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Abstract—Efficient spectrum sensing is one of the key features
that allows the implementation of fully agile cognitive radio
networks. In this paper, we present an efficient coordinated
spectrum sensing algorithm for wideband large-scale cognitive
radio networks. Our approach is based on clustering secondary
users according to their spectrum sensing results and performing
the spectrum sensing tasks collaboratively within each cluster.
In addition, the clusters can collaborate with each other to
achieve an optimal distributed spectrum sensing across the
network. We set up a cognitive radio framework and evaluate our
proposed algorithm using numerical simulations. We show that
the proposed algorithm increases the successful channel sensing
rate at a reasonable computational cost.

I. I NTRODUCTION

Cognitive radio (CR) is a promising solution to alleviate
today’s spectrum deficiency caused by an increased demand
for the wireless technologies [1]. Therefore, CR was proposed
to mitigate the under-utilization of the spectrum and to make
spectrum allocation more efficient [1, 2]. According to the
CR paradigm, in addition to the existing licensed users (a.k.a.
primary users (PUs)) of the spectrum, a new type of users
called unlicensed users or secondary users (SUs) is defined.
These users are allowed to access the spectrum given that
they do not interfere with the licensed users. The under-
utilized spectrum bands that can be used by the SUs are called
spectrum holes [2].

The ideal CR can efficiently detect and utilize spectrum
holes.Spectrum sensing, which is responsible for finding the
spectrum holes, is one of the key tasks in cognitive radio
networks (CRNs). Finding more spectrum holes means more
opportunities for SUs to transmit their own data. Due to the
unknown activities of PUs, SUs should periodically sense
the entire wideband spectrum during the very short time
available for sensing [3]. To tackle this problem,coordinated
spectrum sensing (CSS) was proposed [4–6]. In CSS, spectrum
is divided into several narrow subbands or channels, and a
central unit (a.k.a. the base station (BS)) assigns each SU a
unique channel to sense in each sensing time slot (the time
is divided into frames and each frame consists of sensing and
access slots). In other words, different SUs will be assigned to
sense different channels. Accordingly, several channels will be
sensed by the SUs at one sensing time slot, and the sensing
results (whether the sensed channel isbusy or empty) will
be sent to the BS. It has been shown that CSS significantly
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increases sensing efficiency [4–6]. In [6], we took a graph-
theoretic approach to solve the CSS problem in a centralized
way by finding a one-to-one matching between SUs and PU
channels (as vertices of a bipartite graph) at each sensing time.

In large-scale cognitive radio networks (CRNs), such as
wireless regional area networks (WRANs), a channel may be
busy in one location while it is empty in another location
within the network. Such conflicting channel sensing results
hinder the CSS capability to determine the spatial spectrum
holes and thus degrade the performance of CSS. Similar to
the case of ad-hoc networks, CRNs can be scaled down
by clustering the SUs [7]. Clustering the SUs enhances the
performance of spectrum sensing in CRNs. This is because the
SUs that are far apart most likely have uncorrelated sensing
results, and they will be assigned to different clusters. There-
fore, they sense the PUs’ activities from two distant locations,
which helps to determine the locally available spectrum holes.
In CRNs, clustering has been used to increase the sensing
reliability [7–10] by assigning the SUs within a cluster to
sense the same channel. In addition, clustering is employedto
reduce the network management traffic [11, 12]. Nevertheless,
no study has focused on the clustering issues in CSS.

Our contributions in this paper can be summarized as
follows. First, we introduce a novelmetric for clustering SUs
in a distributed CRN. This metric is based on the similarities
in the SUs’ previous channel sensing results. Using this metric
in conjunction with a low-complexity clustering algorithm
based onhighly connected subgraphs (HCS) enables the BS
to efficiently form the clusters without the need to know the
location of the SUs. Second, within each cluster, we propose
to employ a graph-theory-inspired CSS procedure based on
our previous work [6]. Our proposed scalable algorithm sig-
nificantly increases the rate of successful channel sensing.

The rest of this paper is organized as follows. In Section II,
we introduce the PU-SU coexistence in the spatially distributed
CRNs and we define the spectrum sensing efficiency factor for
CRNs. In Section III, we propose the clustering algorithm for
spectrum sensing using the highly connected subgraph selec-
tion method from graph theory literature. Section IV contains
our proposed coordinated spectrum sensing for spatially dis-
tributed CRNs. In Section V, we provide the simulation results
and the performance evaluation of the proposed algorithm.
Finally, Section VI concludes the paper.



II. W IDEBAND SPECTRUM SENSING IN CRNS

Establishing the coexistence of PUs and SUs is the most
important and challenging aspect of CRNs. Since PUs have
a higher priority to access the available channels, SUs should
constantly monitor PU channels to find the transmission op-
portunities for themselves while avoiding interference with the
incumbent PUs. In this paper, we considern SUs andm PU
channels wheren ≥ m.

A. PUs’ activities model

Similar to [13], we model each PU channel’s state as an
independent two-state Markov chain alternating between the
statesbusy (B) andempty (E) (Figure 1). Letαi andβi be the
probabilities that theith channel switches its state from B to
E and from E to B, respectively, for alli ∈ {1, . . . , m}.
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Fig. 1. Model of primary user’s channel occupancy

B. SU-PU coexistence scenarios

From the network topology point of view, coexistence can
be modeled by the following two scenarios:
(i) Long-range PU activity (Non-distributed): In this sce-
nario, the transmission range of PUs is far beyond the
transmission range of SUs. Therefore, all of the existing
SUs experience similar PU’s activities [14]. We refer to this
scenario as thenon-distributed cognitive radio.
(ii) Short-range PU activity (Distributed): In this scenario,
the transmission range of PUs is comparable to that of SUs
(e.g, in IEEE 802.22 when the PU network consists of wireless
microphones [15]). Therefore, the SUs that are far apart will
have different channel sensing results [16]. We refer to this
scenario as thedistributed cognitive radio. An example of a
distributed cognitive radio can be seen in Figure 2. Each SU
can only sense PUs’ activities on the channels indicated by
gray color. The PU channels indicated by the white color are
always sensed empty and can be accessed by the correspond-
ing SU at any time without causing harmful interference to
the PUs.
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Fig. 2. An example of a distributed CRN withn = 6 SUs (squares) operating
in a spectrum containingm = 6 PU channels. Each SU can only sense PU’s
activity on the channels shown by gray circles. The PU channels shown by
white circles can be accessed by the corresponding SU at any time without
causing harmful interference to the PUs.

In the case of non-distributed CRNs, due to the long range
of PUs’ transmitters, all SUs are expected to experience almost
similar PU’s activities. Hence, a CSS algorithm similar to
[6] is optimal. Yet, in the case of distributed CRNs, sensing
algorithms that assign a unique PU channel to each SU are not
optimal anymore. In the distributed CRN scenario as presented
in Figure 2, each SU is only affected by some of the PUs
(indicated with gray-colored channels) and remains out of the
transmission range of other PUs (indicated with white-colored
channels). Therefore, two distant SUs are more likely to be
in the transmission range of completely different sets of PUs.
This location-dependent channel state information makes the
one-to-one CSS algorithms (e.g. [6]) sub-optimal due to their
inability to assign distant SUs to sense the same channel. For
instance two SUs that are outside of each other’s transmission
range can both be assigned to sense an empty channel and
access it to increase the throughput (frequency reuse). Yet,
such scenarios are not accounted for in the one-to-one CSS.

As an example in Figure 2, SU nodes2 and 5 may only
interfere with PU channels{1, 2} and {3, 4, 6}, respectively.
Since the intersection of these subsets is empty, SU nodes2
and5 can access the same PU channel at the same time. These
opportunities will be lost if a one-to-one sensing approachis
employed for distributed CRNs.

C. Sensing-Access trade-off

The SUs are assumed to be synchronized and operate in
time on a frame-by-frame structure as in [13, 17]. The frame
structure of a CRN, as is shown in Figure 3, includes a sensing
time TS and a transmission timeTX that add up to the total
frame timeT . During TS all SUs cease their transmission,
perform spectrum sensing, and report the sensing results on
a dedicated common control channel to the BS. As depicted
in Figure 3, the sensing timeTS is comprised of two parts,
namely channel sensing time (TC) and sensing and access
overhead time (TO). During channel sensing timeTC , each
SU senses a PU channel. During sensing and access overhead
time TO, SUs report the sensing results to the BS and the
BS assigns each SU a channel to sense in the next frame. In
addition, the BS informs SUs that whether or not they can
access the channels they have sensed empty. In standard IEEE
802.22,T has been set equal to200ms [13, 18]. As in [19],
the sensing efficiencyη can be defined as the ratio of the
transmission time over the total frame time, i.e.,

η =
TX

T
= 1 −

TC + TO

T
. (1)

For a fixedT , η can be increased by reducing the sensing time
TS, which is equivalent to more transmission time for SUs.

We employ energy detectors in SUs for the spectrum
sensing purposes. Energy detector relaxes the necessity of
prior information about PU’s signal at SUs.

III. O UR PROPOSEDCLUSTERING TECHNIQUE FOR

SPECTRUM SENSING IN DISTRIBUTED COGNITIVE RADIOS

As we have discussed in Section II, in the distributed CRNs,
one-to-one sensing assignment approaches, such as [6] are
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Fig. 3. The frame structure of an SU’s operation in a CRN depicting
two consecutive time frames. During the sensing time all SUscease their
transmissions.

not optimal. Therefore, we propose to group SU nodes into
several non-overlapping clusters such that each cluster will
be treated as a non-distributed CRN. In general, the goal of
every clustering process is to group the entities into the most
homogenous groups that are maximallyseparated from each
other [20].

To describe any clustering process, three elements should
be defined, namely, the distance measure, the clustering
algorithm, and the clustering evaluation indicators. In the
following, we defined each of the above elements for our
proposed method on clustering SUs.

1) Sensing-based distance measure: In large-scale CRNs,
the Euclidean distance between the SUs can be considered as a
metric to perform clustering. This metric may seem to perform
the best, yet in many applications, obtaining the location
information about the SUs might not be readily possible.
Therefore, we propose to use thesensing results of SUs as a
clustering metric. The BS stores each node’s collective history
of previous sensing experiences as the node’sbelief vector.
The belief vector for SUj at time t is a probability mass
function (pmf)xj(t) , [xj,1(t), . . . , xj,m(t)]T , wherexj,i(t)
denotes the probability that SUj would have chosen channel
i for sensing in sensing framet if it was up to itself to
choose and

∑m

i=1 xj,i(t) = 1. The belief vector represents
the accumulative history of SU’s observations prior to timet.
The belief vector is initialized asxj(0) = [ 1

m
, 1

m
, . . . , 1

m
]T

and is updated by every sensing attempt of SUj for all
j ∈ {1, . . . , n} following the learning algorithm in [21].

We define the distance between two SUs based on the dis-
tance between their belief vectors.More specifically, we define
the distanceDKL between any two SUs as the Kullback-
Leibler (KL) divergence between beliefs of those SUs. In other
words, the distance is measured by the divergence in the beliefs
of SUs j and SUl are defined as follows

DKL , DKL(xj(t)‖xl(t)) + DKL(xl(t)‖xj(t)), (2)

where DKL(xj(t)‖xl(t)) ,
∑m

i=1 xj,i(t) log
xj,i(t)
xl,i(t)

. If two
SUs experience exactly the same set of observations on PUs’
channels, they will have the same beliefs on PU’s channels
and the KL distance between them will be zero. Similarly,
SUs with different PU’s channel sensing experiences will have
diverged beliefs and consequently greater distances.

In our numerical simulations, we also considered theℓ2-
norm of the difference of the pmfs as

Dℓ2 = ‖xj(t) − xl(t)‖2 =
(

m
∑

i=1

(xj,i − xl,i)
2
) 1

2 , (3)

for comparison. As we will see later in the simulationsDKL

is a better distance measure compared toDℓ2 .
2) The Clustering algorithm: Various clustering algorithms

have been proposed in the literature for different applications.
In our case, we are interested in a clustering algorithm with
the following properties:
(i) Hard partitioning : the sets of SUs in each cluster are non-
overlapping.
(ii) Low complexity : In our proposed approach, the BS is
required to frequently perform clustering based on the dy-
namics of PUs’ activities. Therefore, the clustering algorithm
should have low computational complexity to facilitate real-
time clustering.
(iii) No prior knowledge of PUs’ activities model at SUs:
We assume SUs are not aware of the PUs’ activities statistics
a priori (for that we setxj(0) = [ 1

m
, 1

m
, . . . , 1

m
]T for all

j ∈ {1, . . . , n}).
To meet the above requirements, we employ the HCS clus-

tering algorithm [22] to cluster the SUs. HCS is a connection-
based and low-complexity clustering algorithm, in which the
SUs are represented as vertices (nodes) of a graph and the
edges are determined based on the SU’s sensing history.
Specifically, there exists an edge between two nodes in the
graph if the divergence measureDKL between the correspond-
ing SUs is smaller than a thresholdτd. A larger τd results in
a graph with more edges and vice versa. We then apply HCS
[22] to find the highly connected subgraphs and cluster nodes
(see Figure 4).

x

xx

Cluster 1 Cluster 2 Cluster 3

Fig. 4. Highly connected subgraph (HCS) clustering. Existence of an edge
represents smaller thanτd divergence. The dashed edges with a cross on them
will be removed to form the highly connected subgraphs.

The HCS clustering algorithm determines the clusters by
finding the minimum number of highly connected subgraphs
in the underlying graph of SUs in the network (Figure 4). Let
connectivity of a graphG, k(G), be the minimum number
of edges that their removal makes the graph disconnected.
Therefore,k(G) is equal to the cardinality of the minimum
cut set of the graphG. A connected subgraphGT with q
vertices is called an HCS ifk(GT ) > q/2 [22]. The clustering
algorithm determines the HCSs ofG. It first, checks ifG is an
HCS itself. If true, the algorithm is terminated, otherwiseby
finding the minimum cut set ofG and removing the associated
edges, it forms two subgraphs. Each subgraph will be checked
for being an HCS. This process is continued until all existing
subgraphs are HCSs [22]. For example the graph in Figure 4 is
composed of three HCSs. First by removing the edge between
nodes2 and4 two disconnected subgraphs is formed ({1, 2, 3}
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and {4, 5, 6, 7, 8, 9, 10}). Subgraph{1, 2, 3} is an HCS. In
subgraph{4, 5, 6, 7, 8, 9, 10} by removing two edges between
the nodes6 and8 and the nodes7 and9, two HCSs{4, 5, 6, 7}
and{8, 9, 10} are formed and the algorithm is terminated. This
algorithm has a low computational complexity compared to
other algorithms (such ask-means) that minimize the distance
measure between the nodes within each cluster. This is because
HCS performs a connection-based clustering [23].

It should be noted that the parameterτd determines the
number of clusters. A largerτd results in a graph with more
edges and results in less number of clusters.

3) Clustering evaluation methods: There are many ways
to assess the performance of a clustering method. In this
work, we evaluate the clustering performance based on the
overall efficiency of the channel sensing process. The overall
performance of the sensing algorithm can be measured in
terms of thechannel sensing success rate defined as,

Rs =
Average number of successful sensing attempts per time frame

N
.

(4)
A sensing is considered to be asuccessful attempt if an SU

finds its assigned and sensed channel empty and if there is
no other SU in its transmission range that has been assigned
the same channel to sense. Otherwise, the sensing attempt is
considered to be afailed attempt.

In Figure 5, we provide an example of a spectrum sensing
assignment. In this examplen = 6 and m = 3 and we have
3 clusters each containing two SUs (see Figure 5(a)). Figure
5(b) represents the channel assignments on a bipartite graph
between the SUs (square nodes) and the PU channels (circular
nodes) as well as the state of the PU channels (B and E
stand for the busy and the empty states, respectively). Using
the assignment represented by the edges of bipartite graph
in Figure 5(b), the SUs{1, 2, 3, 5, 6} will sense an empty
channel. Yet, SU1 from cluster1 and SU3 from cluster2 are
in the transmission range of each other. Therefore, we do not
consider those channel sensing as success (due to the possible
interference between SUs1 and 3). Hence, channel sensing
success rate becomesRs = 3

6 = 0.5.

IV. CLUSTERING-BASED COORDINATED SPECTRUM

SENSING IN DISTRIBUTED CRNS

In this section, we introduce our clustering-based algorithm
for coordinated spectrum sensing. At the beginning of each
frame, the BS, after receiving the sensing results from the
SUs (whether the sensed channel is busy or empty), performs
the following steps. SUs are partitioned into several clusters
using the HCS clustering algorithm. For every cluster, the BS
determines the unique channels to be sensed by the members
of the cluster, performing a one-to-one matching algorithm
[6] between the members of that cluster and the channels.
Algorithm 1 represents the pseudo code of the steps taken at
the beginning of each frame in our proposed algorithm. The
time required to perform Algorithm 1 at each frame is equal
to TS , in which Step 1 takesTC seconds and all other steps
together takeTO seconds.

Cluster 1 Cluster 2 Cluster 3

(a)

(b)

1 2 3

BE E

1 2 3 4 5 6

Cluster 1 Cluster 2 Cluster 3

Fig. 5. Channel sensing allocation for a network withn = 6 (SUs are
represented by squares) andm = 3 (channels are represented by circles).
Subfigure (a) represents the location of SUs. There is a dashed line between
two SUs if they are in the transmission range of each other. Subfigure (b)
represents the channel sensing assignments and the state ofeach PU channel
on a bipartite graph. In addition the edges with dash-dottedline and solid line
represent the failed and the successful sensing attempts, respectively.

Algorithm 1 : The proposed clustering-based spectrum
sensing in distributed CRNs at time framet.

1: SUs sense the allocated channels.
2: The BS receives the sensing results (B or E) corresponding to

the sensed channels from SUs.
3: The BS updates the belief vectorsxj(t) for all j ∈ {1, . . . , n}

using learning algorithmLA1 in [21].
4: The BS partitions SUs intok clusters using the HCS clustering

algorithm.
5: The BS performs the one-to-one matching algorithm proposed

in [6] to allocate channels the members of each cluster.
6: The BS transmits the channel access permissions and the ID of

the channel that each SU has to sense at framet + 1.

It should be noted that in the distributed CRN scenarios,
the proposed algorithm can achieve a higher sensing success
rate compared to non-cooperative [21] and non-clustered [6]
strategies. In non-cooperative scenario each SU greedily tries
to sense the PU channel with maximum probability of being
empty. Therefore, it is very likely that two SUs at transmission
range of each other, sense the same PU channel due to lack
of coordination. On the other hand, in coordinated but non-
clustered scenario the opportunities of frequency reuse will be
lost.

V. SIMULATION RESULTS

To perform the numerical experiments, we assumen = 20
SUs andm = 20 PUs, all with transmission range equal to1
distance unit, are uniformly at random distributed in an area
with size A = 100 (distance unit)2. In addition, we assume
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all PU channels have the similar parameters (i.e.,αi = α
and βi = β for all i ∈ {1, . . . , m}). We setα = β = 0.01.
The results of this simulation is shown in Figure 6, which
represents the channelsensing success rate (Rs) versus the
number of clusters for different clustering scenarios. As we
have mentioned, using HCS algorithm, unlikek-means, the
BS does not require to decide on the number of clusters prior
to the clustering. However, this algorithm can be enforced
to group SUs into a pre-defined number of clusters. Hence,
for sake of comparison withk-means we have forced HCS
algorithm to form pre-determined number of clusters. We
numerically obtained the optimal threshold for each given
number of clusters in case of HCS clustering (e.g., when we
have k = 5 clusters,τd = 0.16). Channel sensing success
rate is defined in (4). As we can see for the cluster size of
k = 5, we obtain nearly20% more sensing success rate using
the proposed HCS clustering algorithm with KL divergence
measure compared to the non-clustered scenario.
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Fig. 6. Channel sensing success rate using different clustering approaches
versus the number of clusters

In Figure 6, we have compared different distance measures
for clustering as well. Each solid line represents a different
measure for performing the clustering. In thek-means cluster-
ing, we assumed that the BS knows the location information
of all SUs. As we can see in Figure 6, the performance of
our proposed algorithm (HCS w/ KL divergence) is slightly
degraded compared to thek-means clustering. However, the
latter requires the knowledge of the locations of all SUs, which
may not be feasible. We have also depicted the results of
HCS clustering usingDℓ2 between SUs beliefs as a distance
measure. As we can seeDℓ2 does not perform as well asDKL.

In Figure 7, we have depicted channel sensing success
rate Rs as a function of distance measure thresholdτd. The
simulation parameters are the same as in Figure 6. Each point
represents the average of1000 random implementations of
SUs and PUs. The righthand-side axis of Figure 7 represents
the average number of clusters that HCS clustering algorithm
finds. For smallerτd values, the graph of SUs have only a few
number of edges and HCS algorithm will form many clusters
each containing only a few nodes. Hence, the coordination
among SU node will be very limited andRs will be small.
On the other hand, by increasing the thresholdτd, the graph
of SUs approaches to a complete graph. Consequently, the
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Fig. 7. The channel sensing success rate and the average number of clusters
versus distance measure thresholdτd

HCS algorithm forms fewer clusters causing to exploit fewer
frequency reuse opportunities. Therefore, there is an optimal
value ofτd such that the benefits of coordination and frequency
reuse are being exploited at the same time.

In Table I, we derived the sensing efficiency factorη for
the same parameters as in Figure 6. We find the spectrum
sensing efficiency factor for three non-cooperative [21], non-
clustered [6], and our proposed algorithm. In all of the three
algorithms the sensing success rateRs is set greater than or
equal to 0.35. Therefore, as we can see from the table in
cases of non-cooperative and non-clustered spectrum sensing,
SUs have to perform more than one channel sensing at each
sensing frame to comply with the sensing success rate criteria
(i.e. Rs ≥ 0.35). The results onη are based on assuming the
required time to sense one channel is5ms and T = 200ms
[13, 18]. In Table II, we have considered employing HCS and

TABLE I
SENSING EFFICIENCY FACTOR, η OF DIFFERENT ALGORITHMS. OUR

PROPOSED ALGORITHM(CLUSTERING W/ HCS)HAS THE HIGHEST

SENSING EFFICIENCY.

Algorithm Non-
cooperative

Non-clustered Clustering w/
HCS

Channel sensing
per frame 4 2 1

η 0.9 0.95 0.975

k-means with the KL divergence measure and the separation
and the homogeneity of these clustering techniques are com-
pared. Homogeneity is the measure of closeness between the
members of one cluster and separation measures distance of
members of one clusters with the other clusters members on
average (both are defined in [23]). A better algorithm has
greater homogeneity and smaller separation. The simulation
parameters aren = 50, m = 20, and α = β = 0.01.
In Table II, the number of clusters fork-means should be
determined a priori. Therefore, we have picked the number of
clusters that results in the better performance. As we can see
HCS performs slightly better thank-means in terms of average
homogeneity and performs slightly worse thank-means in
terms of average separation. In addition as we can see, the
computational complexity of the HCS algorithm is greatly
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TABLE II
SIMULATION RESULTS FOR DIFFERENT CLUSTERING ALGORITHMS AND

MEASURES USINGKULLBACK -LEIBLER DIVERGENCE MEASURE AS THE

DISTANCE MEASURE.

Algorithm Number of
clusters

Average ho-
mogeneity

Average
separation

Run time

k-means 11 1.37 1.31 O(n2 log n)
HCS 12 1.39 1.40 O(n log n)

smaller than that ofk-means algorithm.

VI. CONCLUDING REMARKS

In this paper, we have considered the problem of coor-
dinated spectrum sensing in the distributed cognitive radio
networks. The efficiency of coordinated (one-to-one) spectrum
sensing innon-distributed CRNs and the benefits of frequency
reuse fordistributed CRNs made us to seek a balanced solution
that uses the benefits of both schemes by clustering the SUs.
SUs within one cluster can leverage the one-to-one spectrum
sensing while SUs in different clusters can benefit from the
frequency reuse. Clearly, the underlying clustering method
will be very important in the efficiency of our scheme. We
introduced a novel metric for clustering SU nodes that is
based on the similarities in the previous channels sensing
results of SUs and the belief that each SU has about the
status of each channel. Using this metric in conjunction
with a low-complexity clustering algorithm based on highly
connected subgraphs enables a base station to efficiently form
clusters without the need to know the location of the SUs. We
have shown through extensive simulations that the proposed
algorithm can considerably increase channel sensing success
rate for secondary users at a reasonable computational cost.
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