

#### Source Localization and Tracking for Dynamic Radio Cartography using Directional Antennas

Mohsen Joneidi, Hassan Yazdani, Azadeh Vosoughi, and Nazanin Rahnavard

A joint work from Communications and Wireless Networks (CWN) Lab and Signals and Communications Lab

> Electrical and Computer Engineering Department University of Central Florida <u>http://cwnlab.eecs.ucf.edu/</u>

IEEE SECON Workshop on Edge Computing for Cyber Physical Systems



This material is based upon work supported by the National Science Foundation under Grant No. CCF-1718195, CCF-1341966, and ECCS-1443942.



# **Overview**



# Outline

- Source Localization and Radio Cartography
- Impact of Directional Antennas on Spectrum Sensing
- Mathematical Formulation and Optimization
- Distributed Radio Cartography on Network's Edge
- Simulation Results for Radio Cartography

# **Problem Statement**

- The area is divided into P grid points (potential PU locations)
- Only few locations are active
- Each sensor is equipped with a Uniform Linear Antenna (ULA) with M elements



The goal is to optimize antenna's patterns such that:

- Previously detected sources are tracked accurately
- The whole area is covered to discover any upcoming sources

•

#### **Received Signal after Beamforming**

• How is received signal related to Beamforming vectors?

signals from PUs:

$$\boldsymbol{s} = [s_1 \ \dots \ s_P]^T$$

Beamforming vectors:

$$\boldsymbol{w}_n = [w_{n,1} \ldots w_{n,M}]^T$$

Receiver noise:

$$\boldsymbol{z}_n = [\mathbf{z}_{n1} \dots \mathbf{z}_{nM}]$$

Received signal:

$$r_n = \boldsymbol{w}_n^H \boldsymbol{A}_n \boldsymbol{s} + \boldsymbol{w}_n^H \boldsymbol{z}_n$$



# **Sensing Received Signal Strength of Sources**



$$y_n(t) = r_n^*(t)r_n(t) =$$

$$= \sum_{p=1}^{P} \underbrace{w_n^H(t)A_nC_pA_n^Hw_n(t)}_{=\gamma_{np}(t)} x_p(t)$$

$$+ \underbrace{w_n^H(t)z_n(t)z_n^H(t)w_n(t)}_{=v_n(t)} = \gamma_n^T(t)x(t) + v_n(t)$$

 $\mathbf{x}(t) = [x_1(t) \ x_2(t) \ \dots \ x_P(t)]^T$ is the propagation power vector

 $C_p$  is a  $P \times P$  matrix

$$\mathbf{y}(t) = \mathbf{\Gamma} \mathbf{x}(t) + \mathbf{m}_{v} + \boldsymbol{\epsilon}(t)$$

 $m_{\nu}$  is a non-negative vector that indicates Expectation of RSS.

# **Beamforming Over a Dynamic Network**

- A group of B time slots is considered as a time block
- In each time <u>slot</u> sensors scan the network with their specific beam patterns.
- In each time <u>block</u> one pattern is dedicated for tracking of previously detected sources.
- The rest of beam patterns are allocated for discovering any upcoming sources.



 $w_1(6)$  is uncorrelated with the rest of beams



# **Problem Formulation**



#### The first sub-problem: Localization

$$\hat{\boldsymbol{x}}(t) = \underset{\boldsymbol{x}}{\operatorname{argmin}} \|\boldsymbol{y}^{B}(t) - \boldsymbol{\Gamma}^{B}(t)\hat{\boldsymbol{x}} - \boldsymbol{m}_{v}^{B}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1}$$

- It is a well-known problem in statistics.
- There are several solvers including LASSO and Basis Pursuit.
- The output of this problem reveals the location and power of active PUs.





# The second sub-problem: beamforming $\hat{W}(t+1) = \operatorname{argmin} \| y^{B}(t) - \Gamma^{B}(t+1)\hat{x}(t) - m_{y}^{B} \|_{2}^{2},$ s.t. $\Gamma^{B}(t+1) = h(W(t))$ . A known estimated $\widehat{\boldsymbol{x}}$ A general unknown $\boldsymbol{x}$ (discovering step) (tracking step) $r_n(t) = w_n^H A_n \hat{x} + w_n^H z_n$ $\boldsymbol{\Gamma} = \operatorname{argmin} \mathbb{E}_{\boldsymbol{x}} \{ \| \boldsymbol{y}(t) - \boldsymbol{m}_{\boldsymbol{v}}^{B} - \boldsymbol{\Gamma} \boldsymbol{x} \|_{2}^{2} \}$ It is desired that $W_n$ acts as a matched filter (matched to $\widehat{\boldsymbol{x}}$ ) $\Gamma = \underset{\Gamma}{\operatorname{argmin trace}} \left( \sum \gamma_n \gamma_n^T \right)^{-1}$ $w_n = A_n \hat{x}$

Joshi, Siddharth, and Stephen Boyd. "Sensor selection via convex optimization." *IEEE transactions on Signal Processing* 57.2 (2008): 451-462.

# Algorithm

Algorithm Joint localization and beamforming (centralized)

Input: Location of SUs and RSS.

**Output**: x(t) (Location and powers of PUs for each t).

- 1: Random initialization of  $w_n(t) \forall n$ .
- 2: Construct  $\Gamma$

for a new time slot t

| 3:<br>4: | Collect vector $y^B$ from recent <i>B</i> time slots<br>Construct matrix $\Gamma^B$ for recent <i>B</i> time slots |
|----------|--------------------------------------------------------------------------------------------------------------------|
| 5:       | $\hat{x} \leftarrow$ Localization using Sparse Recovery                                                            |
|          | $\mathbf{if} \ t \ mod \ B = 0$                                                                                    |
| 6:       | $\hat{w}_n(t+1) \leftarrow Update for Tracking$                                                                    |
|          | else                                                                                                               |
| 7:       | $\hat{w}_n(t+1) \leftarrow \text{Update for Discovering}$                                                          |
| and      | end                                                                                                                |



end

# **Distributed Localization and Beamforming**



$$\hat{\boldsymbol{x}}^{(n)}(t) = \underset{\boldsymbol{x}}{\operatorname{argmin}} \|\boldsymbol{y}^{(n)}(t) - \boldsymbol{\Gamma}^{(n)}\boldsymbol{x} - \boldsymbol{m}_{\boldsymbol{v}}\|_{2}^{2}$$
$$+ \lambda \|\boldsymbol{x}\|_{1} + \alpha \sum_{i \in \mathcal{N}_{n}} \|\hat{\boldsymbol{x}}^{(i)}(t-1) - \boldsymbol{x}\|_{2}^{2}$$
Consensus term

- $y^{(n)}(t)$  is the collection measurements from sensor n and its neighbors.
- Neighborhood can be defined based on distance.
- $\hat{x}^{(n)}(t)$  is the estimated power spectrum at sensor n.
- Each node solves a specific optimization problem.
- Parameter  $\alpha$  regularizes the problem to infuse information from neighbors

# **Experimental Results**

# **Comparison of Estimated Power Map**







Ground truth that synthesized data are generated accordingly.

The estimated map using omni-directional SUs

The estimated map using directional antennas at SUs with randomly chosen initial patterns.

The estimated power map using the proposed algorithm after 20 time slots.

- There exist 10 SUs and 8 PUs.
- Omni-directional sensing recovers only a few true sources.
- Employing directional antennas even with random patterns provides a significant improvement in localization accuracy.
- Optimizing beams of directional antennas increases the localization accuracy.

#### **Numerical Comparison of Dynamic Localization**



- Each 20 time slots the locations of PUs are changed.
- Sequential sensing using omni-directional antennas provides redundant measurements.
- Directional antennas are able to provide uncorrelated measurements (innovative information) after each sensing to improve localization accuracy.

# Impact of ULA Elements (M)

100 Grid Points and 8 Active PUs



- As *M* increases, the localization accuracy improves.
- For a 10x10 grid with 8 PUs & 10 SUs, increasing M beyond 8 provides incremental accuracy improvement.

# **Distributed Localization and Beamforming**

#### **Ground Truth**



- At the first time slot a rough power map is reconstructed.
- Each sensor only has access to its neighbors' measurements.
- As time goes on, the estimation of different sensors converge to each other.
- SU2 is connected to more sensors and its initial power map estimate is more accurate.



### **Impact of Graph Connectivity**



Connectivity graph 1.



Connectivity graph 2.



Range of connectivity is defined based on a threshold on distances of sensors.

 $\alpha$  is assumed 1e-3



As the neighborhood graph gets more connected, the algorithm reaches a more accurate consensus.

#### Impact of the Consensus Term

$$\hat{\boldsymbol{x}}^{(n)}(t) = \underset{\boldsymbol{x}}{\operatorname{argmin}} \|\boldsymbol{y}^{(n)}(t) - \boldsymbol{\Gamma}^{(n)}\boldsymbol{x} - \boldsymbol{m}_{\boldsymbol{v}}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1} + \alpha \sum_{i \in \mathcal{N}_{n}} \|\hat{\boldsymbol{x}}^{(i)}(t-1) - \boldsymbol{x}\|_{2}^{2}$$
  
Consensus Term

*A small* α *implies nodes have less collaboration* 

*A large* α *turns the problem to interpolation based on neighborhood* 

There is an optimal  $\alpha$ 



The impact of parameter  $\alpha$  to reach consensus over time.

#### Conclusion

- To enable source localization and tracking for dynamic radio cartography, we formulated a joint localization and beamforming problem, using directional antennas at SUs.
- We split the problem into two sub-problems: localization and beamforming.
- Beamforming is performed in two steps of tracking and discovering.
- We considered both centralized and distributed localization and beamforming.
- Directional antennas enable us to (i) perform dynamic localization and tracking accurately, and (ii) provide a more accurate reconstruction of radio maps.

# Thank you for your attention

## **Discovering Step**

