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Abstract—In this paper, an asynchronous random projec-
tion algorithm is introduced to solve a distributed constrained
convex optimization problem over a time-varying multi-agent
network. In this asynchronous case, each agent computes its
estimate by exchanging information with its neighbors within
a bounded delay lapse. For diminishing uncoordinated stepsizes
and some standard conditions on the gradient errors, we provide
a convergence analysis of Distributed Asynchronous Random
Projection Algorithm (DARPA) to the same optimal point under
an arbitrary uniformly bounded delay.

Index Terms—random projections, asynchronous, gradient
error, delays

I. INTRODUCTION

The focus of this paper is the convergence analysis of a
communication-efficient distributed algorithm whereby agents
exchange local information and update in an asynchronous
manner. We propose a gradient descent algorithm with random
projections which is implementable in a fully asynchronous
communication framework. The random projection algorithm
is of interest for constrained optimization when the constraint
set is not known in advance or the projection operation on the
whole constraint set is computationally prohibitive. A syn-
chronous randomized algorithm for distributed optimization
problems [5] and centralized problems [8] were presented.
However, asynchronous algorithms based on a gossip scheme
have been proposed and analyzed for a scalar objective func-
tion and a diminishing stepsize [11], and a vector objective
function and a constant stepsize [12].

To the best of our knowledge, the case of (fully) asyn-
chronous distributed random projection algorithm was left
untreated, while partly asynchronous cases such as gossiping
[6] or broadcast [7] were investigated as mentioned ear-
lier. Motivated by these considerations, this paper proposes
a Distributed Asynchronous Random Projection Algorithm
(DARPA) over a time-varying network in which agents are
activated with some probability, receive (possibly delayed) in-
formation from their neighbors, with which they estimate their
local gradient and project to the feasible set at each activation
time instance. We prove that the DARPA converges to an
optimal solution assuming that the next update is performed by
a random agent and asynchronous communication is subject
to an arbitrary uniformly bounded delay. With reasonable
assumptions on gradient estimation errors, we prove that the
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iterates of all agents converge to the same point in the optimal
set almost surely. Additionally, the case of exact evaluation
of the gradients follows directly from this proof. We use the
common nomenclature utilized in the literature.

The remainder of the paper is organized as follows: In
Section II, we present the problem setup with the model as-
sumptions. In Section III, we describe the proposed algorithm
and present the theoretical background needed for our analysis.
In Section IV, we state the main convergence theorem with its
detailed proof. In Section V, we conclude the paper.

II. PROBLEM SETUP

We consider a distributed constrained convex optimization
problem over a network of n nodes indexed by V = {1, .., n}.
We assume that the agents communicate over a network with
time-varying network topology represented by an undirected
graph (V, E(k)), where E(k) is the set of undirected edges at
time k. There are no self loops in this graph and we have
{i, j} ∈ E(k) only if agents i and j can communicate with
each other at time k. Our aim is to solve the constrained
distributed optimization problem

min f(x) =

n∑
i=1

fi(x) where x ∈ X = ∩ni=1Xi , (1)

where fi : RN → R is a convex function, representing the
local objective of agent i, and Xi ⊂ RN is a closed convex set,
representing the local constraint set of agent i. The function
fi and the set Xi are known to agent i only. We assume that
Problem (1) is feasible.

Moreover, each constraint set Xi is the intersection of
finitely many closed convex sets, i.e., Xi = ∩X ji for j ∈ Ii
where Ii = {1, .., di} and I = ∪ni=1Ii and Ii ∩ Ij = φ for
i 6= j.

We present DARPA, a distributed optimization algorithm
for problem (1), that is based on the random projections and
the complete asynchronous communication protocol DARPA
is described in Algorithm 1 and the updating equations are
given by (3) where xi(k) is the estimate of the solution at
node i and iteration k for i = {1, 2, . . . , n}, and vi(k) is the
weighted average calculated from the connection of node i
to neighboring nodes. ΠXΩi(k)

i

is a random projection on a
convex feasible set of the constraints and ∇fi is the gradient
of the local function fi of node i where f =

∑n
i=1 fi.
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To allow agents to communicate and carry out local compu-
tations at different time instances and for different duration, the
proposed algorithm introduces delays into the consensus up-
dates of (3) where the weighted average vi(k) can use delayed
information received from its neighbors, i.e., 0 ≤ tij ≤ B.
The information may be several iterations out of date. Under
uniformly bounded (but arbitrary) delay and the condition that
the next update is done by a random agent, we show that
the estimates converge with consensus to the optimizer of the
constrained problem (1) almost surely.

Assumption 1. [Assumptions on the Local Functions fi]
We make the following assumptions on the local objective
functions and constraint sets.
(a) Each function fi : RN → R is convex.
(b) The functions fi , i ∈ 1, 2, . . . , n, are differentiable and

have Lipschitz gradients with a constant L over RN ,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖

for all x, y ∈ RN .
(c) The gradients ∇fi(x), where i ∈ V are bounded over the

set X where X ∗ ⊂ X and X ∗ = {x|x = arg min f(x)};
i.e., there exists a constant Gf such that ‖∇fi(x)‖ ≤ Gf
for all x ∈ X and all i ∈ V .

(d) Each projection set X ji is not necessarily bounded, where
X , ∩i=1,j∈IiX

j
i and Ii as defined earlier.

Remark 1. It is worth mentioning that we do not require
that the described projection sets be bounded. The proof for
this case easily follows from the supermartingale theorem and
there is no need for the analysis adapted in Procedure A.

Assumption 2. [Network Topology and Weight Matrices]
For all k ≥ 0, we have:
(a) The matrices [W(k)]ij are equal to wij(k) in (3c) which

are chosen locally depending on the network connection
topology at each activated node.
(b)

∑n
j=1[W(k)]ij = 1 for all i ∈ V . This is a local

behavior which can be adjusted locally at each activated node
that receives estimates. That is W is row stochastic.
(c) There exists a scalar ν ∈ (0, 1) such [W(k)]ij ≥ ν if

[W(k)]ij > 0.
(d)

∑n
i=1[W(k)]ij ≤ n for all j ∈ V . Which is satisfied

since [W(k)]ij ≤ 1. (e) If server i is disconnected from
server j at instant k, then [W(k)]ij = 0.

Assumption 3 (Bounded Delay). We assume that our asyn-
chronous algorithm DARPA has a uniformly but arbitrary
bounded delay of B. That is, the updating equations (3) has
0 ≤ tij(k) ≤ B In other words, each activated node i at
global instant k can receive estimates from neighboring nodes
of instants k

′
where 0 ≤ k − k′ ≤ B

Assumption 4 (Gradient Estimation Error). We assume that
there is a scalar σ such that E[‖εi(k)‖2|Fk−1, Ik] ≤ σ2 with
probability 1 for all i and k ≥ k∗. See [7], [1] and [2].

Assumption 5 (Uncoordinated Diminishing Stepsizes). For
a diminishing stepsize, we use αk,i = 1

Γi(k) where Γi(k)
denotes the number of updates that agent i has performed

until time k as in [7], (i.e., the activation probability of node
i is γi = 1

n

∑
j∈Ni pij , where now the connection links allows

to the activation of node i in receiving information). We define
γmin , mini γi.

Using Lemma 3 in [7] we get that for pmin =
mini,j∈E(k) pij where pij > 0 is the probability that the edge
{i, j} is functioning. And let 0 < q < 1

2 . Then, there exists
a large enough k̃∗ = k̃∗(q, n) such that with probability 1 for
all k ≥ k̃∗ and i ∈ V ,

αi,k ≤
2

kγi
, α2

i,k ≤
4n2

k2p2min
, fk = |αi,k −

1

kγi
| ≤

2

k
3
2
−qp2min

.

Then
∑∞
k=0 α

2
i,k <∞ and

∑∞
k=0 fk <∞.

For the random projections on subsets of the local sets
which correspond to the random sequences {Ωi(k)}, i ∈ V ,
we assume the following:

Assumption 6 (Random Projections Process). As in [5], the
sequences {Ωi(k)} for i ∈ V , are independent and identically
distributed, and independent of the initial points vi(0) for i ∈
{1, ..., n}. We have πji , Pr{Ωi(k) = j} > 0 for all j ∈ Ii
and i ∈ V . the variable Ωi(k) is a random sample at time k of
a random variable Ωi that takes values j ∈ Ii with probability
πji .

We assume the following condition holds, and refer readers
to [3] and [4] for details on how it is satisfied given the
problem model and assumptions above.

Condition 1. For all i ∈ V , there exists a constant c > 0
such that for all x ∈ Rd,

dist2(x,X ) ≤ c E[dist2(x,XΩi(k)
i )]. (2)

III. MAIN ALGORITHM: DISTRIBUTED ASYNCHRONOUS
RANDOM PROJECTION ALGORITHM (DARPA)

We propose DARPA that uses the asynchronous time model
described in using a single virtual clock [6, 7]. We assume that
agents wakes up in an arbitrary and asynchronous manner that
satisfies the Bounded Delay Assumption (i.e., Assumption 3,
i.e., 0 ≤ tij ≤ B) is satisfied.

In our analysis, as in paper [5], we also make use of
the supermartingale convergence result due to Robbins and
Siegmund (see Lemma 10-11, p. 49-50 [10] or original paper
[13], p. 111-135) stated in Theorem 1.

Theorem 1. Suppose Fk denotes the collection v0, ..., vk,
u0, ..., uk, e0, ..., ek and c0, ..., ck; and let vk, uk, ek and ck
be sequences of non-negative random variables such that

E[vk+1|Fk] ≤ (1 + ek)vk − uk + ck for all k ≥ 0 a.s. (4)

Also, let
∑∞
k=0 ek < ∞ and

∑∞
k=0 ck < ∞ a.s; then

limk→∞ vk = v for a random variable v ≥ 0 a.s. and∑∞
k=0 uk <∞ a.s.

IV. CONVERGENCE ANALYSIS FOR THE MAIN
ALGORITHM DARPA

In what follows we prove the convergence of DARPA.
It is worth mentioning that the more common distributed
asynchronous gradient descent can be viewed as a special case
of the asynchronous distributed random projection algorithm
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Algorithm 1 DARPA Algorithm
Input: Initialization: Initialize estimates xi(0); set xi(0) to

its initial value or to an arbitrary random value. Define
Tolerance value tol for halting the algorithm and set
ei(0) = tol. k = 0.

1: while ei(k) ≥ tol do {Halting is done at each node
independently with no coordination}

2: k = k + 1
3: At each node i Update Estimates

vi(k) =
n∑
j=1

wij(k)xj(k − tij(k)). (3a)

Estimating the local gradient ∇̂f i(vi(k))

where ∇̂f i(vi(k)) = ∇fi(vi(k)) + εi(k)
(3b)

xi(k + 1) = Π
XΩi(k)
i

(vi(k)− αi,k∇̂f i(vi(k))) (3c)

4: Find error ei(k) = ‖xi(k) − xi(k − 1)‖ for all 1 ≤
i ≤ n

5: end while
Output: xi(k) for the corresponding k for each node

where the constraint set X = RN . That is, the projection is
over XΩi(k)

i = RN where X = ∩iXΩi(k)
i = ∩iRN = RN .

In other words, the asynchronous distributed gradient descent
algorithm solves for the unconstrained problem

min
x∈RN

f(x). (5)

We thus have that the convergence proof of this algorithm as
well. The proof with the gradient estimation error follows if
Assumption 4 is satisfied. While the exact gradient evaluation
case follows directly by assuming the variance is zero.
Theorem 2. Consider Algorithm 1, and suppose Assumptions
1-7 hold. Let f∗ = minx∈X f(x) and X ∗ = {x ∈ X |f(x) =
f∗}. Assume then that X ∗ 6= Φ. Then, the iterates {x(k)}
generated by our algorithm (3a)-(3c) converge almost surely
to the solution x∗ ∈ X ∗, i.e.,

lim
k→∞

x(k) = x
∗
for all i ∈ V a.s. (6)

Proof: The theorem follows by applying Lemma 1, 3 and 4
in the described order. �
A. Convergence Proof Main Parts
Assumption 7.

1

2
α2
i,k(

nB∑
i=1

‖Ri(k − 1)‖2 +
nB∑
i=1

‖Ri(k −B − 1)‖2) + nBBτα
2
i,kG

2
f

≤ (−1 +
3

8τ
−Aτα2

i,k − 2αi,kL)
nB∑
i=1

dist2(ṽi(k),X ) a.s. and

4αi,kGf

nB∑
i=1

‖ṽi(k)− v̄(k)‖+
1

2
α2
i,k

nB∑
i=1

‖Ri(k − 1)‖2

+
1

2
α2
i,k

nB∑
i=1

‖Ri(k −B − 1)‖2 + nBτα
2
i,kG

2
f ≤ 2αi,kB(f(z̄(k))− f(x∗))

a.s. for k ≥ k̃.

Remark 2. Under the assumptions on the uncoordinated
stepsizes presented in Assumption 5 and having for k ≥ k̃∗
that Assumption 4 is satisfied then Assumption 7 is satisfied.
However, we refrain from analyzing that here due to the limited
space but we refer you to a future extended version.

B. Reduction to a Consensus Problem without Delay

Here, we reduce the original agent system with delays to a
system without delays, under the Bounded Delays assumption
[cf. Assumption 3]. This idea has also been used in the
distributed computation model of Nedich et al. [9], and it
motivates our development here.

With some modifications adapted to form mathematical
structures that suit our case we get:

The relation in (3) for the evolution of estimates of com-
puting agents is given by: for all i ∈ {1, . . . , , nB},

ṽi(k + 1) =

2nB∑
j=1

[W̄(k + 1)]ij x̃j(k + 1). (7)

Notice that for weighted averages ṽi we have i ∈
{1, . . . , , nB}. And that for estimates x̃i we have j ∈
{1, . . . , , 2nB}. This is because the weighted averages of the
computing and noncomputing nodes total to nB for instant k.
And these weighted averages are each dependent on estimates
of delay from 0 up to B of that instant. Thus, we have
nB estimates for ṽi(k + 1) of computing and noncomputing
nodes beginning from x̃p(k) and ending in x̃p+nB−1(k) where
p = ((i − 1) div n)n + 1 and i ∈ {1, . . . , , nB}. Thus, for
x̃j(k) we have j ∈ {1, . . . , , 2nB}.

And for all i ∈ {1, . . . , nB} and h ∈ {1, . . . , 2nB}.

[W̄(k + 1)]lh =


[W(k + 1− s)]ij if h = j + tn, t = tij(k + 1)

i = ((l − 1) mod n) + 1

s = (l − 1) div n

0 otherwise for all k ≥ 0
(8)

and [W(k)]ij are the weights used by the agents in the
original network.

But in the original system we have for i ∈ {1, . . . , n},

xi(k + 1) = Π
XΩi(k)
i

(vi(k)− αi,k∇̂f i(vi(k))), (9)

where ∇̂fi(vi(k)) =∇fi(vi(k)) + εi(k). (10)

And vi(k) =

n∑
j=1

[W(k)]ijxj(k − tij(k)), (11)

Then for the extended system we have for i ∈ {1, . . . , 2nB}

x̃i(k + 1) = Pi(
2nB∑
j=1

[W̃(k)]ij x̃j(k)−
2nB∑
j=1

[W(k)]ij∇̂fj(vi(k))), (12)

where

Pi =


Π
XΩl(r)

l

for i ∈ {1, . . . , nB}

l = ((i− 1) mod n) + 1

r = k − ((i− 1) div n)

1 otherwise for all k ≥ 0

(13)

And [W(k)] is such that

[W(k + 1)]ij =


αl,r for j = i and i ∈ {1, . . . , nB}

l = ((i− 1) mod n) + 1

r = k − ((i− 1) div n)

0 otherwise for all k ≥ 0

(14)

and ∇̂fq(vi(k)) = ∇̂f j(vi(k)) for q = j + ln for 0 ≤ l ≤
2B − 1.
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And the weights [W̃(k)]ij for i ∈ {1, . . . , nB} are given
by [W̄(k)]ij of (8) where j ∈ {1, . . . , 2nB}.

And the evolution of estimates for i = nB + 1, . . . , 2nB,

x̃i(k + 1) = x̃i−n(k) for all k ≥ 0, (15)

Therefore, for i = nB + 1, . . . , 2nB, we have
[W̃(k + 1)]ih =

{
1 for h = i− n
0 otherwise for all k ≥ 0

(16)

And the initial estimates are given by{
x̃i(0) = xi(0) for i ∈ {1, . . . , n}
x̃i(q) = 0 otherwise for all i ∈ {n+ 1, . . . , 2nB}

It is worth mentioning that (9) becomes

xi(k + 1) = Π
XΩi(k)
i

(vi(k)− αi,k∇fi(vi(k))− αi,kεi(k)), (17)

where εi(k) is the error added by estimating the gradient.
Definition 1. Let’s denote Ri(k) = −αi,kεi(k).

Then (12) for i ∈ {1, . . . , nB} can be written

x̃i(k + 1) = Π
XΩl(r)

l

(ṽi(k)− αi,k∇fi(ṽi(k)) +Ri(k − 1))

and x̃i(k + 1) = Π
XΩl(r)

l

(ṽi(k)− αi,k∇fi(ṽi(k))),
(18)

with l and r as in (14).
C. Main Proof

1) Part 1 of the Convergence Proof (Bound∑∞
k=0 dist

2(ṽi(k),X ) <∞) ::

Lemma 1. Let Assumption 1-7 hold. Then∑∞
k=0 dist

2(ṽi(k),X ) <∞ for all i ∈ V a.s.

Proof: We are going to prove Lemma 1 by using the
following Lemma 2 and then exploiting the supermartingale
Theorem 1.
Lemma 2. Let Y ⊂ RN be a closed convex set. Let the
function Φ : RN → R be convex and differentiable over RN
with Lipschitz continuous gradients with a constant L.
Let y be given by y = ΠY(x − α∇Φ(x)) for some x ∈ RN ,
α > 0.
Then, we have for any x̂ ∈ Y and z ∈ RN ,

‖y − x̂‖2 ≤ (1 + Aτα
2
)‖x− x̂‖2

− 2α(Φ(z)− Φ(x̂))−
3

4
‖y − x‖2

+ (
3

8τ
+ 2αL)‖x− z‖2 + Bτα

2‖∇Φ(x̂)‖2,

(19)

where Aτ = 8L2 + 16τL2, Bτ = 8τ + 8 and τ > 0 is
arbitrary.
See Lemma 4 in [5] or Lemma 2 in [8].

Since X , ∩ni=1Xi then let x̂ ∈ X . This implies that
x̂ ∈ Xi for all i ∈ {1, 2, . . . , n}. But fi is Lipschitz on Xi
for all i ∈ {1, 2, . . . , n}, then fi is Lipschitz on X (in fact
in our case, f is Lipschitz on the whole RN , this for ease of
implementation since we pick the matrix A randomly.)
By requiring i ∈ {1, 2, . . . , nB}, we take x̃i(k + 1) =
ΠXΩl(r)

l

(ṽi(k) − αi,k∇fi(ṽi(k))) ∈ RN where l and r are

as in (14), then being in RN the following inequalities hold,

dist(x̃i(k + 1),X ) = ‖x̃i(k + 1)− ΠX (x̃i(k + 1))‖
≤ ‖x̃i(k + 1)− x̂‖.

(20)

To use Lemma 2, we thus use the following substitutions:
Φ = fi, α = αi,k, x̂ ∈ X = ∩ni=1Xi, y = x̃i(k + 1) =
ΠXΩl(r)

l

(ṽi(k)−αi,k∇fi(ṽi(k))) and x = ṽi(k) where l and
r are as in (14). In particular, if we take x̂ = ΠX [ṽi(k)] ∈ X

in the feasibility region and z = ΠX (ṽi(k)) = x̂ then x̂ ∈ X ,
but X = ∩ni=1Xi ⊂ ∩ni=1X

Ωi(k)
i since Xi ⊂ XΩi(k)

i for all
i ∈ V then x̂ ∈ Y = XΩl(r)

l = XΩi(k)
i for some i where l and

r are as in (14), and z ∈ RN so we can apply Lemma 2 then

dist
2
(x̃i(k + 1),X ) ≤ (1 + Aτα

2
i,k)‖ṽi(k)− ΠX (ṽi(k))‖2

− 2αi,k(fi(ΠX (ṽi(k)))− fi(ΠX (ṽi(k))))

−
3

4
‖Π
X

Ωl(r)
l

(ṽi(k)− αi,k∇fi(ṽi(k)))− ṽi(k)‖2

+ (
3

8τ
+ 2αi,kL)‖ṽi(k)− ΠX (ṽi(k))‖2

+ Bτα
2
i,k‖∇fi(x̂)‖2,

(21)

But ‖Π
XΩi(k)
i

(ṽi(k)− αi,k∇fi(ṽi(k)))− ṽi(k)‖2

≥ ‖Π
XΩi(k)
i

(ṽi(k))− ṽi(k)‖2 = dist
2
(vi(k),XΩi(k)

i ),
(22)

Then −
3

4
‖Π
XΩi(k)
i

(ṽi(k)− αi,k∇fi(ṽi(k)))− ṽi(k)‖2

≤ −
3

4
dist

2
(vi(k),XΩi(k)

i )

(23)

But E[dist
2
(vi(k),XΩi(k)

i )/Fk] ≥
1

τ
dist

2
(vi(k),X ) (24)

Let Fk be the σ-algebra generated by the entire history of the
algorithm up to time k inclusively, that is Fk = {x̃i(0), i ∈
V } ∪ {Ωi(l) : 0 ≤ l ≤ k, i ∈ V } . Therefore, given Fk, the
collection x̃i(0), ..., x̃i(k+1) and ṽi(0), ..., ṽi(k+1) generated
by the algorithm is fully determined.

But Y = XΩl(r)
l = XΩi(k)

i for some i ∈ V where l and r
are as in (14), then we have

E[dist
2
(vi(k),XΩl(r)

l )/Fk] ≥
1

τ
dist

2
(vi(k),X ) (25)

where l and r are as in (14). Then taking expectation over
Fk, (21) becomes

E[dist
2
(x̃i(k + 1),X )/Fk] ≤ (1 + Aτα

2
i,k)dist

2
(vi(k),X )

+ (−
3

8τ
+ 2αi,kL)dist

2
(vi(k),X ) + Bτα

2
i,k‖∇fi(x̂)‖2 a.s.

(26)

Then from the convexity of the norm squared, we have

dist
2
(ṽi(k),X ) ≤

2nB∑
j=1

[W̃(k)]ijdist
2
(x̃j(k),X ). (27)

But we can deduce using updating equation (3a) and pro-
jection Lemmas that

dist
2
(x̃j(k),X ) ≤2dist

2
(x̃j(k),X ) + 2‖Ri(k − 1)‖2. (28)

By observing the first term in RHS of the inequality (26),
we get

(1 + Aτα
2
i,k) dist

2
(ṽi(k),X ) ≤

1

4nB
α

2
i,k dist

2
(ṽi(k),X ) + (1 + Aτα

2
i,k) dist

2
(ṽi(k),X ),

(29)

and by using (27) on the first term, we get
dist

2
(x̃i(k + 1),X )/Fk ≤

1

4nB
α

2
i,k

2nB∑
j=1

[W̃(k)]ijdist
2
(x̃j(k),X )

+ (1 + Aτα
2
i,k) dist

2
(ṽi(k),X )

+ (−
3

8τ
+ 2αi,kL)dist

2
(ṽi(k),X + Bτα

2
i,kG

2
f ,

(30)

where ‖∇fi(x̂)‖ ≤ Gf (i.e., gradient is bounded on set X ).
Then summing from i = 1 to nB, having (30) and taking

into consideration activation with probability γi for each i and
x̃i(k + 1) = ˜̄vi(k) for no activation (N.B. notice that under
suitable manipulation the inequality will reduce to the same as
full activation except care should be taken for the third term
where the coefficient is negative and have γi in αi,k) i.e., use
1− γi ≤ (1 +Aτα

2
i,k)(1− γi) and 0 ≤ γi ≤ 1.
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But having the matrix [W̃(k)]ij for i = {1, . . . , nB} and
j = {1, . . . , 2nB} constructed of B row stochastic block
matrices (i.e.,

∑nB
i=1[W̃(k)]ij ≤ nB), we have for k ≥ k̃∗

by
Then the result of (28) for i = {1, . . . , nB}
and having xj(k) = xj−n(k − 1) for j =

{nB + 1, . . . , 2nB} and cascading until k − B, we have∑2nB
i=nB+1 dist

2(x̃i(k),X ) =
∑nB
i=1 dist

2(x̃i(k−B),X ) then
we have for k ≥ k̃∗

E[
nB∑
i=1

dist
2
(x̃i(k + 1),X)/Fk] ≤

1

2
α

2
i,k

nB∑
i=1

dist
2
(x̃i(k),X) +

1

2
α

2
i,k

nB∑
i=1

dist
2
(x̃i(k − B),X)

+ (1 −
3γmin

8τ
+ Aτα

2
i,k +

4

k
L)

nB∑
i=1

dist
2
(ṽi(k),X)

+
1

2
α

2
i,k(

nB∑
i=1

‖Ri(k − 1)‖2 +
nB∑
i=1

‖Ri(k − B − 1)‖2) + nBBτα
2
i,kG

2
f a.s.

(31)

We now apply Procedure A with ak = 1 + Cα2
i,k where

C > 0 to give some degree of freedom of choosing {ak} with
the required properties, then (31) implies

E[
nB∑
i=1

dist
2
(x̃i(k + 1),X)/Fk] ≤ (1 + Cα

2
i,k)

nB∑
i=1

dist
2
(x̃i(k),X)

+ (1 −
3

8τ
+ Aτα

2
i,k + 2αi,kL)

nB∑
i=1

dist
2
(ṽi(k),X)

+
1

2
α

2
i,k(

nB∑
i=1

‖Ri(k − 1)‖2 +
nB∑
i=1

‖Ri(k − B − 1)‖2) + nBBτα
2
i,kG

2
f a.s.

(32)

for k > k̂ > k̄ > k̄ − B > max(k∗, k̃) where k∗ =
max(k1, k̃

∗).
Define the following substitutions :

vk =
nB∑
i=1

dist
2
(x̃i(k),X), uk =

nB∑
i=1

dist
2
(ṽi(k),X),

−bk =1 −
3γmin

8τ
+ Aτα

2
i,k +

4

k
L

ck =
1

2
α

2
i,k(

nB∑
i=1

‖Ri(k − 1)‖2 +
nB∑
i=1

‖Ri(k − B − 1)‖2) + nBBτα
2
i,kG

2
f

(33)

We require initially that −bk ≤ −1 for k > k1. But the
terms Aτα2

i,k+ 4
kL in bk although dependent on τ they can be

controlled by the value of αi,k, thus k. Then, we can require
that Aτα2

i,k + 4
kL ≤ Aτ

4n2

k2p2
min

+ 4L
k < ε for k > k1 and

1 + ε < 3γmin
8τ where 1− 3γmin

8τ + ε < −1. This suffice to use
τ < 3γmin

16 , e.g., τ = γmin
8 . Thus,

Taking τ <
3γmin

16
, e.g., τ =

γmin

8
we have for k > k1 that bk < −1

(34)
To apply the supermartingale convergence theorem on (32)

with the substitutions described in (33) along with ak =
1 + Cα2

i,k, We consider k > k̂ which is an end part of the
tail of the sequence where (34) is satisfied. Therefore, with
the above condition on bk satisfied for k > k̂ > k1, (32)
can be reduced to the supermartingale inequality. Therefore,
for k > k̂ > max(k1, k̃, k̃

∗) ≥ k1, (32) can be reduced to
the supermartingale inequality. Then, having ak = 1 + ek =
1 + Cα2

i,k we get that
∑∞
k=0 ek < ∞ and

∑∞
k=0 ck < ∞

since
∑∞
k=0 α

2
i,k <∞. Then the supermartingale convergence

theorem holds.
From the supermartingale theorem holding for the tail of

the sequence k > k
′

in A, then we have
∑∞
k=0 uk <

∞, i.e.,
∑∞
k=0

∑n
i=1 dist

2(ṽi(k),X ) < ∞. We can in-
terchange infinite and finite sums, as an implicit conse-
quence of the linearity of these sums. Thus, we have

∑n
i=1(

∑∞
k=0 dist

2(ṽi(k),X )) <∞ =⇒ the argument inside
the finite sum is bounded, i.e.,
∞∑
k=0

dist
2
(ṽi(k),X ) <∞, �

2) Part 2 of the Convergence Proof::
Lemma 3. Let Assumption 1-7 hold. Also, assume that
the stepsize sequence {αi,k} is non-increasing such that∑∞
k=0 α

2
i,k < ∞ (i.e., which is the case of Assumption 5),

and define ei(k) = x̃i(k + 1) − ṽi(k) for all i ∈ V and
k ≥ 0.
Then, we have a.s. ∞∑

k=0

||ei(k)||2 <∞ for all i ∈ V,

∞∑
k=0

αi,k||ṽi(k)− v̄(k)|| <∞ for all i ∈ V,

where v̄(k) =
1

2n2B2

nB∑
l=1

ṽl(k).

(35)

Remark 3. We refrain from listing the proof here due to
the limited space. But the proof is similar to [5] with slight
modifications. And we note that Assumption 4 on the gradient
estimation error is needed for the proof to follow.

3) Part 3 of the Convergence Proof::
Lemma 4. Let Assumption 1-7 hold. Let f∗ = minx∈X f(x)
and X ∗ = {x ∈ X |f(x) = f∗}. Assume then that X ∗ 6= Φ.
Then, the iterates {x(k)} generated by our algorithm (3a)-(3c)
converge almost surely to the solution x∗ ∈ X ∗, i.e.,

lim
k→∞

x(k) = x
∗
for all i ∈ V a.s. (36)

Proof: We begin by substituting Φ = fi, α = αi,k, x̂ ∈
X ∗ ⊂ X = ∩ni=1Xi, y = x̃i(k + 1) = ΠXΩl(r)

l

(ṽi(k) −
αi,k∇fi(ṽi(k))) and x = ṽi(k) where l and r are as in (14).

In particular, if we take x̂ = x∗ ∈ X ∗ ⊂ X in the solution
set and z = zi(k) = ΠX (ṽi(k)). Then having x̂ ∈ X and
X = ∩ni=1Xi ⊂ ∩ni=1X

Ωi(k)
i since Xi ⊂ XΩi(k)

i for all i ∈ V
we get that x̂ ∈ Y = XΩl(r)

l = XΩi(k)
i for some i where l

and r are as in (14), and z ∈ RN so we can apply Lemma 2
then
‖x̃i(k + 1)− x

∗‖2 ≤ (1 + Aτα
2
i,k)‖ṽi(k)− x

∗‖2 − 2αi,k(fi(zi(k))− fi(x∗))

−
3

4
‖Π
X

Ωl(r)
l

(ṽi(k)− αi,k∇f(i)
(ṽi(k)))− ṽi(k)‖2

+ (
3

8τ
+ 2αi,kL)‖ṽi(k)− zi(k)‖2 + Bτα

2
i,k‖∇fi(x

∗
)‖2.

(37)

Then (37) becomes using the reduction (22)-(25), we get

‖x̃i(k + 1)− x∗‖2 ≤
(1 +Aτα

2
i,k)‖ṽi(k)− x∗‖2 − 2αi,k(fi(zi(k))− fi(x∗))

+ (−
3

8τ
+ 2αi,kL)dist2(ṽi(k),X ) +Bτα

2
i,k‖∇fi(x̂)‖2,

(38)

And for z̄(k) = 1
n

∑n
i=1 zi(k), and for the restricted

available space, we follow the same analysis as in [5] but
with v̄(k) = 1

2n2B2

∑nB
l=1 ṽl(k) and taking into consideration

the probabilistic assumption on activation to arrive at
n∑
i=1

γiαi,k(fi(zi(k)) − fi(x
∗

)) =
n∑
i=1

2

k
(fi(zi(k)) − fi(z̄(k))) +

2

k
(f(z̄(k)) − f(x

∗
))

≥ −
2

k
Gf

n∑
i=1

‖zi(k) − z̄(k)‖ +
2

k
(f(z̄(k)) − f(x

∗
))

≥ −
4

k
Gf

n∑
i=1

‖ṽi(k) − v̄(k)‖ +
2

k
(f(z̄(k)) − f(x

∗
)).

(39)

591



6

Elaborating in a similar way as Part 1, (38) leads to the
following inequality for k ≥ k̃∗

E[
nB∑
i=1

‖x̃i(k + 1) − x
∗‖2/Fk] ≤

1

2
α

2
i,k

nB∑
i=1

‖x̃i(k) − x
∗‖2

+
1

2
α

2
i,k

nB∑
i=1

‖x̃i(k − B) − x
∗‖2 −

4B

k
(f(z̄(k)) − f(x

∗
)) +

8B

k
Gf

nB∑
i=1

‖ṽi(k) − v̄(k)‖

+ (1 + Aτα
2
i,k)

nB∑
i=1

‖ṽi(k) − x
∗‖2 + (−

3γmin

8τ
+

4

k
L)

nB∑
i=1

dist
2
(ṽi(k),X)

+
1

2
α

2
i,k

nB∑
i=1

(‖Ri(k − 1)‖2 + ‖Ri(k − B − 1)‖2) + nBτα
2
i,kG

2
f a.s.

(40)

We can find k2 such that for k > k2 we have

(1 + Aτα
2
i,k)

nB∑
i=1

‖ṽi(k)− x
∗‖2 + (−

3γmin

8τ
+

4

k
L)

nB∑
i=1

dist
2
(ṽi(k),X ) < 0

(41)

That is, it suffices to have the following two inequalities

(1 + Aτα
2
i,k)

nB∑
i=1

‖ṽi(k) − x
∗‖2 +

4

k
L
nB∑
i=1

dist
2
(ṽi(k),X)

< (1 + Aτα
2
i,k +

4

k
L)

nB∑
i=1

‖ṽi(k) − x
∗‖2 <

3γmin

8τ

nB∑
i=1

dist
2
(ṽi(k),X)

(42)

nB∑
i=1

dist
2
(ṽi(k),X) =

nB∑
i=1

b‖ṽi(k) − x
∗‖2 <

nB∑
i=1

‖ṽi(k) − x
∗‖2 (43)

where 0 < b < 1. We can pick τ such that for k > k2

we have 1 + ε < 3γminb
8τ . If we pick τ < 3γminb

8 we can
have for k > k2 where 0 < b < 1 such that (41) is satisfied.
Then by cancelling this negative term (41) we arrive at the
reduced inequality for for k > k∗ = max(k2, k̃

∗) and use the
properties of αi,k described in Assumption 5,

E[
nB∑
i=1

‖x̃i(k + 1) − x
∗‖2/Fk] ≤

1

2
α

2
i,k

nB∑
i=1

‖x̃i(k) − x
∗‖2 +

1

2
α

2
i,k

nB∑
i=1

‖x̃i(k − B) − x
∗‖2

−
4B

k
(f(z̄(k)) − f(x

∗
)) +

8B

k
Gf

n∑
i=1

‖ṽi(k) − v̄(k)‖

+
1

2
α

2
i,k

nB∑
i=1

(‖Ri(k − 1)‖2 + ‖Ri(k − B − 1)‖2) + nBτα
2
i,kG

2
f

(44)

We now apply Procedure A with ak = 1 + Cα2
i,k where

C > 0 to give some degree of freedom of choosing {ak} with
the required properties, then (44) implies

E[
nB∑
i=1

‖x̃i(k + 1)− x
∗‖2/Fk] ≤ (1 + Cα

2
i,k)

nB∑
i=1

‖x̃i(k)− x
∗‖2

−
4B

k
(f(z̄(k))− f(x

∗
)) +

8B

k
Gf

nB∑
i=1

‖ṽi(k)− v̄(k)‖

+
1

2
α

2
i,k

nB∑
i=1

(‖Ri(k − 1)‖2 + ‖Ri(k − B − 1)‖2) + nBτα
2
i,kG

2
f

(45)

We define the following substitutions:

vk =
nB∑
i=1

‖x̃i(k) − x
∗‖2, uk =

4B

k
(f(z̄(k)) − f(x

∗
)), −bk = −1,

ck =
8B

k
Gf

nB∑
i=1

‖ṽi(k) − v̄(k)‖

+
1

2
α

2
i,k

nB∑
i=1

(‖Ri(k − 1)‖2 + ‖Ri(k − B − 1)‖2) + nBτα
2
i,kG

2
f

Then, to apply the supermartingale convergence theorem
on (45) we require the substitutions described above along
with ak = 1 + Cα2

i,k. But (45) is satisfied for the tail where
(41) is satisfied. Therefore, for k > k2, (45) is equivalent to
the supermartingale inequality. Then having ak = 1 + ek =
1+Cα2

i,k, we get that
∑∞
k=0 ek <∞ and

∑∞
k=0 ck <∞ since

∑∞
k=0 α

2
i,k < ∞,

∑∞
k=0

2
kγi
Gf

∑n
i=1 ‖ṽi(k) − v̄(k)‖ < ∞

by Lemma 4. Then the supermartingale convergence theorem
holds.

And then the supermartingale theorem implies that the
sequence {‖xi(k) − x∗‖} is convergent a.s for all i ∈ V
and every x∗ ∈ X ∗ and also implies that

∑∞
k=0

4
k (f(z̄(k))−

f(x∗)) <∞. This with the condition that,
∑∞
k=0

4
k =∞.

lim
k→∞

inf(f(z̄(k))− f(x
∗
)) = 0 a.s. (46)

And since f(z̄(k)) − f(x∗) ≥ 0 for all k since f(x∗) =
min f(x) then lim

k→∞
f(z̄(k)) = f(x

∗
) a.s. (47)

After elaborating more we arrive at lim
k→∞

x̃i(k) = x
∗
, (48)

for all i ∈ V a.s. See [5] for further details.
V. CONCLUSION

We have considered a Distributed Asynchronous Random
Projection Algorithm (DARPA) for solving a distributed con-
strained optimization problem over a time-varying multi-agent
network. The algorithm convergence was analyzed under
standard assumptions on the functions, such as Lipschitz
continuity and convexity along with the random behavior of
projections onto the constraint sets. The gradient estimation is
considered under a stochastic setting with a bounded gradient
variance. With the use of uncoordinated diminishing stepsizes
and under the above assumptions along with the boundedness
of the information exchange delay, we establish almost sure
convergence of the method to the same optimal point. The
future analysis intends to investigate the convergence rates of
the algorithm as well as to further relax the assumptions on
the gradient errors.

APPENDIX

A. Proposition 1
Proposition 1. Assume the following inequality holds a.s. for
all k ≥ k̂,

vk+1 ≤ a1,kvk + a2,kvk−B − bkuk + ck (49)

Then for all k ≥ k̂, vk+1 ≤ a1,kvk + a2,k max
k−B≤k̂≤k

vk̂ − bkuk + ck

(50)

holds a.s.
Follows easily by considering the maximum of a set is

greater that that of a subset.

B. Lemma 5

Lemma 5. Assume the following inequality holds a.s. for all
k ≥ k∗,

vk+1 ≤ a1,kvk + a2,k max
k−B≤k̂≤k

vk̂ − bkuk + ck (51)

vk. uk, bk, ck, a1,k and a2,k are non-negative random
variables where a1,k + a2,k ≤ 1. And {bk} and {ck} are
increasing sequence and decreasing sequences, respectively,
and {a1,k}, {a2,k} are decreasing sequences and ck ≤ bkuk
for k ≥ k̃. Then if for ρ = (a1,1 + a2,1)

1
B+1 and

vk0
≤ ρΦ(k0)

V
′
0 − b0u0 + c0 a.s. (52)

for base case k = k0 = k̄−B. (i.e., notice V0 is not necessary
the initial value v0). And Φ is a random variable from N to
N where Φ([n,m]) = [n,m].

And assume that this also holds for all k ≥ k0 up to
k = k̄ in an arbitrary manner (i.e., notice the power of ρ
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is independent of k ). i.e., k ∈ {k0 = k̄ − B, . . . , k̄} and
k̄ −B ≥ max(k∗, k̃). That is

vk ≤ ρΦ(k)
V
′
0 − bk−1uk−1 + ck−1 a.s. (53)

for k = {k0, . . . , k̄}.
Then we have

vk ≤ ρkV0 − bk−1uk−1 + ck−1 a.s. (54)

for all k ≥ k̄ where V0 > 0 for all sequences patterns and ρ
as before.

Proof: First since a1,k + a2,k ≤ 1 then

1 ≤ (a1,k + a2,k)
− B
B+1 =⇒ 1 ≤ (a1,1 + a2,1)

− B
B+1

=⇒ (a1,k + a2,k) ≤ (a1,1 + a2,1)
(55)

which implies that

a1,k+a2,kρ
−B

= a1,k + a2,k(a1,1 + a2,1)
− B
B+1

≤ a1,k(a1,1 + a2,1)
− B
B+1 + a2,k(a1,1 + a2,1)

− B
B+1

= (a1,k + a2,k)(a1,1 + a2,1)
− B
B+1

≤ (a1,k + a2,k)
1

B+1 = ρ

That is a1,k+a2,kρ
−B ≤ ρ (56)

Now, by induction we show that (54) for all k ≥ k0. Assume
(52) is true for k = k0 and that the induction hypothesis holds
for all k ≥ k0 up to k̄ where k0 = k −B ≤ k ≤ k̄. Then we
have for any arbitrary behavior for k where k0 = k − B ≤
k ≤ k̄ that we can write the sequences vk in a decreasing
sequence. Without a loss of generality assume we will have
for 0 ≤ l ≤ B

vk̄ ≤ ρ
k̄−l

V
′
0 − bk̄−1uk̄−1 + ck̄−1

vk̄−B ≤ ρ
Φ(k̄−B)

V
′
0 − bk̄−B−1uk̄−B−1 + ck̄−B−1

(57)

Then from (51) we have
v
k̄+1

≤ a1,kvk̄
+ a2,k max

k̄−B≤k̂≤k̄
v
k̂
− b

k̄
u
k̄

+ c
k̄

≤ a1,k̄ρ
k̄−l

V
′
0 + a2,k̄ρ

k̄−B
V
′
0 − a1,k̄bk̄−1uk̄−1 − a2,k̄bk̄−B−1uk̄−B−1

+ a
1,k̄

c
k̄−1

+ a
2,k̄

c
k̄−B−1

− b
k̄
u
k̄

+ c
k̄

(58)

But ck ≤ bkuk for all k ≥ k̃ then

−a1,k̄bk̄−1uk̄−1 − a2,k̄bk̄−B−1uk̄−B−1 + a1,k̄ck̄−1 + a2,k̄ck̄−B−1 =

a1,k̄(ck̄−1 − bk̄−1uk̄−1) + a2,k̄(ck̄−B−1 − bk̄−B−1uk̄−B−1) ≤ 0
(59)

Then vk̄+1 ≤ a1,k̄ρ
k̄−l

V0 + a2,k̄ρ
k̄−B

V0 − bk̄uk̄ + ck̄

≤ a1,k̄ρ
k̄−l

V
′
0 + a2,k̄ρ

k̄−l−B
V
′
0 − bk̄uk̄ + ck̄

= (a1,k̄ + a2,k̄ρ
−B

)ρ
k̄−l

V
′
0 − bk̄uk̄ + ck̄

≤ ρk̄−l+1
V
′
0 − bk̄uk̄ + ck̄ a.s.

(60)

But without a loss of generality, we can find V0 > 0 such that
ρk̄−l+1V

′

0 ≤ ρk̄+1V0 to keep indexing tractable. And thus (60)
is true for all k ≥ [̄k+1. i.e., notice that for k+1 = k̄+2, we
already have for k = k̄+1 that the power of ρ in the recursive
inequality after the coefficient a1,k̄ is k̄ + 1. Thus, no matter
what the arbitrary behavior for the prior B terms is, we will
have

vk̄+2 ≤ ρ
k̄+2

V
′
0 − bk̄+1uk̄+1 + ck̄+1 a.s. (61)

Thus, (60) follows for all k ≥ k̄. �

Remark 4. i.e., notice that it is true for k = k̄ since

vk̄+1 ≤ ρ
k̄−l

V
′
0 − bk̄uk̄ + ck̄ and vk̄+1 ≤ ρ

k̄
V0 − bk̄uk̄ + ck̄ (62)

C. Proposition 2

Proposition 2. If vk ≤ ρkv0 a.s. for all k > k̄ where ρ < 1
and vk is non-negative, then {vk} is eventually a decreasing
sequence a.s. That is there exists k̂ such that for all k > k̂ ≥ k̄
we have vk+1 < vk a.s.

Proof: We have vk ≤ ρkv0 a.s. for all k > k̄ then

lim
k→∞

vk ≤ lim
k→∞

ρ
k
v0 = 0 (63)

But vk > 0 then limk→∞ vk = 0.
Suppose there exists k > k̄ such that vk+1 > vk. But vk ≤

ρkv0 and vk > m > 0 since vk > 0 (i.e., a non-negative
number). Then there esists q ∈ N vk < vk+q ≤ ρk+q

v0 < m

since ρ < 1 and ρk > ρk
′

if k < k
′
, then vk < vk+q < m < vk

a contradiction. That is, for k > k̄ where vk+1 > vk we have a
limiting number q ∈ N where vk+q < vk. Thus, any increasing
sequence pattern can last only finite terms. But limk→∞ vk =
0, then its tail of infinite terms can not be increasing sequence
because it is an infinite sequence. And it can not be constant
since initial value v0 > 0 and final value limk→∞ vk = 0.
Then it must be a decreasing subsequence. That is, there exists
k̂ such that for all lk > k̂ we have vlk+1 < vlk a.s. Thus,
without a loss of generality and assuming new indexing we
have k̂ such that for all k > k̂ we have vk+1 < vk a.s. where
k is indexing the subsequence of the original sequence which
can be seen as a sequence with this new indexing. �

D. Proposition 3
Proposition 3. If for all k > k̂ we have vk+1 < vk and

vk ≤ ρl(k)
v0 (64)

where vk > 0 and ρ < 1 and l(k + 1) > l(k). Then we can
find a decreasing sequence {ak}, that is, ak+1 < ak where
ak > 1 and

vk ≤ ρl(k)
v0 ≤ ak−1vk−1 for all k > k̂ (65)

Proof: We have for k > k̂ that vk+1 < vk, but

vk ≤ ρl(k)
v0 and vk+1 ≤ ρl(k+1)

v0

and ρl(k+1)v0 < ρl(k)v0 since ρ < 1 where l(k + 1) > l(k).
Then we distinguish two cases:

Either vk ≤ ρl(k)
v0 ≤ vk−1 ≤ ρl(k−1)

v0 (66)

or vk ≤ vk−1 ≤ ρl(k)
v0 ≤ ρl(k−1)

v0 (67)

For case of (66) we have vk ≤ ρl(k)
v0 ≤ vk−1 ≤ ak−1vk−1

where ak−1 > 1. Then for this case we have

vk ≤ ak−1vk−1

is satisfied as long as ak−1 > 1. Then we can choose

ak−1 < ak−2 and vk ≤ ρl(k)
v0 ≤ ak−1vk−1 as long as ak−1 > 1 (68)

For case of (67), we need to choose ak−1 > 1 such that

vk ≤ ρl(k)
v0 ≤ ak−1vk−1.

But for this case we have vk−1 ≤ ρl(k)v0 then we can choose
ak−1 > 1 such that

vk−1 ≤ ρl(k)
v0 ≤ ak−1vk−1,
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as long as
ρl(k)

ak−1

≤
vk−1

v0

≤
ρl(k)v0

v0

≤ ρl(k) (69)

But (69) is true for any ak−1 > 1. Then we can choose for
this case ak−1 < ak−2 such that

vk ≤ ρl(k)
v0 ≤ ak−1vk−1.

is satisfied as long as ak−1 > 1. So for both complementary
cases we can choose a decreasing sequence {ak}, that is,
ak+1 < ak such that for all k > k̂ we have

vk ≤ ρl(k)
v0 ≤ ak−1vk−1 �

E. The bridge: Procedure A

1) Intuition and main theoretical contribution: We prove
the convergence of DARPA using the same building lemmas
as [6]. However, to accomodate for the delay we introduce in
the proof an extended system without delay which is adapted
from [9] with some modifications that makes it fit our problem.
By performing that we introduce new variables that take
into consideration all B instants and apply the analysis of
[6] on these new variables. Meanwhile, due to the relaxed
requirement on the projection sets, where we don’t require
that these sets be bounded, we are faced in Lemmas 1 and
4 by a form of inequalities with two priors that are not
compatible with the supermartingale inequality. However, by
applying Procedure A we are able to reduce these inequalities
to a supermartingale inequality where we can immitate again
[6] with slight modifications that fit our case to arrive at the
required result.

We begin with the application of Procedure A on Lemma
1 in Part 1 of Section IV-C. We apply Procedure A where:
Input Inequality: (31). Output Inequality: (32). Index: k1

Procedure A: (where initial input inequality is (31))
We apply our analysis for k > k̃ ≥ max(2B − 1, k∗) so that
the extended variables ṽi and x̃i have all their entries taking a
value through the algorithm process. Take k∗ = max(k1, k̃

∗),
then (31) is satisfied a.s. Then using Proposition 1 and
having inequality (31) of the form in (49) then the inequality
equivalent to the form (50) is satisfied for all k > k∗.

Then we can choose k0 = k̄ − B > max(k∗, k̃) as in
Propositions 1-3 and Lemma 5 in Appendix. But we have
for k0 = k̄ − B ≤ k ≤ k̄ that (31) satisfied. Then from (31),
the following inequality follows

vk ≤ ρmax(vk−1, vk−B−1)− bk−1uk−1 + ck−1 (70)

However, for arbitrary k0 satisfying the above we have the
corresponding term vk of (31) behaving arbitrary for k0 =
k̄ − B ≤ k ≤ k̄. Then we can choose a specific V

′

0 ∈ R and
ρ = (a1,1 + a2,1)

1
B+1 < 1 for this arbitrary random behavior

where for k0 = k̄ −B ≤ k ≤ k̄ we can have
γk = a1,k−1vk−1 + a2,k−1vk−B−1 ≤ ρmax(vk−1, vk−B−1)

≤ ρΦ(k)
V
′
0

(71)

where Φ is a random variable from N to N such that
Φ([n,m]) = [n,m]. And (31) becomes

vk ≤ γk − bk−1uk−1 + ck−1 (72)

for k0 = k̄ −B ≤ k ≤ k̄.

Remark 5. We can allow the above condition to be satisfied
for any arbitrary behavior.

Then applying Lemma 5 with the same identification of k̃,
k∗, k0 and k̄, then we have for all k > k̄ > max(k∗, k̃) that

vk ≤ ρkV0 − bk−1uk−1 + ck−1 (73)

with the identifications assumed by (31) where ck < bkuk.
Then we have that

vk ≤ ρkV0 (74)

for k > k̄. Then by applying Proposition 2, there exists (i.e.,
under the new subsequence indexing) k̂ ≥ k̄ such that

vk+1 ≤ vk a.s. (75)

Thus, we have for all k > k̂ ≥ k̄ that vk+1 < vk and vk ≤
ρkV0 where vk > 0 and ρ < 1

Then by applying Proposition 3 we can find a decreasing
sequence {ak} where ak > 1 such that

vk ≤ ρkV0 ≤ ak−1vk−1 (76)

for all k > k̂ > k̄ > max(k∗, k̃). Then we arrive at the
supermartingale inequality (32), that is for all k > k̂ ≥ k̄ we
have (32) with the form equivalent to

vk ≤ ak−1vk−1 − bk−1uk−1 + ck−1 (77)

and the corresponding identifications assumed in (31).
End of Procedure A (i.e. for Part 1)

Similarly, we apply Procedure A on Lemma 4 in Part
3 of Section IV-C. Then using Procedure A where: Input
Inequality: (44). Output Inequality: (45). Index: k2

That is, by following the analysis in part 3 up to (44) and
using (44) in place of (31) in Procedure A and following
the same steps we followed in Part 1 for (31) we arrive at an
equivalent supermartingale inequality (45) instead of (32).
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