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Abstract—Utilization of directional antennas is a promising
solution for efficient spectrum sensing and accurate source local-
ization and tracking. Spectrum sensors equipped with directional
antennas should constantly scan the space in order to track
emitting sources and discover new activities in the area of
interest. In this paper, we propose a new formulation that unifies
received-signal-strength (RSS) and direction of arrival (DoA)
in a compressive sensing (CS) framework. The underlying CS
measurement matrix is a function of beamforming vectors of
sensors and is referred to as the propagation matrix. Comparing
to the omni-directional antenna case, our employed propagation
matrix provides more incoherent projections, an essential factor
in the compressive sensing theory. Based on the new formulation,
we optimize the antenna beams, enhance spectrum sensing
efficiency, track active primary users accurately and monitor
spectrum activities in an area of interest. In many practical
scenarios there is no fusion center to integrate received data
from spectrum sensors. We propose the distributed version of our
algorithm for such cases. Experimental results show a significant
improvement in source localization accuracy, compared with
the scenario when sensors are equipped with omni-directional
antennas. Applicability of the proposed framework for dynamic
radio cartography is shown. Moreover, comparing the estimated
dynamic RF map over time with the ground truth demonstrates
the effectiveness of our proposed method for accurate signal
estimation and recovery.

Index Terms—Spectrum sensing, source localization and track-
ing, directional antennas, radio cartography.

I. INTRODUCTION

The cognitive radio (CR) paradigm is a promising solu-
tion to alleviate today’s spectrum deficiency caused by an
increasing demand for ubiquitous wireless access [1], [2], [3],
[4]. In the static spectrum allocation strategies, the licensed
holders of the spectrum (a.k.a. primary users or PUs) often
under-utilize this valuable resource [1]. The CR paradigm
allows the unlicensed or secondary users (SUs) to coexist
with PUs and to access the spectrum as long as they do not
interfere with PUs. The under-utilized spectrum bands that
can be used by the SUs are called spectrum holes [5]. One
approach to monitoring (sensing) spectrum and identifying
the spectrum holes is through the localization of emission

* Indicates shared first authorship. This material is based upon work
supported by the National Science Foundation under grants CCF-1718195,
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sources (PUs). Given the locations of PUs and the signal
propagation parameters one can estimate spectrum power of an
area of interest. Collaborative source localization techniques
are divided into two main categories, i) centralized techniques,
and ii) distributed techniques. Centralized techniques are based
on the assumption that signals from all SUs are collected at a
fusion center (FC), that is tasked with fusing the received sig-
nals and localizing the sources. On the other hand, distributed
techniques are based on the assumption that there is no FC.
In this case, each SU receives signals from its neighbors and
performs source localization locally [6].

Source localization can generally be performed by estimat-
ing time-difference of arrival (TDoA), received-signal-strength
(RSS), or direction of arrival (DoA). The first approach implies
synchronization of SUs, which is infeasible in many scenarios.
Most of the previous works on spectrum sensing exploit omni-
directional antennas for SUs [7], [8]. Thus, DoA cannot be
used for source localization in these works. The most popular
DoA estimation methods include MUSIC, Capon and ESPRIT
[9]. However, the performance of these methods are limited
in low SNRs or when the sources are placed close to each
other. In [10], [11] the RSS and DoA of a PU is estimated
using energy measurements from a sectorized antenna and the
performance and theoretical bounds of DoA/RSS estimation
are studied. The orientation of a PU with respect to SU’s
location is determined in [12], [13] based on the RSS where
an SU is equipped with a reconfigurable antenna. The signal
received at an antenna array is sparse in the spatial domain
and compressive sensing can be employed for DoA estimation
using less number of radio frequency (RF) chains [14]. In [15]
the problem of DoA estimation using electronically steerable
parasitic array radiator (ESPAR) antenna based on compressive
sensing is exploited for a sensor equipped with a single RF
chain. However, in the present paper directional antennas are
employed and their scanning pattern are updated adaptively.
Moreover, compressive sensing formulation is employed for
improving the accuracy of source parameters estimation.

In the present paper, we assume some sensors (or SUs) are
randomly deployed in the area of interest to sense spectrum
and the goal is to estimate locations of PUs and generating
power spectrum map for the whole area of interest. Each
sensor is equipped with an antenna with uniform linear array
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(ULA). The weighting (beamforming) vector corresponding to
each ULA can be adapted/updated to steer/direct the antenna
beam and thus localize PUs within the area and track them
accurately (if they are mobile). We develop both centralized
and distributed collaborative source localization algorithms, in
which RSS and DoA information are integrated in a unified
formulation. In our formulation, we assume an area of interest
is divided into P grid points. PUs (emitting sources) may
only reside in these grid point (Figure 1). PUs locations and
powers are modeled by a sparse vector, in which a non-zero
element indicates the presence of a PU in the corresponding
grid point. The received signal at each SU is a superposi-
tion of the emitted signals by sources (whose locations and
signal powers are unknown). In the centralized setup, we
establish a compressive sensing problem at the FC, where
the compression operator is modeled in terms of the signal
propagation parameters and the sensing patterns of the SUs
directional antennas (encompassing ULA structure and DoA
information as well as weighting/beamforming vectors). In
the distributed setup, each SU shares its received signal with
its neighbors (determined by the connectivity graphs), and
hence each SU can establish a compressive sensing problem,
based on the collected received signals from its neighbors.
For both centralized and distributed setups, we provide source
localization and tracking algorithms that exploit the inherent
sparsity and adaptive beamforming to accomplish accurate
source localization and tracking within the area. The main
contributions of our paper are summarized as follows:
• RSS and DoA information are integrated in a unified

formulation based on compressive sensing.
• Sensing patterns (or weighting vectors) of directional

antennas at SUs are optimized, in order to quickly and
accurately discover the PUs’ activities and efficiently
track them if they move within the area.

• In the distributed setup, neighboring SUs localize sources
collaboratively and track them via adapting their weight-
ing vectors and steering/directing their beams.

• As a by-product we can estimate the power spectrum map
of the area (so-called radio cartography).

Notation: Throughout this paper, vectors and matrices are
written as bold lowercase and uppercase letters, respectively.
Norm `2 of a vector is denoted by ‖.‖2 and t mod B is equal
to the remainder of the division t/B.

The rest of the paper is organized as follows. Section II
states the problem and explains the employed system model.
Sections III and IV present our proposed centralized and
distributed source localization and tracking algorithms. Section
V elaborates how we can leverage on our source estimation
findings in the previous sections to obtain the power map of
the entire area. Section VI exhibits our experimental results.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Our system model can be viewed as the extension of the
system model in [7], for the case when SUs are equipped with
directional antennas (instead of omni-directional antennas).
Suppose an area of interest is divided into P grid points as

Potential sources (PUs)

Sensors with directional antennas (SUs)

Active PUs

Fig. 1: The grid of P = 100 grid points. The PUs are active in 2
locations out of 100 grid points shown by filled black squares and 3
SUs sense the environment using their directional antennas. The goal
is to localize and track the sources and to estimate a dynamic power
map, leveraging on SUs’ capabilities of adaptive beamforming.

shown in Fig. 1 and PU transmitters are assumed to be located
in a subset of these grid points, unknown to SUs (i.e., the
number and the locations of PU transmitters as well as their
transmission power are unknown to SUs). Moreover, there are
N SUs (or spectrum sensors) with known locations, where
each sensor receives a superposition of the PUs’ signals subject
to a zero mean measurement noise. We suppose antenna of
each SU is a ULA consisting of M elements with adjacent
element spacing of d. Assuming θn,p is the orientation of grid
point p with respect to sensor n, the manifold matrix for sensor
n is given by An = [an,m,p], where

an,m,p =
1

Rηn,p
e−j

2πd(m−1)
λc

sin(θn,p ), (1)

in which λc is the wave-length corresponding to the oper-
ating frequency of each SU. Moreover, Rn,p is the distance
between grid point p and sensor n, and η is the path-loss
exponent [9]. We note that in general, the received signal at
sensor n would be affected by channel fading gains between
PU transmitters and sensor n. These gains can be obtained
by training sequences, which is beyond the scope of this
paper. For simplicity, similar to [7], [8], we only consider
path loss effect in our signal modeling in (1), to indicate that
the received signal will be attenuated inversely proportional to
Rn,p

1. We write the received signal at sensor n as

rn = wH
n An s + wH

n zn, (2)

where wn = [wn,1 . . . wn,M ]
T is the weighting (or beamform-

ing) vector at sensor n, and we assume that ‖wn‖
2
2 = C1, ∀n

where C1 is the antenna gain. In (2) s = [s1 . . . sP]T is the
transmitted signal vector from PUs, and zn = [zn,1 . . . zn,M ]T

is the received noise vector at sensor n corresponding to
its ULA, where zn,m ∼ CN(0, σ2

zn
) are zero-mean complex

Gaussian independent and identically distributed (i.i.d). Fig.
1 illustrates an example of antenna spatial gain (or sensing
pattern) of sensors at a single time slot. However, the sensing

1The propagation model can be extended for fading channels by assuming
an uncertainty on the channel gains.
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pattern can be a different one at the next time slot. The beam
of antennas in a set of consecutive time slots should (i) cover
the whole area in order to discover a new appearing PU and
(ii) scan the location of previously estimated active PUs to
track their changes.

We assume that the signals of PUs’ transmitters are inde-
pendent and let yn(t) = |rn(t)|2 = rn(t)r∗n(t) denote the RSS of
sensor n at time t. We can write yn(t) as the following:

yn(t) =
P∑

p=1
wH
n (t)AnCpA

H
n wn(t)︸                      ︷︷                      ︸

=γpn(t)

xp(t)

+wH
n (t)zn(t)z

H
n (t)wn(t)︸                       ︷︷                       ︸

=vn(t)

= γTn (t)x(t) + vn(t), (3)

where the vector γn(t) = [γ1n(t) γ2n(t) . . . γPn(t)]
T , and

xp(t) = |sp(t)|2 represents the propagation power at the grid
point p and time instant t, x(t) = [x1(t) x2(t) . . . xP(t)]T is
the propagation power vector, wn(t) is the beamforming vector
that sensor n uses at time t, and vn(t) is distributed as an expo-
nential random variable with mean mvn = ‖wn‖

2
2σ

2
zn
= C1σ

2
zn

.
Matrix Cp is a P×P matrix with all entries equal to 0 except
the diagonal entry of index (p, p). Note that γn,p includes the
pathloss effect as well as the beamforming vector wn. We can
write vn(t) in (3) as

vn(t) = εn(t) + mvn, (4)

where εn(t) is a zero-mean random variable with variance m2
vn

.
We assume that sensor n can adjust its antenna sensing pattern
and steer its beam, via optimizing its beamforming vector
wn. Examining (3) we note that vector γn depends on the
optimization variable wn. Moreover, vector x(t) is unknown
and sparse. Assuming the RSS yn(t) for some n values (in
the centralized setup, n ∈ {1, . . . , N}, and for the distributed
setup, n ∈ Nn, where Nn is the set of neighboring sensors
of sensor n) are available, our main goal is to exploit the
steering capability of SUs’ antennas in order to improve the
accuracy and efficiency of spectrum sensing, for the general
scenario when the number and the locations of PU transmitters
are unknown and time varying. This means that we aim at
finding an accurate estimate of the sparse vector x(t) as time
changes, as we allow SU sensors to adjust their antenna
sensing patterns. By allowing SUs to steer their beams and
optimize their beamforming vectors, we enable discovering of
new PU signals and tracking those that have been discovered
previously. Having an accurate estimate of x(t) we can build
the dynamic radio power map of the field, via estimating the
RSS at each grid point and time instant t. We note that as
we solely use RSS for estimating x(t) and the power map, no
synchronization is required among SU sensors.

Considering centralized estimation of x(t), let y(t) =
[y1(t) y2(t) . . . yN (t)]T denote the vector containing the
RSS of all N sensors. Moreover, let Γ denote an N × P
matrix, whose n-th row is γTn . Matrix Γ is referred to as the

measurement matrix in the literature of compressive sensing
and we refer to it as propagation matrix here. The vector of
RSS at the FC can be written as

y(t) = Γ(t)x(t) + mv + ε(t), (5)

where mv = [mv1 mv2 . . . mvN ]
T is the vector of averaged

RSS and vector ε(t) is the zero-mean residual of all sensors at
time instant t . The centralized estimation of the sparse signal
x(t) can be viewed as the solution to the following constrained
optimization problem

< x̂(t), Ŵ (t) > = argmin
x,W

‖y(t) − Γ(t)x − mv ‖
2
2

s.t. Γ(t) = h(W (t)), ‖x‖1 ≤ C0 and ‖wn‖
2
2 = C1 ∀n, (6)

where W = [w1 . . . wN ] is an M × N matrix containing
beamforming vectors and h(·) is a function of beamforming
matrix W which can be derived using (3). Parameter C0 tunes
the impact of `1 regularization and parameter C1 restricts
antenna gain of SUs. Fig. 1 shows a sensor network with 3
SUs and 100 candidate points for PUs where only 3 of them
are active and propagate signals. SUs continuously scan the
space to discover signals of new PUs and track the previously
detected ones.

Previous works have focused on estimation of variable x
subject to a given propagation matrix. The following mini-
mization problem has been proposed for estimating x(t) for
each time independently [7], [16]:

x̂(t) = argmin
x
‖y(t) − Γx − mv ‖

2
2 + λ‖x‖1. (7)

In Problem (7), propagation matrix is a function of distance
of SUs and PUs and it can not be optimized. However,
in the present work we employ directional antennas and
beamforming is needed to track existing PUs and discover
any appearing PUs. Next, we will discuss the centralized and
distributed solutions of our constrained optimization problem.

III. CENTRALIZED SOURCE LOCALIZATION AND
TRACKING

In this section, we address Problem (6). To achieve this, we
need to link between the entries of matrix Γ and dynamic of
network through beamforming matrix W , and the last estimate
of the propagation power vector x(t − 1). Each SU sweeps
a different pattern at each time slot. Assume at time slot t
we jointly estimate the propagation power vector x(t), and
optimize the beamforming vector wn(t). We exploit B recent
measurements from B distinguished sensing patterns. Each B
consecutive time slots make a time block of size B. Let us
break Problem (6) into two alternating subproblems as the
following

x̂(t) = argmin
x
‖yB(t) − ΓB(t)x̂ − mB

v ‖
2
2 + λ‖x‖1, (8a)

Ŵ (t+1) = argmin
W
‖yB(t) − ΓB(t+1)x̂(t) − mB

v ‖
2
2, (8b)

s.t. ΓB(t+1) = h(W (t)).
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The first subproblem estimates x(t) using B recent measure-
ments of N sensors and the second subproblem updates the
next beamforming vector for the next time slot. In (8a),
yB(t) =

[
yT(t − B+1) yT(t − B+2) . . . yT(t)

]T , is a vector
containing NB sensed RSS measurements and ΓB(t) = [ΓT(t−
B+1) ΓT(t−B+2) . . . ΓT(t)

]T is an NB × P matrix. Note that
in each time slot N new beamforming vectors are updated for
N sensors. In other words, N new rows are added to matrix
ΓB and N obsolete rows are removed. Moreover, in ΓB(t+1)
the first (B−1) × N rows are shared with ΓB(t). However, the
last N rows of ΓB(t+1) are subject to optimization. In the rest
of this section we explain how to solve this problem.

Solving Problem (8a) w.r.t. x is a straightforward problem
which is discussed in the context of sparse regression and
compressive sensing. However, Problem (8b) is a challenging
problem and the main contribution of this paper is solving (8b)
efficiently, i.e., updating beamforming vectors efficiently.

A. Recovery of sparse sources

Subproblem (8a) is a classic regression problem. Usually
number of sensors (N) are much smaller than the number
of grid points (P), which results in a compressive sensing
problem. `1 regularization promotes sparsity that plays a key
role for sparse recovery. There have been extensive efforts for
solving this problem efficiently. Some of the state-of-the-art
algorithms are least absolute shrinkage and selection operator
(LASSO) [8] and iterative re-weighted least squares (IRLS)
[15], [17]. There are two essential factors in compressive
sensing theory (i) sparsity of the underlying process and (ii)
incoherent projections from the process [18]. In the next
subsection we study the second factor in order to provide a
set of incoherent projections of x in (8).

B. Successive optimization of beamforming vectors

Problem (8b) can be regarded as updating matrix Γ in order
to project the most information from x into y in each time
slot. There are two phases for updating entries of Γ: phase
i) A part of Γ is optimized for sensing a general unknown x
(discovering), phase ii) A part of Γ is allocated and optimized
for tracking a known previously estimated x (tracking). In the
first phase unseen spectrum activities are discovered. While
in the second phase an estimate for x is available and small
changes are tracked via optimizing beamforming vectors of
sensors.
• Phase 1: Discovery of unknown sources: First we write

the problem in terms of optimization of Γ.

Γ = argmin
Γ
Ex

{
‖y(t) − mB

v − Γx‖
2
2
}
. (9)

In the case of Gaussian and independent noise for each sensor
it is easy to show that this problem is equal to solving the
following problem,

Γ = argmin
Γ

trace
(∑

n

γnγ
T
n

)−1
. (10)

This problem enforces rows of Γ to be linearly independent.
In the case of linearly dependent set of rows of Γ the cost

function in (10) will be infinity. Intuitively, as we measure
less correlated projections of an unknown vector we can
recover it more accurately2. Equation (10) indicates that we
should regularize Problem (8b) accordingly. On the other hand,
Problem (8b) is expressed in terms of the beamforming matrix
W . According to (3), row space of Γ is spanned by wH

n An

for all n. Problem (10) should be cast in terms of these bases.
Let uTn (t) = wn(t)HAn be an auxiliary row vector and matrix
U(t) be a matrix whose N rows are uTn (t) for n = 1, . . . , N .
The beam update rule, inspired by (10), is formulated as

un(t + 1) = argmin
u

det(UBU
T
B)
−1 s.t. ‖u‖22 = 1, (11)

where UB is the concatenation of all scanned beams in the
recent B − 1 time slots and a new row u. In this problem, u
is the last row of UB which is the subject of optimization.
This problem will be repeated N times to find a new scanning
beam for all N sensors. Problem (10) is referred as A-optimal
solution in the literature of optimization [19]. However, (11) is
modified to use D-optimality by minimizing determinant [19].
D-optimality provides attractive properties which is helpful
for efficient optimization. D-optimal optimization is a sub-
modular problem which can be solved optimally in a greedy
manner. In other words, at time slot t when the beams of
N SUs is updated, we can use greedy approach to update
each beam independently and add the new found beam to
UB. In (11), the collection of un vectors in UB constructs
a polygonal in RP in which each vertex corresponds to a
previously scanned beam. The proposed optimization problem
finds a new vertex on the unit sphere such that the volume
of the new polygonal is maximized. This criterion has many
applications in sensor selection, sensor placement, and data
reduction [20], [21], [22]. We refer to the solution of this
problem as the discovery-based beamforming vectors. These
beamforming vectors are uncorrelated to each other and each
one tries to discover a new direction which is not covered by
the span of other beams. Finally, wn(t+1) must be computed
using estimated un(t+1) in (11) as follows.

w̃n(t + 1) = (AnA
T
n )
−1Anun(t+1), (12a)

ŵn(t + 1) =
√

C1 w̃n(t+1)/‖w̃n(t+1)‖2. (12b)

The number of grid points for potential PUs (P) should be
greater than M to have an invertible AnA

T
n . The solution to

(12) provides a set of incoherent vectors as the measurement
matrix in the compressive sensing formulation. Incoherency of
measurement vectors plays a key role in compressive sensing
of a general unknown x [18]. However, the current estimation
of x gives us valuable information about eventful parts of the
area of interest which is discussed next.
• Phase 2: Tracking of sources with a priori knowledge: We

can obtain an initial (rough) estimate of propagation power
vector x using any randomly chosen set of beamforming
vectors. This rough estimate of x is considered as the initial

2We say two vectors are less correlated when their inner vector product
has a smaller absolute value.
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result of source localization and is used for tracking the
discovered sources more efficiently at the next time slot. To
achieve this, it is sufficient to update wn according to the
equations given by

w̃n(t + 1) = An x̂(t), (13a)

ŵn(t + 1) =
√

C1w̃n(t+1)/‖w̃n(t+1)‖2. (13b)

This update rule performs similar to a matched filter
(matched to the received signal) which maximizes the RSS.
In each time block of operation, i.e., B time slots, one beam
is dedicated to be matched with the dynamic of network. The
task of B−1 beams is to discover unseen areas of network to
discover any new activity. Once a new activity is detected by
estimation of x, it will be refined and tracked via the dedicated
beam. Assuming NB ≤ M , then discovery-based beams can
be updated via selection from the null space of beams in the
recent B−1 time slots. Null space of these beams associates
with a space that is not covered yet and the next beam is
restricted to be selected from this space. Fig. 2 illustrates a
time block of sensing operation. Assume we have a rough
estimation of propagation power vector x and at the first time
slot a sensing beam is optimized such that the previously
detected source can be tracked. The second beam (at the
second time slot) is a vector which is orthogonal to w1(1) and
at the third time slot w1(3) is optimized to be orthogonal to
the two-dimensional subspace spanned by w1(1) and w1(2). In
general, we use the recent B beams for estimation in each time.
In any B consecutive time slots there is one beam for tracking
and B−1 orthogonal/uncorrelated beams3. Each of these beams
is orthogonal to the recent tracking beam and orthogonal to
the rest of beams. In the case that NB > M after M time
slots the null space will be empty and w(M+1) can not be

3In the case of NB ≤ M the optimum beams will be orthogonal and
otherwise we can just optimize them to be uncorrelated.

Algorithm 1 Centralized spectrum sensing and beamforming.
Input: Location of SUs and RSS.
Output: x(t) (Location and powers of PUs for each t).
1: Random initialization of wn(t) ∀n.

2: Construct Γ using Eq. (3).

for a new time slot t
3: Collect vector yB from recent B time slots
4: Construct matrix ΓB for recent B time slots

5: x̂ ← Solve Problem (8a)

if t mod B = 0

6: ŵn(t+1) ← Eq. (13).

else

7: Construct matrix UB for recent B time slots.

8: ŵn(t+1) ← Problem (11) and Eq. (12a).

end
end

t=1 t=2 t=6

𝐵 = 6

t=3 t=4 t=5
𝒘1(1)

Discovering

.

𝒘1(2)𝒘1(3)

𝒘1(4)

𝒘1(5)

𝒘1(6)
Tracking

𝐒𝐔𝟏

𝒘1(1) 𝒘1(2)𝒘1(3) 𝒘1(4) 𝒘1(5) 𝒘1(6)
PU

𝒘1(2) is uncorrelated with 𝒘1(1)

𝒘1(3) is uncorrelated with 𝒘1(1) and 𝒘1(2)

..

𝒘1(1) is optimized for tracking

Fig. 2: A time block of sensing operation which contains 6 time
slots. In each time block one beam is dedicated for tracking and the
rest discover network’s area for upcoming PUs. The main problem
introduced in (8) is solved using recent B time slots.

selected from the null space. In this case we can not employ
the solution suggested by null space selection and Problem
(11) must be solved for each time. Alg. 1 summarizes the
steps of the proposed algorithm. First beamforming vectors are
initialized randomly and the corresponding propagation matrix
Γ is constructed. Then, for each time slot measurements are
sensed and the joint x estimation and beamforming problem
is solved.

IV. DISTRIBUTED IMPLEMENTATION

In some practical scenarios there is no FC to aggregate
measurements and to perform the centralized algorithm. Still,
we can leverage on limited communication between neigh-
boring SUs to enable collaborative spectrum sensing in a
distributed fashion, using the beam steering capabilities of the
antennas. Each sensor processes its received signal separately.
As neighboring SUs communicate over inter-sensor links
(governed by the connectivity graphs), each sensor learns and
collects signals of its neighbors. Consequently SUs can reach
a consensus over the result of spectrum sensing and their
estimates of propagation power vector x. Fig. 3 shows a simple
distributed network in which 10 SUs estimate the locations and
the signal powers of 4 active PUs. Sensor n is connected to
a subset of SUs which is determined by set Nn. Distributed

Fig. 3: A network of 10 SUs. They collaboratively estimate the location
and power of PUs. Each SU is linked to only a subset of SUs which
is determined by the connectivity graph.
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Algorithm 2 Distributed spectrum sensing and beamforming.
Input: Location of SUs, Neighborhood of SUs and RSS.
Output: x(n)(t) (estimated x at sensor n and time t)
1: Randomly initiate of wn(t) ∀n.

2: Construct Γ(n) using Eq. (3).

for a new time slot t
for sensor n

3: Collect vector y(n) from Nn in recent B time slots
4: Construct matrix Γ(n) for sensors indicated by Nn

5: x̂(n) ← Solve Problem (14)

if t mod B = 0

6: ŵn(t+1) ← Eq. (13).

else

7: Construct matrix U(n) for Nn in recent B time slots.

8: ŵn(t+1) ← Problem (11) using U(n) and Eq. (12a).

end
end

end

version of Problem (8a) is proposed as the following:

x̂(n)(t) = argmin
x
‖y(n)(t) − Γ(n)x − mv ‖

2
2

+ λ‖x‖1 + α
∑
i∈Nn

‖ x̂(i)(t−1) − x‖22 . (14)

In this problem x̂(n) is the obtained estimation of propagation
power vector at the nth SU. Vector y(n) in the collection of
sensing measurements from Nn sensors for recent B time slots
and Γ(n) is the corresponding propagation matrix. The last
term of optimization applies consensus among connected SUs
for each estimation. Parameter α regularizes the impact of
the consensus term in the main cost function. Alg. 2 shows
the steps of the distributed implementation of our proposed
algorithm.

Beamforming optimization is similar to the centralized
solution. However, each SU only has access to the scanned
beams of itself and its neighbors to construct matrix UB in
problem (11). We define matrix U (n)(t) for each time which
corresponds to the already scanned beams in recent B time
slots via sensor n and its neighbors. Mathematically, the set
of rows of matrix U (n)(t) can be expressed by,

{u j(τ)} where, u j(τ) = wH
j (τ)Aj

∀ j ∈ Nn and τ = t − B + 1, · · · , t − 1.

The goal is to add a new row such that the criterion in Problem
(11) is optimized.

V. RADIO CARTOGRAPHY

An important side product of estimating x(t) in Alg. 2 and
Alg. 1 is generating the RF power map for any arbitrary point
in the network. This is also referred to as radio cartography.
Consider a point g with coordinate (g1, g2) in the network. To
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Fig. 4: Block diagram of the dynamic spectrum sensing scheme which
uses our proposed localization and beamforming algorithm.

estimate the RSS at point (g1, g2), it is sufficient to consider
the estimated sources at their corresponding locations and
apply the underlying propagation model. Propagation pattern
of sources is considered to be omni-directional. The estimated
RSS at location g and time instant t can be interpolated as
follows:

RSS(g) =
P∑

p=1

x̂p(t)

Rηg,p
. (15)

where Rg,p is the distance between location g and the p-th
PU. Fig. 4 shows the block diagram of dynamic spectrum
cartography via our proposed localization and beamforming
algorithm.

VI. EXPERIMENTAL RESULTS

In this section, experiment results for synthetic data in a
cognitive radio network are presented. Simulations are per-
formed using CVX toolbox in Matlab. The area of interest is
100m ×100m. The locations of PUs on this grid are unknown
and SUs are placed randomly on this grid. Fig. 5 shows the
impact of directional antennas on the localization accuracy.
There are 8 active PUs in the network and 10 SUs are sensing
the environment. In this figure there is no noise on the RSS
and our proposed method reaches almost exact reconstruction
after few time slots. Fig. 5a shows the ground truth power map
and location of 10 SUs in the network. The estimated power
map using omni-directional antennas is depicted in Fig. 5b.

Employing Directional antennas by randomly chosen beam-
forming weights provides a significant improvement compared
to omni-directional antennas which is shown in Fig. 5c. Our
proposed method reaches exact reconstruction after 50 time
slots. Fig. 5d shows the reconstructed power map using our
algorithm that is identical to the ground truth.

Fig. 6 exhibits the numerical comparison corresponding to
the simulation of Fig. 5. This graph shows the performance
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(a) (b)

(c) (d)

Fig. 5: Comparison of estimated power map with the ground truth. (a)
Ground truth that synthesized data are generated accordingly. (b) The
estimated map using omni-directional SUs [7]. (c) The estimated map
utilizing directional antennas with randomly chosen initial patterns.
(d) Retrieved spectrum map using the proposed algorithm after 20
time slots.
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Fig. 6: Normalized error of source localization of 8 PUs.

of localization in terms of normalized error of estimation as
follows:

normalized error(t) =
‖x(t) − x̂(t)‖2
‖x(t)‖2

, (16)

in which x̂(t) is the estimated vector that contains location
and power of each PU at time t. As it can be seen, after
20 time slots our algorithm retrieves the true locations for
PUs. The effect of additive noise is studied in Fig. 7 over
time. As it can be seen, the performance of localization when
SNR = 10 dB is close to the noiseless regime. The noise
is added according to (2). A Monte Carlo simulation with
50 different noise realization is performed for three level of
noise. In this figure mean square error (MSE) is evaluated
over time which is equal to average of normalized errors. Fig.
8 indicates the normalized error after 20 time slots of the
algorithm versus different SNRs. In Fig. 9a we investigate
the impact of the number of elements M in each antenna
array on the normalized error of localization. As this figure
suggests, M = 8 is sufficient for accurate localization within
the area. Fig. 9b shows performance of localization in presence
of different number of active PUs in a network with 100 grid
points and 10 sensors each one is equipped with 8 elements.

Fig. 10 considers the situation where there are 8 PUs in
the area and the location of one PU is changing every 20
time slots. Each location change is discovered and tracked.
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Fig. 7: Normalized error of source localization for two SNRs and the
noiseless regime over time.
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Fig. 8: Normalized error of our centralized algorithm versus SNR.
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Fig. 9: (a) Normalized error of source localization in terms of M , (b)
Normalized error versus number of active PUs.

However, the location change occurred at time slot 40 takes a
longer time to be detected and tracked. The performance of our
distributed localization algorithm for detecting and tracking
8 PUs is compared with the case where sensors have omni-
directional antennas. Our algorithm tracks the location changes
and refines the estimated power map over time.

The connectivity of nodes plays a key role in the perfor-
mance of our distributed algorithm. Fig. 11a and Fig. 11b
compare two graphs of connectivity for 10 spectrum sensors
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Fig. 10: Normalized error of source localization in the presence of 8
PUs. Each 20 time slots the location of one PU changes.

(a) Connectivity graph 1. (b) Connectivity graph 2.
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(c) Normalized error for two connectivity graphs.

Fig. 11: Effect of connectivity graphs on the performance of source
localization.

in which nodes are more connected to each other in Fig. 11b.
The normalized error of localization for these two distributed
networks are compared with the centralized solution in Fig.
11c. As the network is more connected, sensors reach consen-
sus faster. However, the centralized solution converges to the
final solution in much less number of time slots.

Fig. 12 shows performance of our proposed distributed
algorithm for localization of PUs versus parameter α which
regularizes the impact of consensus. The location of PUs are
assumed to be constant over time and the distributed algorithm
reaches consensus about location of PUs over time. This plot
is drawn in terms of averaged normalized error of all sensors.
At the first time slot different sensors may have very different
estimation of PUs’ locations. However, after several time slots
the accuracy of their estimations increases and their solutions
converge to each other. Fig. 13 compares the estimated power
map of two distant SUs. The ground truth power map is shown
and the estimated power map using SU1 and SU2 are compared
at time slots 1 and 100. At time slot 100, all sensors have used
information of all other sensors and a consensus has been
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Fig. 12: The impact of parameter α to reach consensus over time.

(a) The ground truth solution.
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(b) Estimated power map by
SU1 at time slot 1.
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(c) Estimated power map by SU2 at
time slot 1.
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(d) Estimated power map by
SU1 at time slot 100.
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(e) Estimated power map by SU2 at
time slot 100.

Fig. 13: The accuracy of solution using the proposed distributed algorithm over time.

reached on the PUs’ locations estimates.

VII. CONCLUSION

The impact of directional antennas on the performance of
source localization and tracking is studied. Omni-directional
antennas provides redundant measurements over time. While,
directional antennas are able to capture a set of incoherent
projections from the underlying spectrum activity pattern. It
improves the accuracy of source localization significantly. As
the number of elements in an ULA increase, the quality of
power spectrum map increases. However, employing 8 or 16
elements in each ULA is sufficient for practical scenarios.
The proposed localization is used in a dynamic spectrum
cartography system. Moreover, the distributed implementation
of our proposed method is presented and evaluated.
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