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Abstract—Existing compressive sensing techniques mostly con-
sider the sparsity of signals in one dimension. However, a very
important case that has rarely been studied is when the signal of
interest is time varying and signal coefficients have correlation
in time. OQur proposed algorithm in this paper is a structure-
aware version of the compressive sensing reconstruction via
belief propagation proposed by Baron et al. that exploits the
time correlation between the signal components and provides the
belief propagation algorithm with more accurate initial priors.
Numerical simulations show that the belief propagation-based
compressive sensing algorithm is able to utilize the side infor-
mation about signal’s time correlation and results in enhanced
reconstruction performances.

Index Terms—Compressive sensing, belief propagation recon-
struction, Markov model parameter estimation, time correlation

I. INTRODUCTION

In many signal processing applications, such as image
processing and wideband signal processing, an intelligent
inspection of signal components reveals that these components
are sparse or can be sparsely expressed in a proper basis,
e.g. wavelet domain. This observation motivates us to exploit
the sparsity of such compressible signals to save sampling,
communication, processing, and memory resources. These
efforts have opened a new area of research known as compres-
sive (compressed) sensing (CS) [1-3]. The underdetermined
problem of reconstructing a sparse signal with length n, from
its compressed sensed measurement vector with length m,
where m < n, is possible by using existing CS algorithms [4—
10].

In addition to sparsity, many of the real-world signals have
signal components which vary slowly in time. An interesting
example is sensor networks in which the signal of interest
represents data from temperature sensors that are collected
during a time interval 7" with unit time steps. Such readings
have both spatial correlation due to closeness of sensors
and time correlation due to the smooth variations in the
temperature. Such a time correlation can further help us to
reconstruct the signal at each time step using the estimated
signal from the previous time step.

In recent years, a considerable amount of research has
been conducted to take advantage of the prior knowledge
in the reconstruction algorithms [11-20]. The reconstruction

algorithms are mostly the modifications of ¢; reconstruction,
except [11, 18, 20] which modify Orthogonal Matching Pur-
suit [7]. In a recent study [17], CS for the time-correlated sig-
nals is considered. However, the proposed scheme requires the
collection of all measurements over interval 7' to reconstruct
the coefficients of signals in 7'. In [12, 16] a weighting strategy
is applied to include the prior information into the support
of the sparse signal. In other words, the extra information
is modulated in terms of different weights for the different
parts of the signal support. In [19, 20] the reconstruction of
jointly sparse signals in both spatial and temporal domains is
considered, and the correlation in spatial domain is employed.
In [19], it is assumed that the supports of all correlated signals
share an equal common part plus a unique sparse innovation
part. In [20], the support is fixed and there is spatial and
temporal correlation between signals of the different sources.
In this paper, we assume a different model for the signal
than [19, 20].

In [13-15], the authors have developed a novel algorithm
that calculates the least-square residuals of the signal supports
in two consecutive time steps instead of directly estimating
the signal support. In [15] a Kalman filter-based algorithm is
introduced to dynamically estimate the residuals.

The contribution of this paper is two-fold. First, in contrast
to the other previous work that are based on linear program-
ming or greedy algorithms, in our proposed algorithm the
reconstruction is based on Bayesian inference. Second, the
model that is considered in this work can be easily adapted to
many real-world applications.

The remainder of the paper is organized as follows. In
Section II, we introduce our time-correlated signal model and
we describe the proposed reconstruction algorithm based on
the proposed model. A discussion on the model parameters
mismatch and the model parameters estimation is provided in
Section II-C. Section III reports the simulation results. Finally,
Section IV concludes the paper.

II. TIME-CORRELATED DATA RECONSTRUCTION

In this section, we first introduce our time correlation model
of signal z,. Next, we briefly review the CSBP algorithm [10].
Then, we elaborate our approach on incorporating the time
correlation in CSBP algorithm.
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A. Time-varying signal model

As mentioned in Section I, sensor readings in sensor
networks represent correlation in both space and time. For
example, using the data provided in [21], we depict Fig. 1,
which shows the correlation of temperature readings of many
thermal sensors in space and time. In Fig. 1(a), the readings
of 54 sensors at ¢ = 1 shows a sparse behavior in wavelet
domain (correlation in space). On the other hand, the generated
signal from each sensor in time is sparse in wavelet domain
(Fig. 1(b)) due to time correlation among the sensor readings.
We define z, = [x1,4,%2.4,-..,%n,] and y, = ¢y as the
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(b) Wavelet coefficients of sensor readings in time (Sensor ID= 1)

Fig. 1. Real temperature sensor readings from UC-Berkeley Intel
lab. The readings of 54 temperature sensors are considered for 256
consecutive time steps (i.e., every 30 secs). The correlation of the
sensor readings in both spatial domain and the time domain can be
seen.

signal and CS measurement vectors in time ¢, respectively.
We have z;, is the value of ith signal coefficient at time t
and ¢; is the CS projection matrix at time ¢. Let £, denote the
estimate of z, employing a CS recovery scheme. Our goal is to
find i, exploiting both Z, , and y,. The information Z, , is
used as a priori information in a proper CS decoder to enable
the recovery of z, with fewer number of measurements as it
is shown in Fig 2. Only a few of the existing CS algorithms
are capable of taking advantage of a priori information about
the signal. Among them, we are choosing the state-of-the-art
CSBP [9, 10] to implement our proposed ideas.
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Fig. 2. Reconstructed signal at the previous step is fed as a priori
knowledge to the decoder.

Let X, = [X14 Xoy4,..., X, be a random vector and
consider z, as an outcome of X;. We know X, and X,
are not independent. Hence, in order to build a mathematical
model, we can exploit the correlation between their coef-
ficients (i.e. X;;—1 and X;; for ¢ =1,...,n) in the time
domain. We assume z, has only k distinguishable coefficients
from the noise level, where k& < n (k-sparse signal). % is
defined as the sparsity rate and the value of k£ can be derived
using the history of the signal.

We model variations of each coefficient’s value in time by
a Markov model (MM) with the state transition matrix A =

Qss Qs

aps  ay
each element of vector X can be in one of the two states large
(£) and small (S) that represent whether or not its magnitude

is distinguishable from the noise level.

as shown in Fig. 3. According to this model,

ag ag a
als
Fig. 3. Markov model for transition from X ;—1 to X ¢.

Initially (at ¢ = 0) and similar to [10], the signal coefficients
are generated according to the following mixture Gaussian
distribution

f(Xio) = (BIN(O,01%) + (1 = DINO,00%), (1)

where o1 > o0 and f(.) is the probability density function
(pdf). This assumption implies that a fraction % of the coef-
ficients of the vector X are distributed normally according
to N(0,012) and the remaining coefficients are distributed
according to N (07002). Given (1), we define a threshold as
th = 30¢ (almost all of the small coefficients lie inside this
range), which means that if #;; > th then &;, is in the state
L, otherwise it is in the state S.

We assume an element in any state at time ¢ — 1 is more
likely to take its new value in the same state at time step
t. This is important knowledge about the variations of the
signal in time, which implies that the signal is slowly varying.
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We model this assumption such that every element in state S
takes a Gaussian distributed value with mean zero and small
variance 08 at each time step, while the coefficients in state
L take a Gaussian distributed value with mean ;. ; and
variance o3.

In order to maintain a fixed sparsity rate during all of the
time steps, ag = ﬁals should hold. In other words, at each
time step on average, the total number of coefficients transiting
from S to £ is equal to the number of coefficients transiting
from £ to S. Otherwise, the signal sparsity changes in time.
In the rest of this paper, we assume that signal sparsity is
preserved.

We ignore the effect of noisy measurements on the validity
of the model for now. Later in Section II-C2, the effect of
noisy measurements with standard deviation o, is consid-
ered. In case of noisy measurements, y = ¢x + v where
v = [v1,...,v,] is an outcome of random vector N and

Vi ~ N(0,0’g)

B. CSBP: Compressive sensing reconstruction using belief
propagation [9, 10]

The key concept in belief propagation (BP) algorithms is
the exchange of beliefs back-and-forth between factor nodes
and variable nodes of a factor graph. A factor graph is a
bipartite graph in which any vertex from one side of the graph
is only connected to the vertices on the other side of the
graph [22]. The variable nodes of a factor graph represent the
coefficients of z,, and the factor nodes represent randomly
generated CS measurements, Y, Moreover, the connecting
edges represent which coefficients of the signal vector gz,
contribute in generating different measurements. The problem
is finding the best estimate of each variable node’s value
using the observations of the factor nodes employing the BP
algorithm. CSBP [9] considers the conditional pdf of each
element of signal vector z as a belief [9]. and is especially very
interesting since we can employ the prior knowledge of the
signal model in terms of a pdf in the reconstruction algorithm.

C. TC-CSBP: Time-correlated CS algorithm based on belief
propagation

If we assume the coefficients of vector z, do not show any
correlation in time, the only knowledge about the signal is
its sparsity in space. Thus, the prior belief about the value
of each variable node at the decoder is in the form of (1).
Now we consider the time-correlation model of Section II-A is
added as extra information about the signal to the BP decoding.
According to the signal model introduced in Section II-A, we
have

[ (XitlS (Zi-1) = L) (2)
= ayN (Zit-1,00°) + aisN(0,00%),
[ (XitlS(Zit-1) = S) (2b)

= asN(0,00%) + agN(0,01?),

for i € {1,2,---,n} and S(.) represents the state of the
signal that can be either large (£) or small (S). The proposed

TC-CSBP algorithm is different from the original CSBP
algorithm [9, 10] in the following key points. First, unlike the
conventional CSBP, every variable node receives a unique a
priori belief according to its previous value (£;;—1). Adding
this information to the model, the variability of the random
vector X, decreases (the first term in RHS of (2a) has variance
O'g instead of J%). Second, in TC-CSBP the time correlation
modeling precision is in tradeoff with the number of required
measurements. In other words, the more accurate our time
correlation model is, the fewer number of measurements is
required to achieve a specific reconstruction quality. However,
CSBP algorithm’s performance only depends on the number
of measurements.

The performance of TC-CSBP algorithm highly depends on
the model parameters. Therefore, it is necessary to update the
model parameters in time and to analyze the effects of model
mismatch.

1) Model mismatch analysis: Although considering a time
correlation model for z, can help the decoder to reconstruct
the signal more accurately and with fewer number of mea-
surements, it could also be a source of further errors if the
model is not accurate enough. Hence, we need to analyze the
robustness of the proposed algorithm to model mismatch and
parameter variations. We model these anomalies with random
matrix A; that adds up to the state transition probabilities at
time step t. Therefore, we face a non-ideal state transition

matrix,
_ _ ass + A; s — AZ
AA_A+At_(als—Af an+ 4] )’ )
+AL =AY . .
where A; = H ¢ ] is the anomaly matrix at time
—A]  +A]

t, and A’ and A! are deviations in transition probabilities
of states S and L, respectively. We consider a time-invariant
anomaly matrix (i.e., A} = A; and AL = A,); however,
extension to the time variant case is straightforward. By
substituting A with Aa in (2), we obtain

J(XinlS (&i6-1)
(

= (au + AN

= [,)
Tit—1, 002) + (ais — ANY(0, 002),
=S

4
f Xi,t|S(i’¢7t_1) ) ( )

= (ass + As)N(0, 0-02) + (as — AN(O, 0_12).
We also define random variable Z, = [Z14, Z24,- .., Zn

which represents the signal without the effects of anomalies
and random variable Ea, = [Ea, ,, Ea,,,---,Ea, ] which
represents the difference between the models with and without
the effects of anomalies. Yet, Z;; follows the distribution
in (2).

The pdf of error can be found using f(Ea;) = f(X;: —
Zit) = f(—=Xit) ® f(Zit) where @ represents convolution
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operation,

f(Ea, IS (Zi-1) = L)
(ai + afs + Ai(au — ai5))N(0,200%)
+ (auars — Ajan)N (#i,0-1,200°)
+ (anais + Ajars )N (=2 -1, 2002),
f (EAM|S (Zip—1) = 3)
= (2assa51 + As(as; — ass))
+ (a2, + Asass)N(0,200°)
+ (a% + Asax)N(0,2012).

(&)

N(O, 20’02 + 0'12)

Therefore, the mean, E{Ea; ;} of the error imposed by model
mismatch is as follows,

E{EAtJ'} = ( ap +als + Az(a” — azs)) x 0

anars — Ajay) X &ie—1

(air
(
(allale + Ajas) X (=Zi—1))
(
(

6
1- )((2assasl + A (asl ( )
ais + A ass) x 0 + (asl + Asasl) X 0)

k. .
=——AiZit 1
n

+
+
+ _ass)) X O
+

As it can be seen from (6) the average error due to anomalies
is directly proportional to the sparsity rate and A;. We define a
parameter &, which we call model variation to mismatch ratio,
as & = m for j € {l, s}. We assume, this parameter
is equal for all rows of a transition matrix (i.e. different states);
therefore, expressing the model anomalies using £ = & = &;.

It is worth noting that this algorithm is robust to the error
propagation. If any coefficient is initialized erroneously, after
a few iterations with high probability it converges to its true
value. More details on this issue are discussed in Section III.

2) Online model parameters estimation: The Markov
model that is used in previous sections may not be priori
known. In this case it is required to employ a learning process
along with the signal reconstruction. In such cases, a training
data set is required to capture the model. Even after training
the algorithm, model parameters mismatch happens in the
case of noisy measurements. Measurement noise prevents
exact model parameters prediction using the decoded coef-
ficients. Moreover, for non-stationary signals, model param-
eters gradually change in time. Therefore, in order to avoid
anomalies described in Section II-C1, the model parameters
should be periodically estimated using noisy measurements.
The offline methods are not of our interest here because
they require all decoded signal values in order to predict the
model parameters. Consequently, we apply an online model
parameter estimator such as the one introduced in [23], in
our simulations. A sequential expectation maximization (EM)
algorithm is adapted to estimate the parameters of Markov
model (i.e. A = [A,0p,01]) sequentially. These sequential
algorithms are derived based on maximizing the Kullback-
Leibler (KL) information measure, J(.). Given the true model
is \? the KL measure between the true model and any model,
A, is defined as J(\) = Eyo{log f(y:|\)}, where Fyo{.} is

expectation with respect to the true model. The EM algorithm
can be summarized as follows,

At = arg mXaX Ey, A, {IOg f(yt|>\)}: @)

where Ay = [A1,..., A\t]. Using (7) the sequential algorithm
which is presented in [23, Equations 3.24, 3.30 and 3.33-3.35]
can be obtained. This process is fully described in [23].

We update the model parameters only at the end of CSBP
iterations at every time step. According to this algorithm,
the parameters of Markov model are estimated based on the
reconstructed signal coefficient at the previous time steps.
Therefore, the algorithm needs to store the previous values of
signal coefficients to use them in model parameter estimation.
The online parameter estimator architecture can be seen in
Fig. 4. In Fig. 4, the results of signal reconstruction is used
in estimating the model parameters A, o; and o for the next
time step.

=3 TC-CSBP decoder

v

A, o1, 00 parameter
estimation
gt it
3 TC-CSBP decoder >
~
S
Q

Fig. 4. Block diagram of the learning phase for model parameter
estimation.

III. SIMULATION RESULTS

In this section, we evaluate our proposed TC-CSBP method
through simulations. The model of Section II-A is fed to
the proposed TC-CSBP algorithm with and without model
mismatch, and then the results are compared with a model-
ignorant CSBP algorithm. We also provide the results for
comparing the performance of Modified-CS reconstruction
algorithm [14] with TC-CSBP algorithm. The numerical sim-
ulation parameters are reported in Table I. The simulations of
CSBP [24] and modified-CS [14] algorithms are performed
using the MATLAB code that the developers provided online.
The CSBP algorithm requires a sparse measurement matrix
with fixed number of non-zero coefficients at each row and
column of ¢;. Therefore, we assume a randomly generated
measurement matrix with 20 ones at each row. We also assume
the model is known at time step ¢ = 1 (i.e. the model learning
process is finished).

Fig. 5 depicts the ¢5-reconstruction error (LRE), which is
defined as \/Z,?Zl (x4t — ®i4)?, as a function of the number
of collected measurements at each time step for CSBP and
TC-CSBP with different £ parameters. It can be seen that
TC-CSBP outperforms the conventional CSBP algorithm. For
example, for & = 0 (no model mismatch) and LRE= 30
TC-CSBP requires 400 measurements while CSBP requires
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TABLE 1
SIMULATION PARAMETERS

| Parameter name | Value
n: Number of signal samples at each time step 1000
k: Number of coefficients of x; in state £ 100
o1: Standard deviation of values in state £ 10
oo Standard deviation of values in state S 1
o: Standard deviation of observation noise at 1
decoder

A: Markov Model State transition matrix

0.989 0.011
0.1 0.9

about 590 measurements. This means TC-CSBP results in
32% reduction in the number of required measurements. It
can also be seen that the proposed algorithm is robust to
model mismatch to a good extent. As seen, for & < 0.5 model
parameter variations does not have any destructive effect on
the algorithm’s performance. On the other hand, it reveals that
the proposed algorithm is misled by the model mismatch for
relatively large variations in model parameters (i.e., £ > 0.5).
Fig. 6 illustrates the LRE versus the number of measurement

920
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Fig. 5. Reconstruction LRE versus the number of measurements
for TC-CSBP and CSBP algorithms (effect of model mismatch
illustration).

with different signal time correlation parameters. For a highly
variable signal, a considerable number of coefficients change
their state (i.e., from £ to S and vice versa) at each time
step. As we can see from Fig. 6, by increasing the signal
variability (i.e. decreasing a;; and as), the performance of TC-
CSBP algorithm degrades. However, even for a highly variable
signal that half of its coefficients at state £ change their state at
each time step, TC-CSBP is performs better than conventional
CSBP.

In Fig. 5 and Fig. 6, the LRE performances of TC-CSBP
and CSBP algorithms are measured at the time step ¢ = 10.

For further comparisons, we have considered a scenario
in which the support is only allowed to change at certain
time steps. We observe the algorithm’s performance over a
20 time step period and we assume a support change at time
step t = 10. This change in support consists of adding new
coefficients to and removing some existing coefficients from
the support, totally 10% of support set changes in ¢t = 10 .
In this setup, the signal coefficients in the state S are equal
to zero and we assume noisy measurements. Using these

120 T T
= ==CSBP
—w—TC-CSBP (ass = 0.989 and a;; = 0.9)
100} | —s—TC-CSBP (ass = 0.978 and a;; = 0.8)
' | ——TC-CSBP (ass = 0.945 and a;; = 0.5)

0 I I I L i A Y
100 200 300 400 500 600 700 800
Number of measurments

-
900 1000

Fig. 6. Reconstruction LRE versus the number of measurements for
TC-CSBP and CSBP algorithms at t=10, for different time correlation
parameters.

assumptions, we can compare our algorithm with other studies
in the literature [13-15]. Fig. 7 shows the reconstruction
performances of TC-CSBP and Modified-CS [14] in time with
two different values for the number of measurements. At¢ = 0,
the reconstruction is performed without using the previously
estimated model. The performances of the mentioned algo-
rithms are compared when m = 75 and m = 100. As we can
see, when the number of measurements is small (m = 75), TC-
CSBP shows a considerable performance improvement, and
when an abundance of measurements are available (1 = 100),
Modified-CS (which is based on ¢;-minimization) performs
slightly better than TC-CSBP. This is explained by the fact that
¢ reconstruction techniques perform better than CSBP when
provided with too many measurements, which is not the case
in many CS applications. Modified-CS is the latest version in
the series of reconstruction algorithms (e.g. KF-CS [15] and
LS-CS [13]) with partially known support.

The robustness of TC-CSBP to error propagation can also be
seen from Fig. 7. At time step ¢ = 10 the support of the signal
changes. Consequently, a priori signal values from the previous
time step are not valid for the changes in support. As we can
see, these types of errors are compensated in a few time steps

and do not propagate into the whole algorithm. The learning
phase of the model parameters using the online estimator

in Section II-C2 is shown in Fig. 8. We have depicted the
absolute error in the estimated transition probabilities versus
the number of time steps. It can be inferred from Fig. 8 that
using the online estimator in Section II-C2 can compensate the
effect of model parameter mismatch after a few time steps.

An interesting trade-off exists between the computational re-
quirements for model parameter estimation and the number of
required CS measurements for reaching a given performance.
Different designs for this problem can be considered by a
system engineer according to the limitations on computation or
communication resources. For example, in a multi-hop sensor
network, transmitting a symbol over the network is energy-
wise more costly than extra computations in one node. On
the other hand, implementing a complex decoding algorithm
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Change in the support
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Time
Fig. 7. Reconstruction LRE in time for the CSBP and Modified-CS
algorithms. The signal support only changes at ¢ = 10 and it is fixed
in all other time slots. The results for two different measurement
values (i.e. m = 75 and m = 100) are given. The simulation
parameters that are different than those of Table I are n = 250,
k = 25.

inside a sensor node requires employing a more expensive and
more energy consuming CPU.

0.12 : : :
——error of a;;
0.1 ===error of ass 4
5 0.08
bl
S
CH
3
3 006
=}
1723
=
< 0.04
0.02
0
2 4 6 8 0 12 14 16 18 20
Time steps
Fig. 8. Transition probabilities error versus number of times that

TC-CSBP algorithm runs (£ = 1).

IV. CONCLUSION

In this paper, we have proposed TC-CSBP, which is a com-
pressive sensing reconstruction algorithm for sparse signals
that are also time-correlated. TC-CSBP builds upon previous
work on compressive sensing via belief propagation (CSBP)
by Baron et al. We considered CSBP as our underlying
reconstruction scheme due to its flexibility to consider signal
model as a priori knowledge. Other CS reconstruction schemes
mostly do not have this flexibility. In TC-CSBP, we consider
the time-correlation model of signal as a priori knowledge
and our results show a considerable improvement over con-
ventional CSBP and other related work. Moreover, our results
show that TC-CSBP is robust to the error in time-correlation
model parameters to a great extent and it can maintain its
supremacy in the presence of model mismatch. Further, an
integration of online model estimation into TC-CSBP was
studied for more accurate model estimation.
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