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Motivation
Need for CS solutions considering device-level constraints for IoT

▪ Maximize signal sensing and 

reconstruction performance while 

reducing energy consumption for 

Internet of Things (IoT) applications

▪ Solutions like Compressive Sensing 

(CS) reduces number of samples per 

frame to decrease energy, storage, 

and data transmission overheads

▪ Non-uniform CS in hardware requires 

Random Number Generator (RNG) 

▪ True RNGs (TRNGs) 

▪ Pseudo RNGs (PRNGs)

ASSIST

Compressive

Sensing

▪ Reduced area

▪ Reduced storage

▪ Reduced data 

transmission

MRAM-based

TRNG

▪ Low-area

▪ Low-power dissipation

▪ Fast and Signal-dependent

MRAM-based

NVM

▪ Non-volatile

▪ Near-zero static 

power dissipation

▪ Intermittent

Adaptive Sampling of Sparse IoT signals 

via STochastic-oscillators (ASSIST)
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Background
Compressive Sensing (CS) and Region of Interest (RoI)

▪ Sparse signals are common in applications 

such as sensors and wireless spectrum 

sensing

▪ In real-world applications, signals may 

contain a Region of Interest (RoI) and 

uniform sampling is not efficient

▪ CS can be applied to RoI of signals, image, 

video, etc. identified by methods in literature*

▪ Signal’s sparsity may be non-uniform

▪ Cornerstone to achieving high-accuracy and 

efficient CS is utilization of adaptive 

measurement matrix that changes 

according to signal characteristics 

extracted from previous time frames

*Using sampling and recovery algorithm discussed in: A. Zaeemzadeh, M. Joneidi and N. Rahnavard, "Adaptive non-uniform compressive 

sampling for time-varying signals," 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, 2017, pp. 1-6.
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MRAM-based Stochastic Oscillator (MSO)✓

MRAM-based Stochastic Bitstream Generator

ASSIST Approach
MRAM-based Stochastic Bitstream Generator as TRNG

Parameters of MSO

✓

▪ Due to low energy-barrier, MTJ’s resistance level 

fluctuates between AP and P states

▪ Probability of output being ‘1’ can be controlled using VIN

▪ Power-Gated Clock (PG-CLK) 

controls number of MSO outputs

▪ VN can be used to adaptively 

adjust number of ‘1’s in VM
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ASSIST Approach
MRAM-based NVM for Storing CS Measurement Matrix

▪ Non-volatile complementary SHE-MRAM array offers wide read margin, 

increased reliability, and clockless read

▪ MRAM-based stochastic bitstream generator for columns

▪ Adjust VM to modify number of rows to account for signal’s sparsity rate

▪ Adjust VN to increase accuracy of RoI sensing and reconstruction

N Columns

M
 R

o
w

s



slide 6ISVLSI-2019

Simulation Results
MRAM-based Stochastic Oscillator and MRAM-based NVM

▪ NVM bit-cell requires 155.2fJ write energy 

and 21.9fJ read energy, on average

▪ NVM bit-cell standby energy is 36.4aJ

▪ MSO reduces energy consumption per bit 

by 9-fold and reduces area by 3-fold, on 

average, compared to state-of-the-art TRNGs

[1] D. Vodenicarevic, et al., “Low Energy Truly Random Number Generation with Superparamagnetic Tunnel Junctions for Unconventional Computing,” Physical

Review Applied, vol. 8, p. 054045, 11 2017.

[2] Y. Qu, et al., “A True Random Number Generator Based on Parallel STT-MTJs,” in Proceedings of the Conference on Design, Automation & Test in Europe

(DATE ’17), pp. 606–609, 2017.

[3] Y. Wang, et al., “A Novel Circuit Design of True Random Number Generator Using Magnetic Tunnel Junction,” in IEEE/ACM International Symposium on

Nanoscale Architectures (NANOARCH), pp. 123–128, 2016.

[1]

[2]

[3]



slide 7ISVLSI-2019

Simulation Results
ASSIST Approach via CS with RoI

▪ ASSIST decreases Time-Averaged Normalized Mean Squared Error 

(TNMSE) of RoI coefficients up to 2dB* at cost of reduced performance 

on total recovery error

▪ N = 200 and various undersampling ratios, M/N 

▪ Sparsity level of k/N = 0.1 and RoI occupying 10% of entire signal

▪ For smaller undersampling ratios, ASSIST incurs no performance 

degradation compared to uniform CS for non-RoI entries

*Using sampling and recovery algorithm discussed in: A. Zaeemzadeh, M. Joneidi and N. Rahnavard, "Adaptive non-uniform compressive 

sampling for time-varying signals," 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, 2017, pp. 1-6.
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Simulation Results
Process Variation Reliability Analysis of MRAM-based NVM

1,000 Monte Carlo simulations considering:

▪ 10% variation on threshold voltage of CMOS transistors

▪ 1% variation on width and length of CMOS transistors

▪ 10% variation for MTJ’s dimensions

Results:

1) since states of MTJs are Complementary, they provide 

large sense margin, resulting in <0.001% read errors 

2) Complementary SHE-MRAM provides reliable write 

performance resulting in <0.001% write errors

3) Complementary SHE-MRAM does not suffer from 

read disturbance error due to small read current 

compared to write current

Wide Read Margin

Reduced Read Disturbance

Reliable Write Operation
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Conclusion
ASSIST for Low-Power and Area-Efficient IoT Applications

▪ ASSIST offers a spin-based non-uniform CS circuit-algorithm solution that considers 

signal dependent and hardware constraints 

▪ MRAM-based Stochastic Oscillator as a TRNG provides 3-fold area improvement

while achieving 9-fold reduction in energy consumption per bit compared to similar 

TRNGs in the literature

▪ In ASSIST, sensing energy is distributed less wastefully by assigning more sensing 

energy to coefficients in RoI

▪ Our circuit-algorithm simulation results indicate non-uniform recovery of original 

signals with varying sparsity rates and noise levels
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BACKUP
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Background
Adaptive Non-uniform CS with Bayesian Data Analysis and Inference

▪ Importance level of the coefficients and RoI are inferred using a 

Bayesian data mining framework** 

▪ Design measurement matrix such that more important coefficients

with more sensing energy can be recovered

▪ Exploit temporal and spatial correlation to design measurement 

matrix at each step to sample more intelligently

▪ Bayesian Inference: Given the effect/output find the cause/input

▪ Using Bayesian inference, we predict the RoI from history of signal at 

each frame

**Using sampling and recovery algorithm discussed in: A. Zaeemzadeh, M. Joneidi and N. Rahnavard, "Adaptive non-uniform compressive 

sampling for time-varying signals," 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, 2017, pp. 1-6.

Time
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