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Abstract

The goal of data selection is to capture the most struc-

tural information from a set of data. This paper presents

a fast and accurate data selection method, in which the se-

lected samples are optimized to span the subspace of all

data. We propose a new selection algorithm, referred to as

iterative projection and matching (IPM), with linear com-

plexity w.r.t. the number of data, and without any pa-

rameter to be tuned. In our algorithm, at each iteration,

the maximum information from the structure of the data is

captured by one selected sample, and the captured infor-

mation is neglected in the next iterations by projection on

the null-space of previously selected samples. The compu-

tational efficiency and the selection accuracy of our pro-

posed algorithm outperform those of the conventional meth-

ods. Furthermore, the superiority of the proposed algorithm

is shown on active learning for video action recognition

dataset on UCF-101; learning using representatives on Im-

ageNet; training a generative adversarial network (GAN)

to generate multi-view images from a single-view input on

CMU Multi-PIE dataset; and video summarization on UTE

Egocentric dataset.

1. Introduction

Thanks to recent advances in computing, deep learning

based systems, which employ very large numbers of inputs,

have been developed in the last decade. However, process-

ing/labeling/communication of a large number of input data

has remained challenging. Therefore, novel machine learn-

ing methods that make the best use of a significantly less

amount of data are of great interest. For example, active

learning (AL) [26] aims at addressing this problem by train-

ing a model using a small number of labeled data, testing on

the trained model, and then querying the labels of some se-

lected data, which then are used for training a new model.

In this context, preserving the underlying structure of data

by a succinct format is an essential concern.

∗indicates shared first authorship.

Data selection task is not trivial and possibly implies ad-

dressing an NP-hard problem (i.e., there are
(

M

K

)

possibili-

ties of choosing K distinct sample out of M available ones).

This means that an optimal solution cannot be efficiently

computed when the number of available data becomes ex-

cessively large. A convex relaxation of the original NP-hard

problem has been suggested in terms of the D-optimal and

A-optimal solutions [1, 23]. In addition to convex relax-

ation, a sub-modular cost function as the criterion of selec-

tion, allows us to employ much faster greedy optimization

methods for selection [36]. The stochastic implementation

of D-optimal solution is referred to volume sampling (VS),

which is a fast and well-studied method. VS selects each

subset of data, which are organized in the rows of a ma-

trix, with probability proportional to the determinant (vol-

ume) of the reduced matrix. Moreover, QR decomposition

with column pivoting (QRCP) and convex hull-based selec-

tion methods have been suggested for optimal data selection

[10, 9]. All the mentioned methods aim to select the most

diverse subset of data in an optimal sense. However, these

methods do not guarantee that the un-selected samples are

well-covered by the selected ones. Further, outliers are se-

lected with a high probability using such algorithms due to

their diversity, unless preprocessed by outlier detection al-

gorithms [35]. Authors in [22] address this problem via a

two-phase algorithm. There are some other efforts for out-

lier rejection in the selection procedure [34, 42]. However,

the outlier and inlier data are not well-defined and these

methods are not consistent with general data.

There is another more effective approach for subset se-

lection, which chooses data such that the selected samples

are able to approximate the rest of data accurately. This se-

lection problem is formulated using a convex optimization

problem and referred as sparse modeling representative se-

lection (SMRS) algorithm [12]. The same goal is pursued

by dissimilarity-based sparse subset selection (DS3), which

is based on simultaneous sparse recovery for finding data

representatives [11]. Representative approaches, such as

SMRS and DS3, provide more suitable subset rather than

selecting some diverse samples. However, their computa-
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tional burden is not tractable for large datasets. Moreover,

SMRS and DS3 algorithms utilize some parameters in their

implementation, which makes their fine tuning difficult.

In order to address above issues, we propose a novel

representative-based selection method, referred to as Iter-

ative Projection and Matching (IPM). In our algorithm, at

each iteration the maximum information from structure of

the data is captured by one selected sample, and the cap-

tured information is neglected in the next iterations by pro-

jection on the null-space of previously selected samples. In

summary, this paper makes the following contributions:

• The complexity of IPM is linear w.r.t. number of orig-

inal data. Hence, IPM is tractable for larger datasets.

• IPM has no parameters for fine tuning, unlike some

existing methods [11, 12]. This makes IPM dataset-

and problem-independent.

• Robustness of the proposed solution is investigated

theoretically.

• The superiority of the proposed algorithm is shown in

different computer vision applications.

2. Problem Statement and Related Work

Let a1,a2, . . . ,aM ∈ R
N be M given data points of

dimension N . We define an M × N matrix, A, such that

aT
m is the mth row of A, for m = 1, 2, . . . ,M . The goal

is to reduce this matrix into a K × N matrix, AR, based

on an optimality metric. In this section, we introduce some

related work on matrix subset selection and data selection.

2.1. Selection Based on Diversity

Consider a large system of equations y = Aw, which

can be interpreted as a simple linear classifier in which y is

the vector of labels, A represents the training data and w is

the classifier weights. An optimal sense for data selection

is to reduce this system of equations to a smaller system,

yR = ARŵ, such that the reduced subsystem estimates the

same classifier as the original system, i.e., the estimation

error of ŵ is minimized [6].

A typical selection objective is to minimize Eν{‖w −
ŵ‖2}, where Eν is expectation w.r.t. noise distribution of

w − ŵ. This criterion is referred as A-optimal design in

the literature of optimization. It is an NP hard problem,

which can be solved via convex relaxation with computa-

tional complexity of O(M3) [23].

However, there are other criteria which have interesting
properties. For example D-optimal design optimizes the de-
terminant of a reduced matrix [23]. There are several other
efforts in this area [7, 8, 27, 13, 21]. Inspired by D-optimal
design, volume sampling (VS), which has received lots of
attention, considers a selection probability for each subset
of data, which is proportional to the determinant (volume)
of the reduced matrix [27, 32, 6]. VS theory expresses that

if T ⊂ {1, 2, . . . ,M} is any subset with cardinality K, cho-

sen with probability proportional to det(ATA
T
T
), then1,

E{‖A− πT(A)‖2F } ≤ (K + 1)‖A−AK‖
2
F , (1)

where, πT(A) is a matrix representing projection of rows

of A on to the span of selected rows indexed by T. E in-

dicates expectation operator w.r.t. all the combinatorial se-

lection of K rows of A out of M . AK is the best rank-K
approximation of A that can be obtained by singular value

decomposition and ‖.‖2F is the Frobenius norm. VS is not

a deterministic selection algorithm, as it gives a probabil-

ity of selection for any subset of samples, and for which

only a loose upper bound for the expectation of projection

error is guaranteed. In contrast, in this paper a determinis-

tic algorithm is proposed based on direct minimization of

projection error using a new optimization mechanism.

2.2. Representative Selection

A method for sampling from a set of data is proposed by

Elhamifar et. al. based on sparse modeling representative

selection (SMRS) [12]. Their proposed cost function for

data selection is the error of projecting all the data onto the

subspace spanned by the selected data. Mathematically, the

optimization problem in [12] can be written as,

argmin
|T|=K

‖A− πT(A)‖2F . (2)

This is an NP-hard problem. Their main contribution is

solving this problem via convex relaxation. However, there

is no guarantee that convex relaxation provides the best ap-

proximation for an NP-hard problem. Furthermore, such

methods that try to solve the selection problem via convex

programming are usually too computationally intensive for

large datasets [12, 11, 31, 29]. In this paper, we propose a

new fast algorithm for solving Problem (2).

Dissimilarity-based Sparse Subset Selection (DS3) algo-

rithm selects a subset of data based on pairwise distance of

all data to some target points [11]. DS3 considers a source

dataset and its goal is to encode the target data according to

pairwise dissimilarity between each sample of source and

target datasets. This algorithm can be interpreted as the

non-linear implementation of SMRS algorithm [11].

3. Iterative Projection and Matching (IPM)

In this section, an iterative and computationally efficient

algorithm is proposed for approximating the solution to the

NP-hard selection problem (2). The proposed algorithm it-

eratively finds the best direction on the unit sphere2, and

then from the available samples in dataset selects the sam-

ple with the smallest angle to the found direction.

1AT is the selected rows of A indexed by set T.
2In unit sphere, every point corresponds to a unique direction.
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Projection of all the data on to the subspace spanned

by the K rows of A, indexed by T, i.e., πT(A), can be

expressed by a rank-K factorization, UV T , where U ∈
R

M×K , V T ∈ R
K×N , and V T includes the K rows of A,

indexed by T, and normalized to have unit length. There-

fore, optimization problem (2) can be restated as

argmin
U ,V

‖A−UV
T ‖2F s.t. vk ∈ A, (3)

where, A = {ã1, ã2, . . . , ãM}, ãm = am/‖am‖2, and

vk is the kth column of V . It should be noted that V T is

restricted to be a collection of K normalized rows of A,

while there is no constraint on U . Assume we are to select

one sample at a time, which is the best representation of

all data. Since Problem (3) involves a combinatorial search

and is not easy to tackle, let us modify (3) into two con-

secutive problems. The first sub-problem relaxes the con-

straint vk ∈ A in (3) to a moderate constraint ‖v‖ = 1,

and the second sub-problem reimposes the underlying con-

straint. These sub-problems are formulated as

(u,v) =argmin
u,v

‖A− uv
T ‖2F s.t. ‖v‖ = 1, (4a)

m
(1) =argmax

m

|vT
ãm|. (4b)

Here m(1) is the index of the first selected data point and

am(1) is the selected sample. Subproblem (4a) is equiva-

lent to finding the first right singular vector of A. The con-

straint ‖v‖ = 1 keeps v on the unit sphere to remove scale

ambiguity between u and v. Moreover, the unit sphere is

a superset for A and keeps the modified problem close to

the recast problem (3). After solving for v (which is not

necessarily one of our data points), we find the data point

that matches v the most (makes the smallest angle with v)

in (4b).

After selecting the first data point (am(1) ), we project

all data points onto the null space of the selected sample.

This forms a new matrix A(I− ãm(1) ã
T
m(1)), where I is an

identity matrix. We solve (4) with this new matrix to find

the second data point. This process will continue until we

select K data points. It should be noted that the null space

of selected sample(s) indicates a subspace that the selected

sample(s) cannot span. Therefore, the next selected data is

obtained by only searching in this null space.

Algorithm 1 shows the steps of the proposed iterative

projection and matching (IPM) algorithm, in which m(k)

denotes the index of the selected data at the kth iteration.

IPM is a low-complexity algorithm with no parameters to

be tuned. These features in addition to its superior perfor-

mance (as will be shown in many scenarios in Section 4)

make IPM very desirable for a wide range of applications.

Time complexity order of computing the first singular

component of an M×N matrix is O(MN) [4]. As the pro-

 𝑎1

 𝑎2
 𝑎3 𝑎4 𝑣SelectedSample

Null Space of  𝑎3
Figure 1: A toy example that illustrates the first iteration of IPM.

(Left) The most matched sample with the first right singular vector,

v, is selected. (Right) The rest of samples are projected on the null

space of the selected sample in order to continue selection in the

lower dimensional subspace.

posed algorithm only needs the first singular component for

each selection, its time complexity is O(KNM), which is

much faster than convex relaxation-based algorithms with

complexity O(M3) [23]. Moreover, IPM performs faster

than K-medoids algorithm, whose complexity is of order

O(KN(M − K)2) [41]. It is also worthwhile to mention

that the condition that needs to be satisfied for a good per-

formance is K ≤ N < M . This ensures that the calculated

singular vector is reliable and not impacted by noise. This

condition is satisfied in subset selection scenarios, where

the dataset is large, the number of selected samples is a lot

less than the number of samples (K ≪ M ), and we have

freedom over the dimension of the samples/features (N ).

Algorithm 1 Iterative Projection and Matching Algorithm

Require: A and K
Output: AT

1: Initialization:

A(1) ←− A

T = {}
for k = 1, · · · ,K

2: v ←− first right singular-vector of A(k) by solving (4a)

3: m(k) ←− index of the most correlated data with v (4b)

4: T←− T ∪m(k)

5: A
(k+1) ←−A

(k)(I− ãm(k) ã
T

m(k)) (null space projection)

end

3.1. A Lower Bound on Maximum Correlation

In this section, we will derive a lower bound on the max-

imum of the absolute value of the correlation coefficient

between data points a1,a2, . . . ,aM and v, when data are

normalized on the unit sphere. Figure 1 shows an intuitive

example for one iteration of the proposed algorithm. First,

the leading singular vector is computed, and then the most

correlated sample in the dataset is matched with the com-

puted singular vector. Next, all data are projected onto the

null space of the matched sample. The projected data are

ready to perform one more iteration, if needed. These iter-

ations are terminated either by reaching the desired number
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of selected samples or a given threshold of residual energy.

Next, we present a lemma that guarantees the existence of a

highly correlated sample with the first right singular vector,

illustrating the fact that the selected sample will not be too

bad.

Lemma 1 Let a1,a2, . . . ,aM ∈ R
N be M given data

points of dimension N . Let A denote an M × N matrix

with aT
m being its mth row for m = 1, 2, . . . ,M . Let σ1, u

and v denote the first singular value, the corresponding left

and right singular vectors of A, respectively. Then, there

exists at least one data point such that the absolute value

of its inner product with v is greater than or equal to σ1√
M

.

Hence, max
m
|vTam| ≥

σ1√
M
.

The following proposition states a lower bound on the

maximum of the absolute value of the correlation between

data points a1,a2, . . . ,aM and v, when data are normal-

ized on the unit sphere. First, let us define the following

measure.

Definition 1 Rank-oneness measure (ROM) of a rank R
matrix A with singular values σ1, σ2, . . . , σR is defined as

ROM(A) =

√

σ2
1∑

R
r=1 σ2

r

= σ1

‖A‖F
.

Proposition 1 Assume the rows of A are normalized to lie

on the unit sphere. There exists at least one data point,

i, such that the correlation coefficient between ai and the

first right singular vector of A is greater than or equal to

ROM (A).

3.2. Robustness to Perturbation

Data selection algorithms are vulnerable to outlier sam-

ples. Since outlier samples are more spread in the space

of data, their span covers a wider subspace. However, the

spanned subspace by outliers may not be a proper repre-

sentative subspace. DS3 adds a penalty to the cost func-

tion in order to reject outliers [11]. Our proposed algorithm

computes the first singular vector as the leading direction

in each iteration. We show here that this direction is the

most robust spectral component against changes in the data.

First consider the autocorrelation matrix of data defined as,

C =
∑M

m=1 amaT
m.

Eigenvectors of this matrix are equal to right singular

vectors of A. Adding a new row in A does not change the

size of matrix C, but perturbs this matrix. The following

lemma shows the robustness of eigenvectors of C against

perturbations.

Lemma 2 Assume square matrix C and its spectrum

[λi, vi]. Then, the following inequality holds,

‖∂vi‖2 ≤

√

∑

j 6=i

1

(λi − λj)2
‖∂C‖F .

Definition 2 The sensitivity coefficient of the ith eigenvec-

tor of a square matrix is defined by, si ,
√

∑

j 6=i
1

(λi−λj)2
.

It is easy to show that s1 < s2. Based on Lemma 2 and

this definition the following proposition suggests a condi-

tion to satisfy s1 < si, ∀i ≥ 2.

Proposition 2 Assume square matrix C and its spectrum

[λi, vi], where the gap between consecutive eigenvalues is

decreasing. Then, s1 < si, ∀i ≥ 2.

The proofs of Propositions and Lemmas in this section

are presented in the supplementary material. Moreover, the

results of Proposition 1 and 2 are also verified in supple-

mentary material.

4. Applications of IPM

To validate our theoretical investigation and to empiri-

cally demonstrate the behavior and effectiveness of the pro-

posed selection technique, we have performed extensive

sets of experiments considering several different scenarios.

We divide our experiments into three different subsections.

In Section 4.1, we use our algorithm in the active learning

setting and show that IPM is able to reduce the labelling

cost significantly, by selecting the most informative unla-

beled samples. Next, in Section 4.2, we show the effective-

ness of IPM in selecting the most informative representa-

tives, by training the classifier using only a few representa-

tives from each class. Lastly, in Section 4.3, the application

of IPM for video summarization is exhibited. In addition,

we investigate the robustness and other performance met-

rics, such as projection error and running time, of different

selection methods and verify our theoretical results in the

supplementary material3.

4.1. Active Learning

Active learning aims at addressing the costly data label-

ing problem by iteratively training a model using a small

number of labeled data, and then querying the labels of

some selected data, using an acquisition function.

In active learning, the model is initially trained using a

small set of labeled data (the initial training set). Then, the

acquisition function selects a few points from the pool of

unlabeled data, asks an oracle (often a human expert) for

the labels, and adds them to the training set. Next, a new

model is trained on the updated training set. By repeating

these steps, we can collect the most informative samples,

which often result in significant reductions in the labeling

cost. Now, the fundamental question in active learning is:

Given a fixed labeling budget, what are the best unlabeled

data instances to be selected for labeling for the best perfor-

mance?

3Code for IPM is available at cwnlab.eecs.ucf.edu/ipm/
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Mean samples/class 2 3 4 5 6 7 8

Random 60.1± 0.7 65.1± 1.2 68.2± 1.7 69.9± 1.4 71.7± 0.6 73.0± 0.6 74.8± 0.5
Spectral Clustering 62.3± 1.9 66.9± 1.1 68.1± 0.7 68.9± 0.3 70.8± 0.9 71.0± 2.2 71.6± 0.1
K-medoids 60.1± 2.2 65.3± 1.0 68.4± 1.6 69.2± 0.5 72.3± 0.7 73.6± 0.4 74.5± 0.6
OMP 64.2± 0.6 66.6± 0.7 70.8± 1.5 71.7± 0.4 74.3± 0.7 74.3± 0.3 75.4± 0.2
DS3 [11] 64.0± 1.5 66.5± 0.7 67.8± 1.2 68.3± 0.5 69.6± 1.1 70.9± 1.3 71.9± 0.9
Uncertainty [15] 59.5± 0.4 66.7± 1.6 69.4± 1.7 71.5± 1.5 73.9± 0.3 75.5± 0.7 75.9± 1.1
IPM 64.6± 0.7 68.7± 0.3 72.2± 1.0 73.4± 0.9 74.3± 0.4 74.7± 1.4 75.3± 0.6
IPM + Uncertainty 64.3± 0.4 69.4± 0.8 72.8± 1.0 73.8± 0.9 76.2± 1.0 76.3± 0.3 77.9± 0.2

Table 1: Classification accuracy (%) for action recognition on UCF-101, at different active learning cycles. The initial training set (cycle

1) is the same for all the methods. The accuracy for cycle 1 is 54.2% and the accuracy using the full training set (9537 samples) is 82.23%.

In many active learning frameworks, new data points are

selected based on the model uncertainty. However, the ef-

fect of such selection only kicks in after the size of the train-

ing set is large enough, so we can have a reliable uncertainty

measure. In this section, we show that the proposed selec-

tion method can effectively find the best representatives of

the data and outperforms several recent uncertainty-based

and algebraic selection methods.

In particular, we study IPM for active learning of video

action recognition, using the 3D ResNet18 architecture4, as

described in [20]. The experiments are run on UCF-101

human action dataset [37], and the network is pretrained on

Kinetics-400 dataset [24]. We provide the results on split 1.

To ensure that at least one sample per class exists in the

training set, for the initial training, one sample per class is

selected randomly and the fully-connected layer of the clas-

sifier is fine tuned. Then, at each active learning cycle, one

sample per class is selected, without the knowledge of the

labels, and added to the training set. Next, using the updated

training set, the fully connected layer of the network is fine

tuned for 60 epochs, using learning rate of 10−1, weight de-

cay of 10−3, and batch size of 24 on 2 GPUs. Rest of the

implementation and training settings are the same as [20].

Note that, in this experiment, fine-tuning is only performed

to train the fully connected layer, because it achieved the

best accuracy during the preliminary investigation for very

small training sets, which is the scope of this experiment.

The selection is performed on the convolutional features

extracted from the last convolutional layer of the network.

Table 1 shows the accuracy of the trained network at each

active learning cycle for different selection methods. The

high computational complexity of DS3 prevents its imple-

mentation on all the data5 [11]. So, we provide the results

for DS3 only for the clustered version, meaning that one

sample per cluster is selected using DS3 (clusters are ob-

tained using spectral clustering). For spectral clustering

results, the extracted features are clustered into 101 clus-

ters, and one sample from each cluster is selected randomly.

Furthermore, OMP, which stands for Orthogonal Matching

4We use the code provided by the authors at https://github.

com/kenshohara/3D-ResNets-PyTorch
5We use the code provided by the authors at http://www.ccs.

neu.edu/home/eelhami/codes.htm

Pursuit, selects the samples that are most correlated with

the null space of the selected samples [40, 2]. The OMP

approach is very sensitive to the outliers. Random outliers

have low correlation with the samples and therefore a high

correlation with the null space of the selected samples.

For uncertainty-based selection, Bayesian active learn-

ing [15, 14] is utilized. For that, a dropout unit with pa-

rameter 0.2 is added before the fully-connected layer and

the uncertainty measure is computed by using 10 forward

iterations (following the implementation in [14]). In our ex-

periments, we use variation ratio6 as the uncertainty metric,

which is shown to be the most reliable metric among sev-

eral well-known metrics [15]. Also, for a fair comparison,

the initial training set is the same for all the experiments at

each run.

It is evident that, during the first few cycles, since the

classifier is not able to generate reliable uncertainty score,

uncertainty-based selection does not lead to a performance

gain. In fact, random selection outperforms uncertainty-

based selection. On the other hand, IPM is able to select the

critical samples. In the first few active learning cycles, IPM

is constantly outperforming other methods, which translates

into significant reductions in labeling cost for applications

such as video action recognition.

As the classifier is trained with more data, it is able to

provide us with better uncertainty scores. Thus to enjoy the

benefits of both IPM and uncertainty-based selection, we

can use a compound selection criterion. For the extremely

small datasets, samples should be selected only using IPM.

However, as we collect more data, the uncertainty score

should be integrated into the decision making process. Our

proposed selection algorithm, unlike other methods, easily

lends itself to such modification. At each selection iteration,

instead of selecting the most correlated data with v (line 3

in Algorithm 1), we can select the samples based on the

following criterion:

m∗ = argmax
m

α |vT ãm|+ (1− α) q(am),

where q(.) is an uncertainty measure, e.g. variation ratios.

Parameter α determines the relative importance of the IPM

6Variation ratio of x is defined as 1 − maxy p(y|x). which measures

lack of confidence.
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(a) The first row is obtained by K-medoids and the second and the

third row show the selection of DS3 and IPM, respectively.

0 1 20𝜋/6𝜋/3𝜋/22𝜋/3
𝜋5𝜋/6

K-medoids

DS3

IPM

(b) Angles of the selected images. K-medoids selects 8 different

angles. DS3 algorithm selects from 7 angles and our proposed

IPM selects the maximum possible 10 distinguished angles.

Figure 2: Selection of 10 representatives out of 520 images of a

subject and their corresponding angles.

metric versus the uncertainty metric. To gradually increase

the impact of q(.), as the model becomes more reliable, we

start by setting α = 1 and multiply it by decay rate of 0.95 at

each active learning cycle. This compound selection criteria

leads to better results for larger dataset sizes.

4.2. Learning Using Representatives

In this experiment, we consider the problem of learn-

ing using representatives. We find the best representatives

for each class and use this reduced training set for learn-

ing. Finding representatives reduces the computation and

storage requirements, and can even be used for tasks such

as clustering. In the ideal case, if we collect the samples

that contain enough information about the distribution of

the whole dataset, the learning performance would be very

close to the performance using all the data.

4.2.1 Finding Representatives for Multi-PIE Dataset

Here, we present our experimental results on CMU Multi-

PIE Face Database [17]. We use 249 subjects from the first

session with 13 poses, 20 illuminations, and two expres-

sions. Thus, there are 13×20×2 images per subject. Figure

2a shows 10 selected images from 520 images of a subject.

As it can be seen, the results of K-medoids and DS3 algo-

rithms are concentrated on side views, while our selection

provides images from more diverse angles. Figure2b high-

lights this by showing the angles of selected images of each

algorithm. IPM selects from 10 different angles, while the

selected images by DS3 and K-medoids contain repetitious

angles. Figure 3 shows the performance of different selec-

tion algorithms in terms of normalized projection error and

running time. It is evident that our proposed approach finds

a better minimizer for Problem defined in equation (2) and

is able to do so in orders of magnitude less time.

5 6 7 8 9 10
0.8

0.95

1000 2000

10
-1

10
1

10
3

Figure 3: Performance of different methods for minimizing the

cost function of representative selection in equation (2). (Left)

The ratio of projection error using selection algorithms to projec-

tion error of random selection for selecting K representatives from

each subject, averaged over all the subjects. (Right) Running time

of different algorithms versus number of input samples.

Figure 4: Multi-view face generation results for a sample subject

in testing set using CR-GAN [39]. The network is trained on re-

duced training set (9 images per subject) using random selection

(first row), K-medoids (second row), DS3 [11] (third row), and

IPM (fourth row). The fifth row shows the results generated by

the network trained on all the data (360 images per subject). IPM-

reduced dataset generates closest results to the complete dataset.

4.2.2 Representatives To Generate Multi-view Images

Using GAN

Next, to investigate the effectiveness of the proposed se-

lection, we use the selected samples to train a generative

adversarial network (GAN) to generate multi-view images

from a single-view input. For that, the GAN architecture

proposed in [39] is employed. Following the experiment

setup in [39], only 9 poses between π
6 and 5π

6 are consid-

ered. Furthermore, the first 200 subjects are for training

and the rest are for testing. Thus, the total size of the train-

ing set is 72, 000, 360 per subject. All the implementation

details are same as [39], unless otherwise is stated7.

We select only 9 images from each subject (1800 to-

tal), and train the network with the reduced dataset for 300
epochs using the batch size of 36. Figure 4 shows the gener-

ated images of a subject in the testing set, using the trained

network on the reduced dataset, as well as using the com-

plete dataset. The network trained on samples selected by

IPM (fourth row) is able to generate more realistic images,

with fewer artifacts, compared to other selection methods

7We use the code provided by the authors at https://github.

com/bluer555/CR-GAN
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Method Random K-Medoids DS3 IPM

9 images / subject 0.5616 0.5993 0.6022 0.553

360 images / subject 0.5364

Table 2: Identity dissimilarities between real and generated im-

ages by network trained on reduced (using different selection

methods) and complete dataset.

Samples / Class 1 2 3 4 5 6

Random 54.6 64.7 69.2 70.5 72.9 74.0

K-medoids 61.0 67.7 69.4 70.9 71.7 72.0

OMP 51.1 64.6 70.7 72.8 73.0 74.5

DS3[11] 60.8 69.1 74.0 75.2 74.8 75.3

IPM 65.3 72.6 74.9 77.6 77.0 78.5

Table 3: Accuracy (%) of ResNet18 on UCF-101 dataset, trained

using only the representatives selected by different methods. The

accuracy using the full training set (9537 samples) is 82.23%.

(rows 1-3). Furthermore, compared to the results using all

the data (row 5), it is clear that IPM-reduced dataset gen-

erates the closest results to the complete dataset. This is

because, as demonstrated in Figure 2, samples selected by

IPM cover more angles of the subject, leading better train-

ing of the GAN. See supplementary material for further ex-

periments and sample outputs.

For a quantitative performance investigation, we evalu-

ate the identity similarities between the real and generated

images. For that, we feed each pair of real and generated

images to a ResNet188, trained on MS-Celeb-1M dataset

[18], and obtain 256-dimensional features. ℓ2 distances of

features correspond to the face dissimilarity. Table 2 shows

the normalized ℓ2 distances between the real and generated

images, averaged over all the images in the testing set. Our

method outperforms other selection methods in this met-

ric as well. Thus, from Figure 4 (qualitative) and Table 2

(quantitative), we can conclude that the IPM-reduced train-

ing set contains more information about the complete set,

compared to other selection methods.

4.2.3 Finding Representatives for UCF-101 Dataset

Here, similar to Section 4.1, we use a 3D ResNet18 clas-

sifier pretrained on Kinetics-400 dataset, and the selection

algorithms are performed on feature space generated by the

output of the last convolutional layer. To find the represen-

tatives, we use the selection methods to sequentially find

the most informative representatives from each class. Af-

ter selecting the representatives, the fully connected layer

of the network is finetuned in the same manner as described

in Section 4.1. Table 3 shows the performance of different

selection methods for different numbers of representatives

per class. As more samples are collected, the performance

gap among different methods, including random, decreases.

This is expected, since finding only one representative for

each class is a much more difficult task, compared to choos-

ing many, e.g. 6, representatives.

8We use the naive ResNet18 architecture as described in [3].
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Figure 5: t-SNE visualization [25] of two randomly selected

classes of UCF-101 dataset and their representatives selected by

different methods. (a) Decision function learned by using all the

data. The goal of selection is to preserve the structure with only a

few representatives. (b) Decision function learned by using 2 (first

column), 5 (second column), and 10 (third column) representatives

per class, using K-medoids (first row), DS3 [11] (second row), and

IPM (third row). IPM can capture the structure of the data better

using the same number of selected samples.

Images per Class 1 5 10 50

(0.08%) (0.4%) (0.8%) (4%)

Random 3.18 8.71 12.97 25.61

K-Medoids 11.78 17.01 17.56 26.86

IPM 12.50 21.69 25.26 30.77

Table 4: Top-1 classification accuracy (%) on ImageNet, using

selected representatives from each class. Accuracy using all the

labeled data ( 1.2M samples) is 46.86%. Numbers in () show the

size of the selected representatives as a % of the full training set.

Using only one representative selected by IPM, we can

achieve a classification accuracy of 65.3%, which is more

than 10% improvement compared to random selection and

more than 4% improvement compared to other competitors.

Figure 5 shows the t-SNE visualization [25] of the selec-

tion process for two randomly selected classes of UCF-101.

To visualize the structure of the data, the contours represent

the decision function of an SVM trained in this 2D space.

Selection is performed on the original 512-dimensional fea-

ture space. This experiment illustrates that each IPM sam-

ple contains new structural information, as the selected sam-

ples are far away from each other in the t-SNE space, com-

pared to other methods. Moreover, it is evident that as

we collect more samples, the structure of the data is bet-

ter captured by the samples selected by IPM, compared to

other methods selecting the same number of representatives.

The decision boundaries of the classifier trained on 5 IPM-

selected samples look very similar to the boundaries learned

from all the data. This leads to significant accuracy im-

provements, as already discussed and exhibited in Table 3.

4.2.4 Finding Representatives for ImageNet

In this section, we use ImageNet dataset [5] to show the

effectiveness of IPM in selecting the representatives for im-
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Method F-measure Recall

Selection Methods (Unsupervised)

Random 26.30 23.73

Uniform 28.68 25.76

K-medoids 30.11 27.30

DS3 30.13 27.34

IPM 31.53 29.09

Supervised Summarization Methods

SeqDPP [16] 28.87 26.83

Submod-V [19] 29.35 27.43

Submod-V+ [33] 34.15 31.59

Table 5: F-measure and recall scores using ROUGE-SU metric

for UT Egocentric video summarization task. Results are reported

for several supervised and unsupervised methods.

age classification task. For that, first, we extract features

from images in an unsupervised manner, using the method

proposed in [43]. We then perform selection in the learned

128-dimensional space and perform k-nearest neighbors (k-

NN) using the learned similarity metric, following the ex-

periments in [43]9. Here, we show that we can learn the

feature space and the similarity metric in an unsupervised

manner, as there is no shortage of unlabeled data, and use

only a few labeled representatives to classify the data.

Due to the volume of this dataset, selection methods

based on convex-relaxation, such as DS3 [11] and SMRS

[12], fail to select class representatives in a tractable time

(as discussed before and shown in Figure 3 for Multi-PIE

dataset). Table 4 shows the top-1 classification accuracy for

the testing set using k-NN. Using less than 1% of the labels,

we can achieve an accuracy of more than 25%, showing the

potential benefits of the proposed approach for dataset re-

duction. Classification accuracy of k-NN, using the learned

similarity metric, reflects the representativeness of the se-

lected samples, thus highlighting the fact that IPM-selected

samples preserve the structure of the data fairly well.

4.3. Video Summarization

In this section, we evaluate the performance of the pro-

posed selection algorithm on the video summarization task.

The goal is to select key frames/clips and create a video

summary, such that it contains the most essential contents

of the video. We evaluate our approach on UT Egocentric

(UTE) dataset [45, 30]. It contains 4 first-person videos of

3-5 hours of daily activities, recorded in an uncontrolled

environment. Authors in [44] have provided text annota-

tions for each 5-second segment of the video, as well as

human-provided reference text summaries for each video.

Following [33, 19, 44], the performance is evaluated in text

domain. For that, a text summary is created by concatenat-

ing the text annotations associated with the selected clips.

The generated summaries are compared with the reference

9We use the feature space generated by the ResNet50 backbone,

as provided in https://github.com/zhirongw/lemniscate.

pytorch

summaries using the ROUGE metric [28]. As in prior work,

we report f-measure and recall using the ROUGE-SU score

with the same parameters as in [33, 19, 44].

Table 5 provides the results for two-minute-long sum-

maries (24 5-second samples), generated by different meth-

ods. To generate results using K-medoids, DS3, and IPM,

we use 1024-dimensional feature vectors extracted using

GoogleNet [38], as described in [46]. Then, the features

are clustered into 24 clusters using K-means and one sam-

ple is selected from each cluster using different selection

techniques. The results are the mean results over all the 4
videos and over 100 runs. Furthermore, for the supervised

methods, the results are as reported in [33]. The proposed

unsupervised selection method, IPM, is the closest competi-

tor to the state-of-art supervised method proposed in [33],

outperforming other unsupervised methods and some of the

supervised methods. These supervised methods split the

dataset into training, and testing sets and use reference text

or video summaries of the training set to learn to summarize

the videos from the test set. This experiment demonstrates

the strength of IPM and the potential benefits of employing

it in more advanced unsupervised or supervised schemes.

5. Conclusions

A novel data selection algorithm, referred to as Iterative

Projection and Matching (IPM) is presented, that selects the

most informative data points in an iterative and greedy man-

ner. Interestingly, we show that our greedy approach, with

linear complexity wrt the dataset size, is able to outperform

state-of-the-art methods, which are based on convex relax-

ation, in several performance metrics such as projection er-

ror and running time. Furthermore, the effectiveness and

compatibility of our approach are demonstrated in a wide

array of applications such as active learning, video summa-

rization, and learning from representatives. This motivates

us to further investigate the potential benefits and applica-

tions of IPM in other computer vision problems.
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