expected to egperler)cc_asﬂm
ilar PU’s activities. Hence, a CSS algorithm similar to

. . . S|

important and challenging aspect of CRNs. Since PUs h %n . . o .

a higher priority to access the available channels, SUsIdh(i)al\Jé |s_opt|mal. Yet, n the case of distributed CRNs, sensing
algorithms that assign a unique PU channel to each SU are not

constantly monitor PU channels to find the transmission op-=. o :
portunities for themselves while avoiding interferencéwihe Bptlmal anymore. In the.dlstrlbuted CRN scenario as present
incumbent PUs. In this paper, we consideSUs andm PU n Elgure 2’. each SU is only affected by some of the PUs
channels where. > m. (|nd|cat_ed. with gray-colored chanr_lel§) and remains ouhef t

- transmission range of other PUs (indicated with white-tedo
A. PUS activities model channels). Therefore, two distant SUs are more likely to be

o ’ in the transmission range of completely different sets o§PU
Similar to [13], we model each PU channel's state as &fhjs |ocation-dependent channel state information makes t

independent two-state Markoy chain alternating between tBne—to—one CSS algorithms (e.g. [6]) sub-optimal due tr the

statesbusy (B) andempty (E) (Figure 1). Leto; and5; be the jnapility to assign distant SUs to sense the same channel. Fo

probabilities that the™ channel switches its state from B t0jystance two SUs that are outside of each other's transonissi

E and from E to B, respectively, for alle {1,...,m}. range can both be assigned to sense an empty channel and
access it to increase the throughpfrequency reuse). Yet,

10” = 1" such scenarios are not accounted for in the one-to-one CSS.
eoe As an example in Figure 2, SU nodé@sand 5 may only
interfere with PU channel$1,2} and {3, 4, 6}, respectively.

Since the intersection of these subsets is empty, SU nddes
and5 can access the same PU channel at the same time. These
opportunities will be lost if a one-to-one sensing approich
employed for distributed CRNs.

Fig. 1. Model of primary user’s channel occupancy

B. SU-PU coexistence scenarios

From the network topology point of view, coexistence ca@. Sensing-Access trade-off

be modeled by the following two scenarios: The SUs are assumed to be synchronized and operate in
(i) Long-range PU activity (Non-distributed): In this sce- time on a frame-by-frame structure as in [13, 17]. The frame
nario, the transmission range of PUs is far beyond thgucture of a CRN, as is shown in Figure 3, includes a sensing
transmission range of SUs. Therefore, all of the existingme 75 and a transmission tim&y that add up to the total

SUs experience similar PU’s activities [14]. We refer tosthiframe time 7. During T's all SUs cease their transmission,
scenario as theon-distributed cognitive radio. perform spectrum sensing, and report the sensing results on
(if) Short-range PU activity (Distributed): In this scenario, 3 dedicated common control channel to the BS. As depicted
the transmission range of PUs is comparable to that of SkSFigure 3, the sensing tim&s is comprised of two parts,
(e.g, in IEEE 802.22 when the PU network consists of Wireleﬁgmdy channel sensing time (7¢) and sensing and access
microphones [15]). Therefore, the SUs that are far apait Wiverhead time (7). During channel sensing timé, each

have different channel sensing results [16]. We refer ts8 th§y senses a PU channel. During sensing and access overhead
scenario as thelistributed cognitive radio. An example of a time 7}, SUs report the sensing results to the BS and the
distributed cognitive radio can be seen in Figure 2. Each $$§ assigns each SU a channel to sense in the next frame. In
can only sense PUs’ activities on the channels indicated B¥dition, the BS informs SUs that whether or not they can
gray color. The PU channels indicated by the white color aggcess the channels they have sensed empty. In standard IEEE
always sensed empty and can be accessed by the correspgod-22 T has been set equal &)0ms [13, 18]. As in [19],

ing SU at any time without causing harmful interference the sensing efficiency) can be defined as the ratio of the
the PUs. transmission time over the total frame time, i.e.,

: Tx Tc +To
PU channel with 1
activity in the 9 g T 1 T : (1)
range of the . i . i . .
corresponding SU g % 0 For a fixedT', » can be increased by reducing the sensing time
PU channel with 9{
no activity in the % @

6 Ts, which is equivalent to more transmission time for SUs.
range of the
©

corresponding SU
Fig. 2. An example of a distributed CRN with= 6 SUs (squares) operating I1l. OUR PROPOSEDCLUSTERING TECHNIQUE FOR

in a spectrum containing: = 6 PU channels. Each SU can only sense PUSPECTRUM SENSING IN DISTRIBUTED COGNITIVE RADIOS

activity on the channels shown by gray circles. The PU chiansieown by . . . . o
white circles can be accessed by the corresponding SU atiraeywithout As we have discussed in Section Il in the distributed CRNs,

causing harmful interference to the PUs. one-to-one sensing assignment approaches, such as [6] are

som

We employ energy detectors in SUs for the spectrum

0,
% sensing purposes. Energy detector relaxes the necessity of
prior information about PU’s signal at SUs.




T = 200 m sec > for comparison. As we will see later in the simulatiobsg 1,
. |1 T . |1 T is a better distance measure comparedig.
c 10 X c10 X 2) The Clustering algorithm: Various clustering algorithms
T have been proposed in the literature for different appbcst

In our case, we are interested in a clustering algorithm with
Fig. 3.  The frame structure of an SU's operation in a CRN demjc the following properties:

?g?\s‘;gg?gﬁs"e time frames. During the sensing time all 8&ase their ;) 4.4 partitioning : the sets of SUs in each cluster are non-
overlapping.

(i) Low complexity: In our proposed approach, the BS is
not optimal. Therefore, we propose to group SU nodes intequired to frequently perform clustering based on the dy-
several non-overlapping clusters such that each clustr wiamics of PUs’ activities. Therefore, the clustering aitton
be treated as a non-distributed CRN. In general, the goalsffould have low computational complexity to facilitate lrea
every clustering process is to group the entities into thetmdime clustering.
homogenous groups that are maximallgeparated from each (iii) No prior knowledge of PUs’ activities model at SUs

other [20]. We assume SUs are not aware of the PUs’ activities statistics
To describe any clustering process, three elements shoalgriori (for that we setr;(0) = [%, %,...,%]T for all
be defined, namely, the distance measure, the clustering {1,...,n}).

algorithm, and the clustering evaluation indicators. I® th To meet the above requirements, we employ the HCS clus-
following, we defined each of the above elements for owering algorithm [22] to cluster the SUs. HCS is a conneection
proposed method on clustering SUs. based and low-complexity clustering algorithm, in whicle th

1) Sensing-based distance measure: In large-scale CRNs, SUs are represented as vertices (nodes) of a graph and the
the Euclidean distance between the SUs can be considered edges are determined based on the SU’s sensing history.
metric to perform clustering. This metric may seem to penfor Specifically, there exists an edge between two nodes in the
the best, yet in many applications, obtaining the locatiayraph if the divergence measubg ;, between the correspond-
information about the SUs might not be readily possibléng SUs is smaller than a threshotgl. A largerr, results in
Therefore, we propose to use thansing results of SUs as a a graph with more edges and vice versa. We then apply HCS
clustering metric. The BS stores each node’s collective historf22] to find the highly connected subgraphs and cluster nodes
of previous sensing experiences as the nodefsef vector. (see Figure 4).
The belief vector for SU; at time ¢ is a probability mass

function (pmf)z;(t) £ [z;,1(2), ..., zjm(t)]", wherex;;(t) Clust

denotes the probability that SfJwould have chosen channel :

i for sensing in sensing frame if it was up to itself to I
choose anozzil z;;(t) = 1. The belief vector represents :
the accumulative history of SU’s observations prior to titme I

The belief vector is initialized ag;(0) = [£, L,... L]T I

and is updated by every sensing attempt of $Uor all
j €41,...,n} following the learning algorithm in [21]. : . . .
We define the distance between two SUS based on the @ifresents amalier than dvergence. The dashed edges wih a €105 on them

tance between their belief vectors.More specifically, wingde will be removed to form the highly connected subgraphs.

the distanceDy; between any two SUs as the Kullback-

Leibler (KL) divergence between beliefs of those SUs. Ireoth The HCS clustering algorithm determines the clusters by

words, the distance is measured by the divergence in thefgelffinding the minimum number of highly connected subgraphs

of SUs;j and SU! are defined as follows in the underlying graph of SUs in the network (Figure 4). Let
= A connectivity of a graphG, k(G), be the minimum number
Dier = Dier(z;(®)ll2,(8) + Dree e, Ollz; (1), @ ¢ edges that their removaﬁ rr)wakes the graph disconnected.

where Dicp (z(t)]|z; (1)) 2 S xj.i(t) log 2_8 If two Therefore,k(G) is equal to the cardinality of the mi_nimum

SUs experience exactly the same set of observations on PElt set of the grapt;. A connected subgraptir with ¢

channels, they will have the same beliefs on PU's chann&gtices is called an HCS #(Gr) > ¢/2 [22]. The clustering

and the KL distance between them will be zero. Similarl@lgorithm determines the HCSs 6t It first, checks ifG is an

SUs with different PU’s channel sensing experiences wilehaHCS itself. If true, the algorithm is terminated, otherwise

diverged beliefs and Consequenﬂy greater distances. f|nd|ng the minimum cut set aff and I‘emOVing the associated
In our numerical simulations, we also considered the €dges, it forms two subgraphs. Each subgraph will be checked
norm of the difference of the pmfs as for being an HCS. This process is continued until all exstin
m subgraphs are HCSs [22]. For example the graph in Figure 4 is
Dey = Il (1) — z,(1)]2 = (Z (2.0 — Il,i)z)%y @3) composed of three HCSs. First by removing the edge between

— nodes2 and4 two disconnected subgraphs is forméd,@, 3}



and {4,5,6,7,8,9,10}). Subgraph{1,2,3} is an HCS. In Qﬁéql " Cluster
subgraph{4, 5,6,7,8,9,10} by removing two edges between ,( ‘I
the nodes$ and8 and the node® and9, two HCSs{4, 5,6, 7}
and{8,9, 10} are formed and the algorithm is terminated. This
algorithm has a low computational complexity compared to
other algorithms (such dsmeans) that minimize the distance
measure between the nodes within each cluster. This is becau
HCS performs a connection-based clustering [23]. (a)

It should be noted that the parameter determines the
number of clusters. A larger; results in a graph with more
edges and results in less number of clusters.

3) Clustering evaluation methods: There are many ways
to assess the performance of a clustering method. In this
work, we evaluate the clustering performance based on the
overall efficiency of the channel sensing process. The tivera
performance of the sensing algorithm can be measured in Y Y Y
terms of thechannel sensing success rate defined as, Cluster 1 Cluster 2 Cluster 3

(b)
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Ro— Average number of successful sensing attempts per timeefram
S — N *
. . . . Fig. 5. Channel sensing allocation for a network with= 6 (SUs are
. A S?ﬂSIﬂg .IS considered to besaccessful attempt if an_ S represented by squares) and = 3 (channels are represented by circles).
finds its assigned and sensed channel empty and if theresusfigure (a) represents the location of SUs. There is a daste between
no other SU in its transmission range that has been assigt#SUs if they are in the transmission range of each othebfigure (b)

. . sents the channel sensing assignments and the sedehoPU channel
the same channel to sense. Otherwise, the sensing atteméip'?bipartite graph. In addition the edges with dash-dditedand solid line

considered to be &ailed attempt. represent the failed and the successful sensing attenesiseatively.
In Figure 5, we provide an example of a spectrum sensing

assignment. In this example = 6 andm = 3 and we have “Ajgorithm 1. The proposed clustering-based spectrum
3 clusters each containing two SUs (see Figure 5(a)). Figurgensing in distributed CRNs at time frame
5(b) represents the channel assignments on a bipartitd grap 1 SUs sense the allocated channels

between the SUs (square nodes) and the PU channels (circulah. The BS receives the sensing results (B or E) corresponding to

nodes) as well as the state of the PU channélsafd £ the sensed channels from SUs.

stand for the busy and the empty states, respectively).gUsin 3: The BS updates the belief \{eCt@?(t) forallje{1,...,n}

the assignment represented by the edges of bipartite graph4_ #]IngBlgamI?tg alg‘ggh”%; 'r} [Ztl' ind the HCS clusteri

in Figure 5(b), the SU91,2,3,5,6} will sense an empty " al e B> partiions SUs intér clusters using the clustening
gorithm.

channel. Yet, SU from clusterl and SU3 from cluster2 are 5. The BS performs the one-to-one matching algorithm proposed

in the transmission range of each other. Therefore, we do not in [6] to allocate channels the members of each cluster.

consider those channel sensing as success (due to thelpossib 6: The BS transmits the channel access permissions and the ID of

interference between SUs and 3). Hence, channel sensing the channel that each SU has to sense at frame.

success rate becomés = 3 = 0.5.

IV. CLUSTERING-BASED COORDINATED SPECTRUM

It should be noted that in the distributed CRN scenarios,
SENSING INDISTRIBUTED CRNS

the proposed algorithm can achieve a higher sensing success
In this section, we introduce our clustering-based alpaorit rate compared to non-cooperative [21] and non-clustergd [6
for coordinated spectrum sensing. At the beginning of eastrategies. In non-cooperative scenario each SU greeatbly t
frame, the BS, after receiving the sensing results from the sense the PU channel with maximum probability of being
SUs (whether the sensed channel is busy or empty), perforemspty. Therefore, it is very likely that two SUs at transnaas
the following steps. SUs are partitioned into several elsst range of each other, sense the same PU channel due to lack
using the HCS clustering algorithm. For every cluster, ti& Bof coordination. On the other hand, in coordinated but non-
determines the unique channels to be sensed by the memistrstered scenario the opportunities of frequency reuiéowii
of the cluster, performing a one-to-one matching algorithiost.
[6] between the members of that cluster and the channels.
Algorithm 1 represents the pseudo code of the steps taken at
the beginning of each frame in our proposed algorithm. TheTo perform the numerical experiments, we assume 20
time required to perform Algorithm 1 at each frame is equ&Us andm = 20 PUs, all with transmission range equallto
to Ts, in which Step 1 take§ - seconds and all other stepgdistance unit, are uniformly at random distributed in arnaare
together takelp, seconds. with size A = 100 (distance unjf. In addition, we assume

V. SIMULATION RESULTS
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all PU channels have the similar parameters (ig.,= « 0.
andg; = g forall i € {1,...,m}). We seta = 3 = 0.01.
The results of this simulation is shown in Figure 6, which
represents the channsénsing success rate (R,) versus the
number of clusters for different clustering scenarios. As w
have mentioned, using HCS algorithm, unlikemeans, the
BS does not require to decide on the number of clusters pric-
to the clustering. However, this algorithm can be enforcec &
to group SUs into a pre-defined number of clusters. Hence
for sake of comparison wittk-means we have forced HCS 0 = 0 o
algorithm to form pre-determined number of clusters. We Td

numerically obtained the optimal threshold for each given
number of clusters in case of HCS clustering (e.g., when vi\;:gs
have k = 5 clusters,7; = 0.16). Channel sensing success
rate is defined in (4). As we can see for the cluster size of

k =5, we obtain nearl20% more sensing success rate usingiCs algorithm forms fewer clusters causing to exploit fewer
the proposed HCS clustering algorithm with KL divergencgequency reuse opportunities. Therefore, there is ammapti
measure compared to the non-clustered scenario. value ofry such that the benefits of coordination and frequency
reuse are being exploited at the same time.

In Table I, we derived the sensing efficiency factpifor
the same parameters as in Figure 6. We find the spectrum
sensing efficiency factor for three non-cooperative [20nn
clustered [6], and our proposed algorithm. In all of the ¢hre
algorithms the sensing success r#tg is set greater than or
equal t00.35. Therefore, as we can see from the table in
cases of non-cooperative and non-clustered spectrunnggnsi
SUs have to perform more than one channel sensing at each
, sensing frame to comply with the sensing success rateiariter
e 2 3 b N of dsters | 8 9 10 (i.e. Rs > 0.35). The results om are based on assuming the

umbr ol clusters
required time to sense one channebigas andT = 200ms

Fig. 6. Channel sensing success rate using different dogtapproaches [13, 18]. In Table II, we have considered employing HCS and
versus the number of clusters

. 2
=8~ Number of clusters
-o- R,

te R
©

o
N}

o

ensing success ral
[
o ~
Average number of clusters

7. The channel sensing success rate and the averageenaofmtusters
us distance measure threshejd

== =Non-clustered
0.15 =8 k-means clustering w/ known location of SUs

=0~HCS clustering w/ Dg, as distance measure

Channel sensing success rate (Ry)

-6-HCS clustering w/ Dy, as distance measure
,_

TABLE |

In Figure 6, we have compared different distance measuresSENSING EFFICIENCY FACTOR 7 OF DIFFERENT ALGORITHMS OUR
PROPOSED ALGORITHMCLUSTERING W HCS)HAS THE HIGHEST

for clustering as well. Each solid line represents a difiere SENSING EFFICIENCY
measure for performing the clustering. In thene_ans_cluster—_ R Nom- o rrraq ] CUSEG W
ing, we assumed that the BS knows the location informatipn A'gorithm cooperative on-clustere HCS
of all SUs. As we can see in Figure 6, the performance oiChannb;l sensing 4 9 1
. . . . per frrame
our proposed algorithm (HCS w/ KL divergence) is slightl 7 09 0% 0o

degraded compared to themeans clustering. However, th
latter requires the knowledge of the locations of all SUsicivh
may not be feasible. We have also depicted the results iefneans with the KL divergence measure and the separation
HCS clustering using),, between SUs beliefs as a distancand the homogeneity of these clustering techniques are com-
measure. As we can sé#, does not perform as well d8x ;. pared. Homogeneity is the measure of closeness between the
In Figure 7, we have depicted channel sensing successmbers of one cluster and separation measures distance of
rate R, as a function of distance measure threshnldThe members of one clusters with the other clusters members on
simulation parameters are the same as in Figure 6. Each pewtrage (both are defined in [23]). A better algorithm has
represents the average ®0600 random implementations of greater homogeneity and smaller separation. The simalatio
SUs and PUs. The righthand-side axis of Figure 7 represeptgameters ares = 50, m = 20, anda = g = 0.01.
the average number of clusters that HCS clustering algaoritin Table 1l, the number of clusters fat-means should be
finds. For smaller; values, the graph of SUs have only a fevdetermined a priori. Therefore, we have picked the number of
number of edges and HCS algorithm will form many clustedusters that results in the better performance. As we can se
each containing only a few nodes. Hence, the coordinatibtCS performs slightly better thaameans in terms of average
among SU node will be very limited ang, will be small. homogeneity and performs slightly worse thammeans in
On the other hand, by increasing the threshgjdthe graph terms of average separation. In addition as we can see, the
of SUs approaches to a complete graph. Consequently, toenputational complexity of the HCS algorithm is greatly



TABLE Il

SIMULATION RESULTS FOR DIFFERENT CLUSTERING ALGORITHMS AND
MEASURES USINGKULLBACK -LEIBLER DIVERGENCE MEASURE AS THE
DISTANCE MEASURE

[10]

[11]
Algorithm Number of | Average ho- Average Run time
clusters mogeneity | separation
k-means 11 1.37 1.31 O(n?logn)
HCS 12 1.39 1.40 O(nlogn) [12]
[13]
smaller than that ok-means algorithm. [14]

VI. CONCLUDING REMARKS 15

In this paper, we have considered the problem of coor-
dinated spectrum sensing in the distributed cognitive aradi

networks. The efficiency of coordinated (one-to-one) spect (1)
sensing imon-distributed CRNs and the benefits of frequency

reuse fodistributed CRNs made us to seek a balanced soluti ]

that uses the benefits of both schemes by clustering the SUs.

SUs within one cluster can leverage the one-to-one spectrum
sensing while SUs in different clusters can benefit from tilfg]
frequency reuse. Clearly, the underlying clustering meéth
will be very important in the efficiency of our scheme. We
introduced a novel metric for clustering SU nodes that 'ﬁg
based on the similarities in the previous channels sensi g]
results of SUs and the belief that each SU has about the
status of each channel. Using this metric in conjunctidﬁol
with a low-complexity clustering algorithm based on highly
connected subgraphs enables a base station to efficiently f¢21]
clusters without the need to know the location of the SUs. We
have shown through extensive simulations that the proposes
algorithm can considerably increase channel sensing ssicce
rate for secondary users at a reasonable computational 00?53]
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