Iterative Projection and Matching: Finding Structure-preserving Representatives and Its Application to Computer Vision

CVPR LONG BEACH CALIFORNIA June 16-20, 2019

Alireza Zaeemzadeh*, Mohsen Joneidi*, Nazanin Rahnavard, and Mubarak Shah

*indicates shared first authorship.

Overview

- **Goal:** Finding Structure-preserving representatives from a set of data.
- Main characteristics of IPM:
 - ✓ Linear complexity w.r.t. the number of data.
 - ✓ No parameters to be tuned.

Proposed Algorithm: IPM

- Given M data points $m{a}_1, m{a}_2, \dots, m{a}_M \in R^N$, $m{A} = \begin{bmatrix} m{a}_1^T & \\ \vdots & \\ m{a}_M^T \end{bmatrix}$
- Projection onto the subspace spanned the K rows: $\arg\min_{\mathbf{II},\mathbf{V}}||\mathbf{A}-\mathbf{U}\mathbf{V}^T||_F^2 \quad \mathbf{s.t.} \ v_k \in A$
- Selecting only 1 data point:

$$(u, v) = \underset{u, v}{\operatorname{argmin}} ||A - uv^{T}||_{F}^{2} \text{ s.t. } ||v|| = 1,$$
 (1)

$$\boldsymbol{m}^{(1)} = \underset{\boldsymbol{m}}{\operatorname{argmax}} |\boldsymbol{v}^T \boldsymbol{a}_m|. \tag{2}$$

• The captured information is neglected by projection on the null-space of previously selected samples

Theoretical Guarantees

- **Proposition 1** There exists at least one data point such that its correlation with the first right singular vector of is greater than or equal to $\frac{\sigma_1}{\|\mathbf{A}\|_F}$.
- **Proposition 2** If the gap between consecutive eigenvalues of a matrix is decreasing, then its first eigenvector is the most robust spectral component against changes in the data.

Active Learning

• Dataset: UCF-101

Average Sample per class	2	3	4	5	6	7
Random	60.1	65.1	68.2	69.9	71.7	73.0
<i>K</i> -medoids	60.1	65.3	68.4	69.2	72.3	73.6
DS3 [1]	64.0	66.5	67.8	68.3	69.6	70.9
Uncertainty [3]	59.5	66.7	69.4	71.5	73.9	75.5
IPM	64.6	68.7	72.2	73.4	74.3	74.7
IPM + Uncertainty	64.3	79.4	72.8	73.8	76.2	76.3

Learning Using Representatives

- Dataset: ImageNet
- Selection methods based on convex-relaxation fail to run in a tractable time.

Classification accuracy (9	%)	using	k-NN.
----------------------------	----	-------	-------

Images per class	1	5	10	50
Random	3.1	8.7	12.9	25.6
<i>K</i> -medoids	11.7	17.0	17.5	26.8
IPM	12.5	21.6	25.2	30.7

Dataset: Multi-PIE face dataset

• Multi-view face generation using only 9 images per subject.

Angles of the selected images

Identity dissimilarities between real and generated images

Method	Random	K-medoids	DS3[1]	IPM	
9 images/subject	0.561	0.599	0.602	0.553	
360 imaged/subject	0.536				

Video Summarization

• Dataset: UT Egocentric

IPM is a close competitor to the supervised methods.

F-measure and recall scores using ROUGE-SU metric

Method	F-measure	Recall		
Selection Methods (Unsupervised)				
Random	26.3	23.7		
Uniform	28.7	25.8		
<i>K</i> -medoids	30.1	27.3		
DS3 [1]	30.1	27.3		
IPM	31.53	29.1		
Supervised Methods				
SeqDPP	28.9	26.8		
Sub-Mod	29.3	27.4		
Sub-Mod+	34.1	31.6		

[1] E. Elhamifar et. al. "Dissimilarity based sparse subset selection". PAMI 2016. [2] E. Elhamifar et. al. "See all by looking at a few: Sparse modeling for finding representative objects". CVPR 2012

[3] Y. Gal, R. Islam et. al. "Deep Bayesian Active Learning with Image Data". PMLR 2017