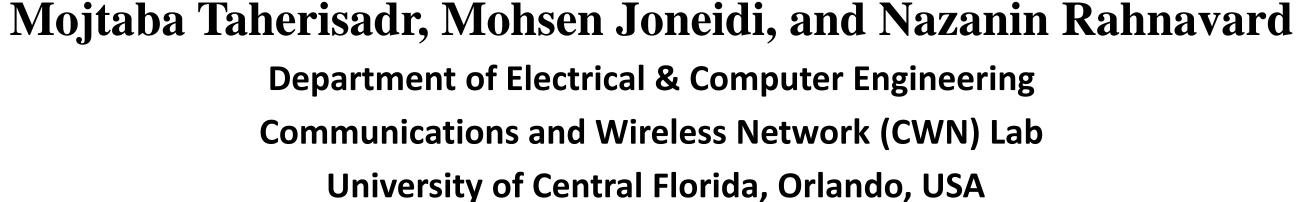
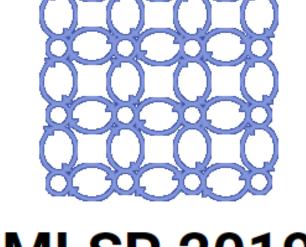


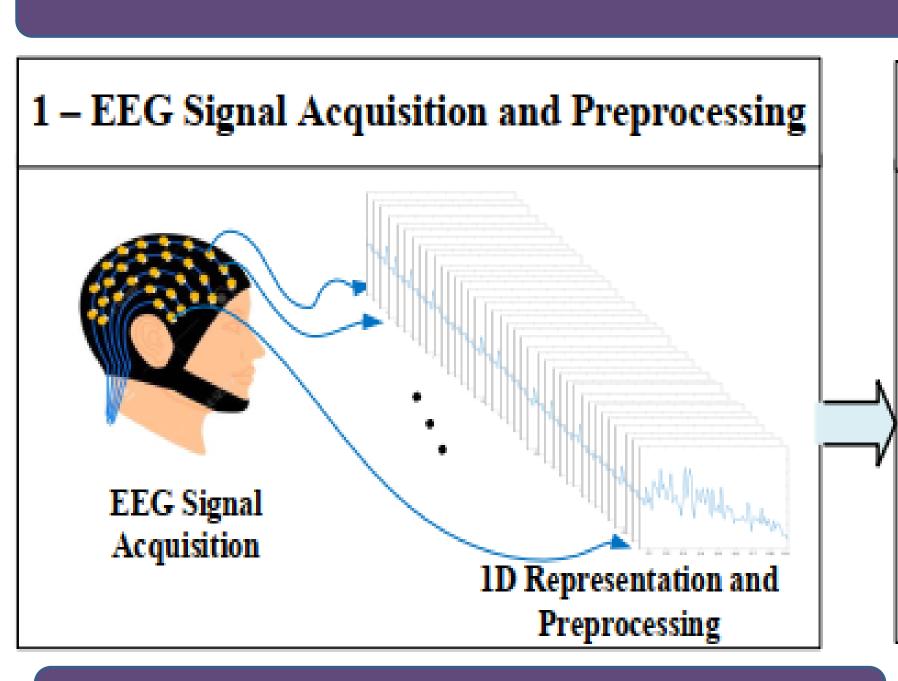
EEG SIGNAL DIMENSIONALITY REDUCTION AND CLASSIFICATION USING UCF TENSOR DECOMPOSITION AND DEEP CONVOLUTIONAL NEURAL NETWORKS

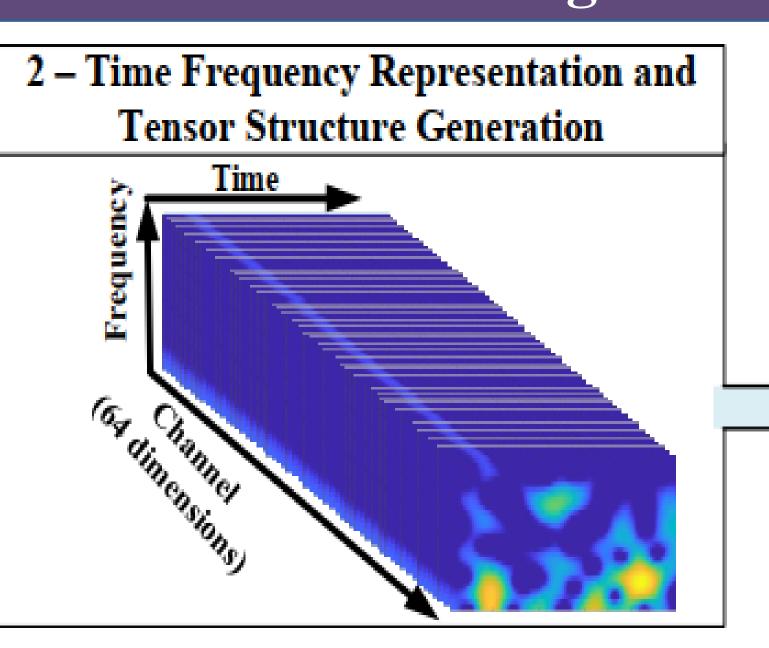


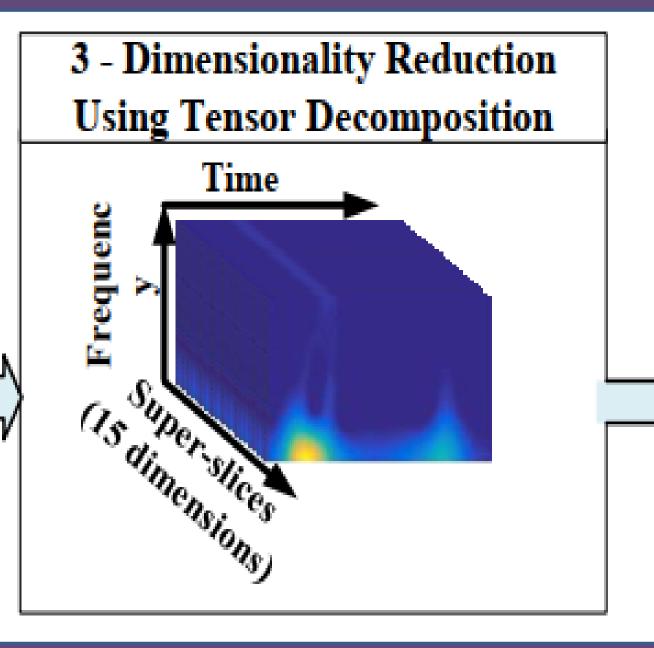


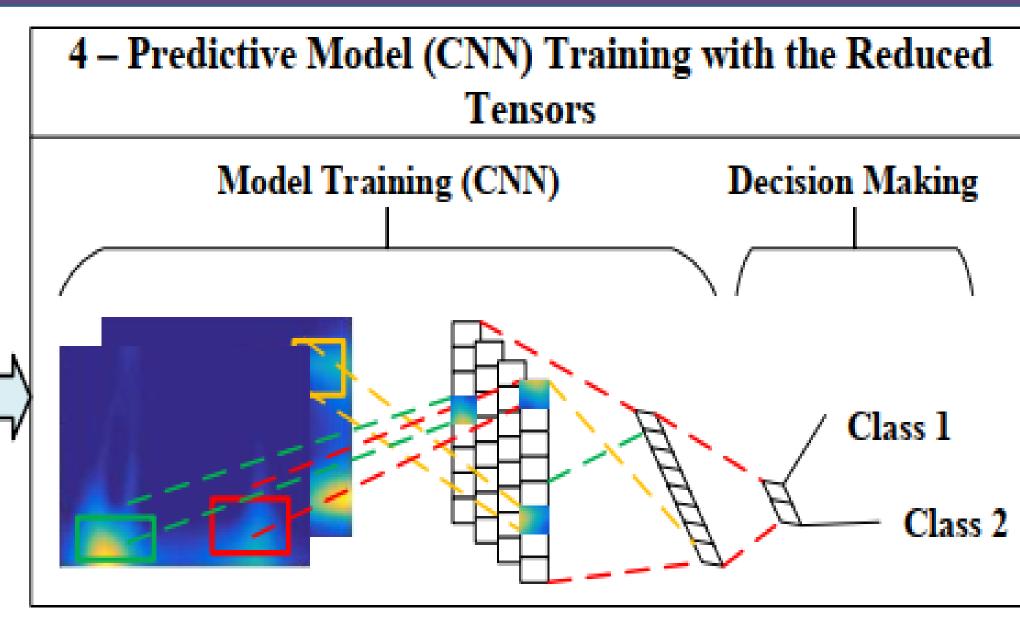
MLSP 2019

Block Diagram of the Proposed Framework









1- Problem Statement

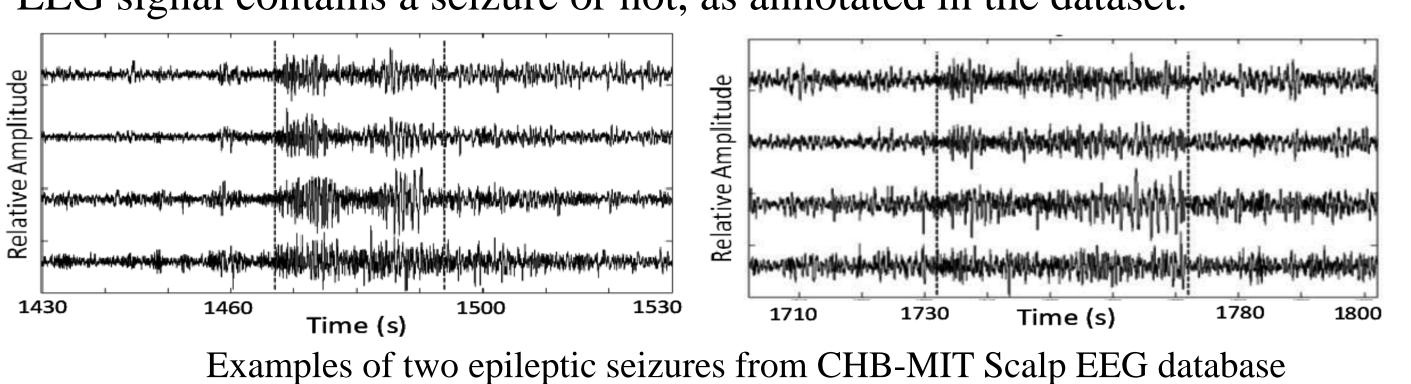
- Problem: EEG signals suffer from high dimensionality. This makes the signal analysis task more difficult, and even impossible for on-line processing and decision making.
- Goal: To design a novel framework for reducing the dimension of the EEG signals, without affecting the classification accurately to detect the epileptic seizure in EEG signals.

2- Contributions

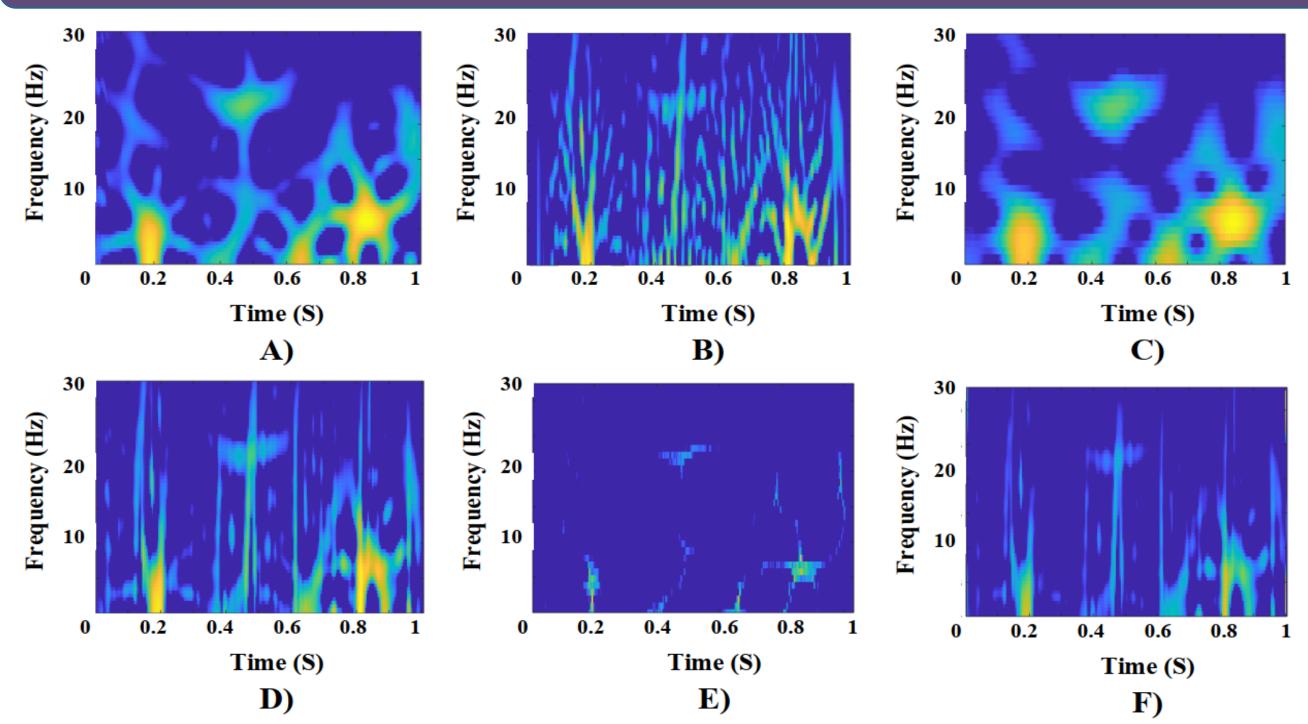
- Proposing a new framework for reducing the dimensionality of EEG data based on the tensor decomposition, and feeding the dimension-reduced data to a convolutional neural network (CNN) to increase the model's efficiency and to decrease the training complexity.
- Handling artifacts, noise, redundancies of EEG signals by tensor decomposition-based dimensionality reduction.
- Providing a comprehensive comparison and evaluation of different time-frequency representation approaches for CNN-based EEG signal analysis.

3- EEG Data-set

We evaluate our method on the CHB-MIT [1] dataset. In this study, for cross-patient detection, the goal is to detect whether a 30 second segment of EEG signal contains a seizure or not, as annotated in the dataset.

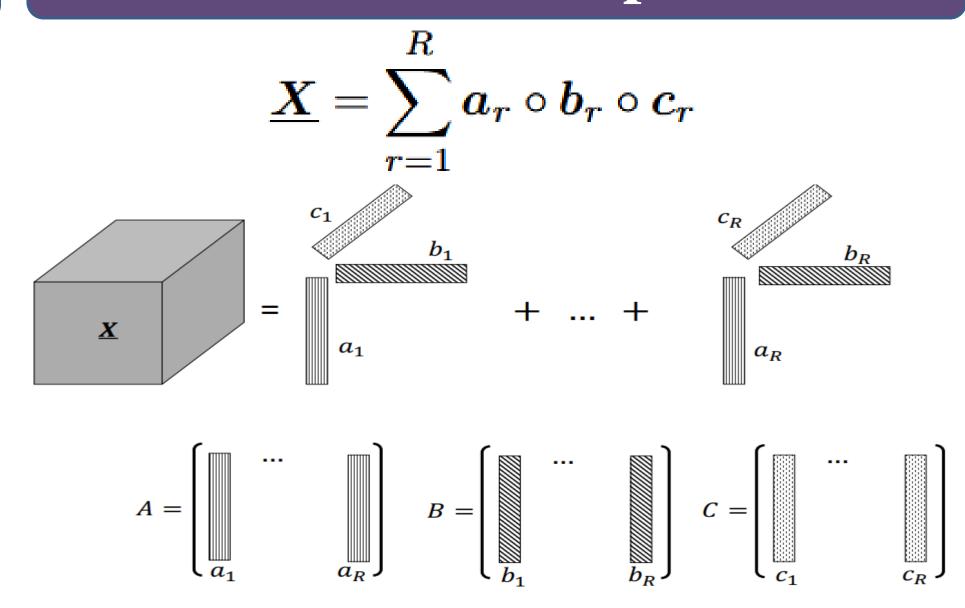


4- Time Frequency Representation Methods

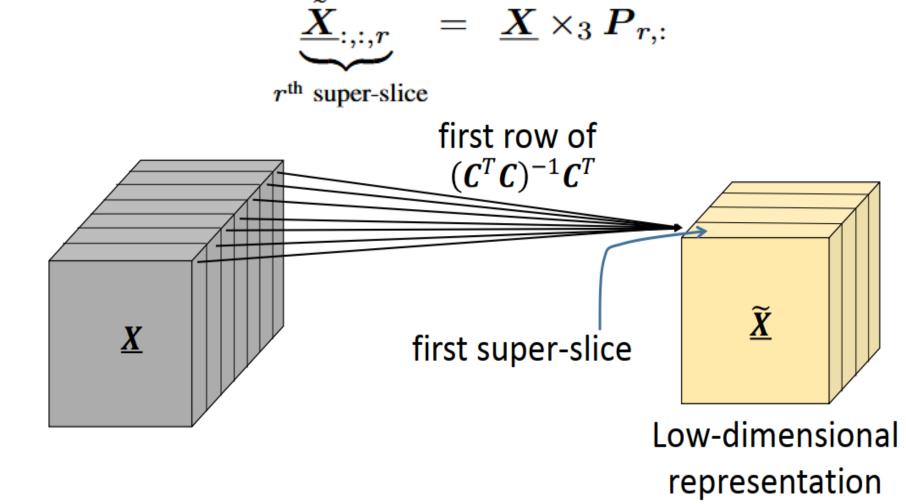


Time-frequency representations of 1 second of EEG signal using different methods including: A) smoothed-WV (SWV), B) Gaussian kernel (GK), C) Wigner-Ville (WV), D) spectrogram (SPEC), E) modified-B (MB), and F) separable kernel (SPEK).

5- Tensor Decomposition



Decomposition of a rank-R tensor to a summation of R rank-1 tensors. Symbol o indicates the outer product.

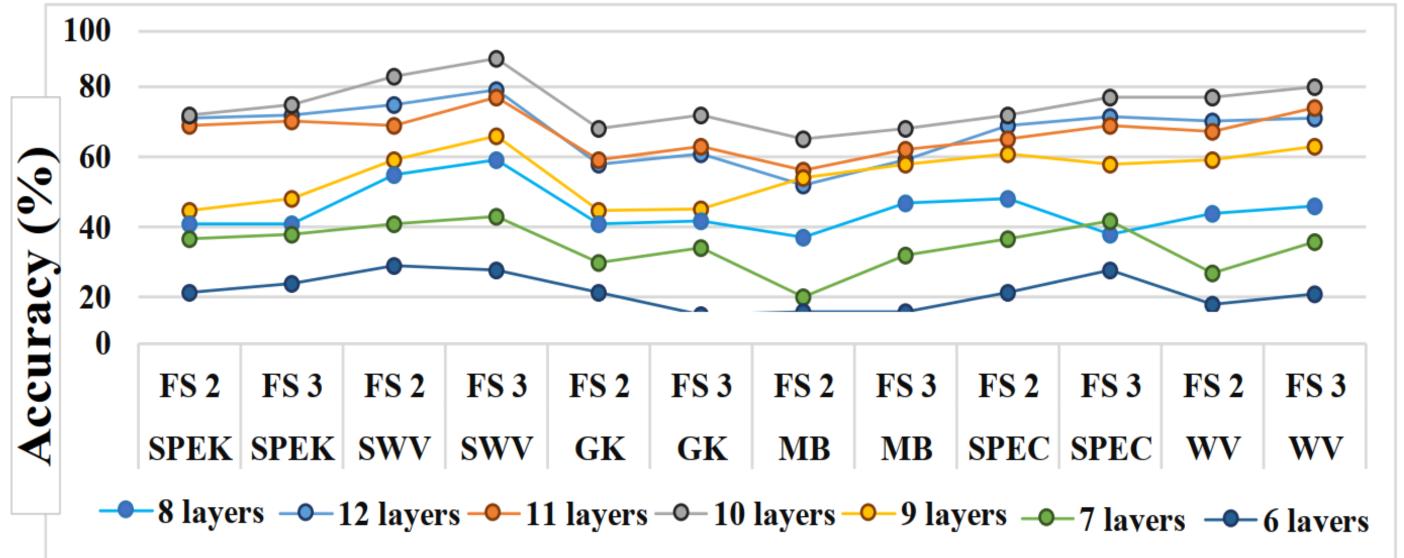


The input tensor as a collection of slices is transformed to a set of super-slices. Each super-slice is a superposition of all slices and weights are driven from Matrix $P = (C^T C)^{-1} C^T$. For example, the first super-slice is summation of all slices weighted by the first row of P. \times_3 indicates mod-3 product.

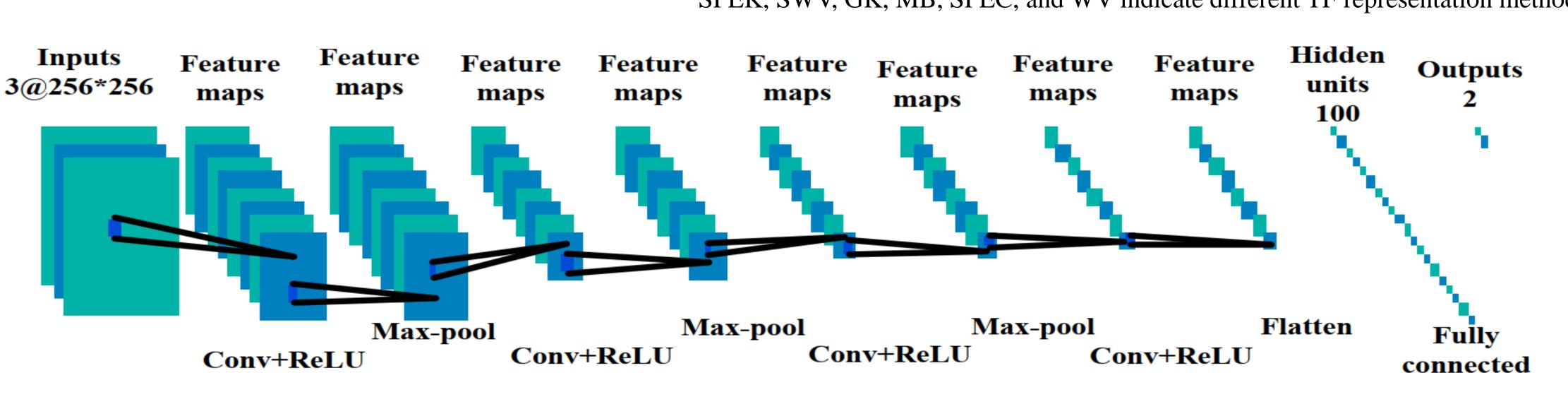
6- CNN Structure & Parameters

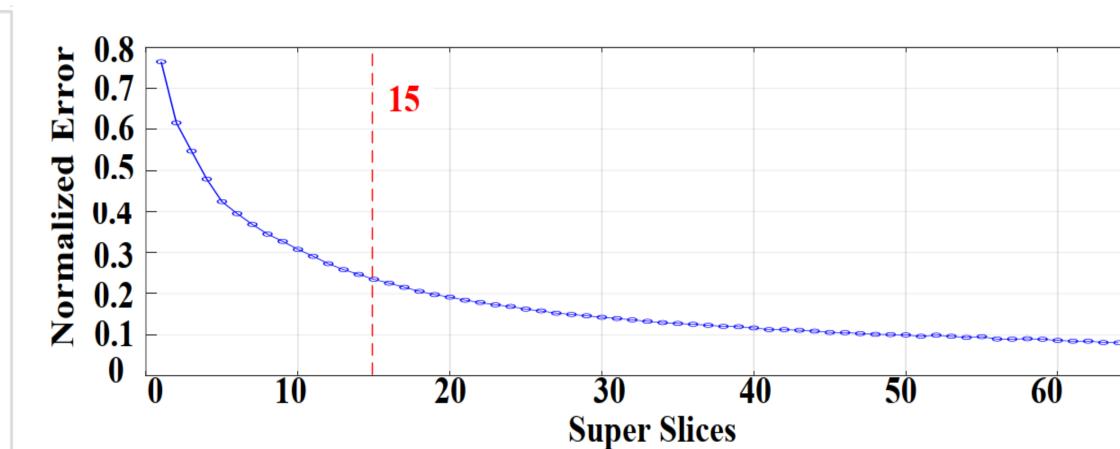
CNN Parameter	Values
Learning Rate	0.001
Momentum Coefficient	0.9
No. of Feature Maps	32 and 64
No. of Neurons in Fully Connected Layer	64
Batch Size	40

7- Results and Analysis

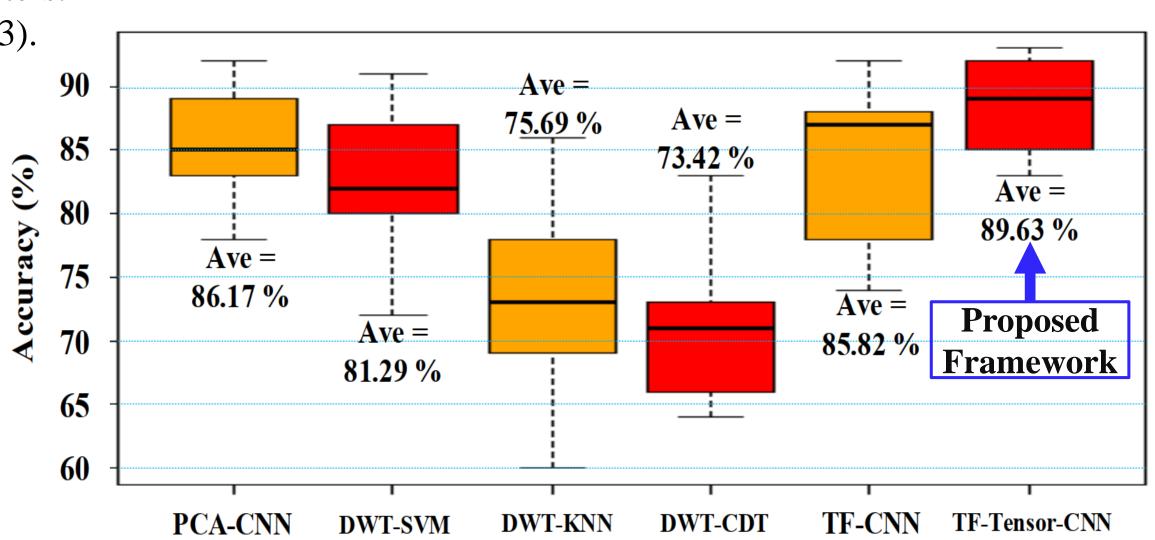


Accuracy of EEG signal classification for different TF methods and different CNN parameters. Parameters are different number of layers, and filter sizes are 2×2 (FS 2) and 3×3 (FS 3). SPEK, SWV, GK, MB, SPEC, and WV indicate different TF representation methods.





Normalized error of CP decomposition versus assumed rank of decomposition



Comparison of the classification accuracy of cross-patient seizure detection on CHB-MIT EEG dataset. Each box plot shows 10 iterations of 10 cross validation of the predictive model for the associated method.