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Asynchronous parallel algorithms are often studied for sep-
arable optimization problems where the component objective
functions are sparse, or act on only a few components of the
variable x € RY. One challenge to developing asynchronous
approaches for sparse recovery is that the optimization formu-
lation of this problem has dense component objective functions.
However, the assumed sparsity of the signal may be exploited
in an asynchronous parallel approach. Here we propose such an
approach where multiple processors asynchronously infer hidden
variables that estimate the support of x in a Bayesian manner.
We include numerical simulations that demonstrate the potential
benefits of this method.

I. INTRODUCTION

Sparse recovery problems have received significant attention
in the past decade, particularly in the compressed sensing (CS)
literature [1, 2]. CS techniques have revolutionized sensing and
sampling, with applications in image reconstruction [3, 4],
hyper spectral imaging [5], wireless communications [6, 7],
and analog to digital conversion [8]. Meanwhile, complex
data-gathering devices have been developed, leading to the
rapid growth of big data. For instance, the size of problems
in hyperspectral imaging [5] are so large that they cannot
be stored or solved in conventional computers. This, as well
as the proliferation of inexpensive multi-processor computing
systems, has motivated the study of parallel sparse recovery.

In parallel sparse recovery, the goal is to solve a large-scale
sparse recovery problem by partitioning it among multiple pro-
cessing nodes, thus reducing both the storage and computation
requirements [9]. However, many recent studies [9—14] focus
on synchronous parallel recovery of the sparse signal, meaning
that some subset of the processing nodes need to wait for
another subset of the nodes to complete their tasks. Of course,
this approach is sensitive to slow or nonfunctional nodes.

Thus, it is natural to look for algorithms that divide the
large-scale sparse recovery problems among several computing
nodes and solve it asynchronously. Recently, in [15], the
authors proposed a strategy to utilize the stochastic hard
thresholding (StoIHT) [16, 17] in an asynchronous manner.
Instead of sharing the current solution among the processors,
which is the conventional approach [9-11], an estimate of the
support of the signal is shared. Then, the iteration number of
each processor is used to assign weight to faster cores.
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In this paper, inspired by [15], we propose an asynchronous
StolHT [16] which incorporates a probabilistic framework
that assigns reliability scores to each processor. This score is
calculated by considering both the processor’s estimate of the
support and its iteration number. Therefore, not only do we
ignore the information from unreliable slow cores, but we are
also able to utilize the reliable information from slower cores
and disregard unreliable information from faster cores. The
update rules for reliability scores and the support estimation
is derived in a mathematical, less heuristic, manner, using
variational inference [18]. This leads to simple closed form
update rules for the parameters of the posterior distributions
of the hidden variables with very low computational overhead.

II. SYSTEM MODEL

We consider the sparse recovery problem of reconstructing
x € RY from few nonadaptive, linear, and noisy measure-
ments, y = Az + z, where A € R™*V is the measurement
matrix and z € R™ is noise. One challenge to developing
an asynchronous parallel approach to recovering the s-sparse
signal « via the optimization problem

1
min — ||y — A&[|3 subject to |&[o < s
min Sy~ A3 subject o (2], <
is that the cost function 5|y — AZ|3 is defined by the

matrix A, which is not generally sparse (e.g., standard i.i.d.
Gaussian A is common). A naive asynchronous approach
would frequently overwrite the s non-zero entries learned
by faster and more reliable processors. Our goal is to solve
this problem in an asynchronous manner, while reducing the
effects of slow processors on the estimated signal. Note that
the problem can be rewritten as
1 M . . ) )
min -3 s — Agdlf subjectto [0 <,
B=1
where y and A are partitioned into M non-overlapping sub-
vectors Yy and sub-matrices Ap. At each iteration, each
processor solves a subproblem by using the b = m/M
equations defined by Ap and yz. We do not assume that
the number of subproblems A and processors P is the same.

III. PROBABILITY MODEL

Our Bayesian algorithmic framework makes use of a tally
vector ¢ € RN which records information on the current
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estimated support of x. This vector and several reliability
estimates are the hidden variables in our model:

1) Tally score, ¢, € [0,1], describing the probability that
coefficient n is in support.

2) Reliability score for each processor, r; € [0, 1], denoting
the trustworthiness of the measurements of processor .

3) Observation reliability, u,; € {0,1}, which indicates if
coefficient n reported by processor ¢ is reliable.

Our estimates of these hidden variables are updated accord-
ing to the following observed variables:

1) The support observations, o,; which indicates if proces-
sor ¢ detects coefficient n in the support.

2) The maximum number of iterations completed by any
processor since the last reporting of processor i, k;.

The posterior probability distribution of these hidden vari-
ables (referred to as ) are inferred from the observed
variables reported by the processors, 0,; and k; (referred to
as D), according to the following generative model where
variables are indexed fort=1,...,Pandn=1,...,N.

Beta(5;, 37)
Bernoulli(r;)
Beta(a), al)
Un; Bernoulli(gy, )
+ (1 — up;) Bernoulli(1 — ¢,,)
Binomial (K, r;)

Ty~
Unq ~

(z)n’\’

Ong ~

(&)

ki ~

The variable for the reliability score, 7;, is modeled with a Beta
distribution with parameters 3} and Y. This is the natural
choice since r; is used as the parameter of the Bernoulli
distribution of the observation reliability and the conjugate
prior for a Bernoulli distribution is Beta distribution.

The observation reliability is modeled as a Bernoulli distri-
bution with parameter ;. If a processor is generally reliable (r;
close to 1) it is more likely to be reliable on other coefficients.

The tally score is also defined as a random variable sampled
from a Beta distribution with parameters al and a2. This is
also because ¢, is later used as the parameter of the Bernoulli
distribution that describes the observations.

The observed variable, o,,;, is defined as the summation of
two Bernoulli distributions. If an observation of the processor
is reliable, u,,; = 1, the distribution would be Bernoulli(¢,,).
This means that o,,; will be sampled from a Bernoulli distribu-
tion with true parameter, i.e., ¢,,. By definition, ¢,, is defined
as the probability that coefficient n belongs to the support of
the signal. Otherwise, for u,; = 0, it will be sampled from
Bernoulli(1 — ¢,,), which means it reports faulty data.

Finally, k;, the number of iterations completed by processor
i is modeled with Binomial( K, r;) where K; is the maximum
number of iterations completed by any processor since the last
reporting of processor ¢. Thus, we have k; < K;. Reliable
processors (r; close to 1) are likely to report k; close to K.

The goal of our sequential Bayesian updating inference
algorithm is to infer the distribution of H given D.

IV. INFERENCE VIA SEQUENTIAL BAYESIAN UPDATING

Using Bayes’ rule, the posterior distribution is
P{H|D} x P{D|H}P{H} =P{D,H}.

where P{D,7{} is calculated using the model described in
(1). Specifically, the last two expressions in (1), are used to
build P{D|H} and the other terms represent our prior belief,
P{#}. The posterior distribution is the updated distribution of
the hidden variables after receiving the observations.

In sequential Bayesian updating, the prior knowledge of
the model is represented as the prior distribution, which is
the distribution of the hidden variables before collecting data.
After observing the first set of measurements, the posterior
distribution is determined using Bayes’ rule. Then, the pos-
terior distribution can be used as the prior when the next
set of observations becomes available. Thus, we must update
the distribution of the hidden variables using the observations.
In this approach, all the information is stored in the current
distribution of the hidden variables.

To handle the intractable integrals arising in the inference
procedure, variational inference is employed [18, 19]. In
variational inference, the posterior distribution is approximated
by a family of distributions for which the calculations are
tractable. The approximate distribution is assumed to be fully
factorized over all the hidden variables [20, Chapter 10].
Specifically, the fully factorized variational distribution Q{H }
is defined as

Q{H} =[] QfrilB, A7} [ [ @{unilrai} [T @Uonlan, az}

n,i n
o )
where 3, 59, al, a2, and 7,; are the parameters of the
factorized distributions. Our goal is to obtain Q{#} such that
it approximates the posterior distribution P{#|D}.

Thus, at each step, the optimization problem

max E{In(P{D,H})} — E{ln(Q{H})}

(where the expected value is with respect to variational dis-
tribution) is solved with respect to one of the factorized dis-
tributions, keeping all other distributions fixed. The procedure
is repeated until convergence. Each step results in a closed
Jform update rule for one of the variables. Since the objective
function is convex with respect to each of the factorized
distributions, convergence is guaranteed [20, Chapter 10].
The derivations of the updating rules are presented in the
Appendix. After receiving each set of new measurements, the
probability distributions of the unknown variables are updated
using the closed form update rules. In this framework, the
tally score for each coefficient, ¢,,, is a random variable. Thus,
the expected value of the random variable is used as a point
estimate of the tally score and is denoted by

al

- 3)

a1 ;0 °
Gy, + ay,

¢n = Eqie,3{on} =

Furthermore, we indicate the tally vector by ¢ =
[@1,¢2,...,0N]. Details of the proposed framework can be
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found in Algorithm 1 and the performance of the algorithm is
evaluated in Section V.

Algorithm 1 Bayesian Asynchronous StolHT Iteration

Require: Number of subproblems, A, and probability of
selection p(B). The parameters of distribution of the
reliability score, le and B?, and the parameters of tally
scores, a. and @Y, are available to each processor.

Each processor performs the following at each iteration:

1: randomize: select B; € [M] with probability p(B;)

2: proxy: b(ti =zt + e AB, (:th — Ap,x®)

3: identify: S® = supp, (b)) and T = supp, (o)

4: estimate: x('t1) = bggwufu)

5: repeat

6: update Eqy,,,3 {tni} = Q{un; = 1} as described in
Appendix C

7: update 3} and 3? using (9), @l and a2 using (8)

8: until convergence

9: update ¢ using (3)
10: t=t+1

It is clear that the inference algorithm is an iterative method.
However, we will show in Section V that the framework
performs well even if we run the update rules only once.

V. NUMERICAL EXPERIMENTS
A. Experiments in MATLAB

In these experiments, we take the signal dimension N =
1000, the sparsity level s = 20, and the number of measure-
ments m = 300. Also, initial values for 3}, 37, al, and a}
are set to 1, which results in uniform distribution for all r; and
¢n, and indicates unbiased estimate of processor reliability and
tally score in absence of further information. For Stochastic
IHT, the block size b is set to be same as the sparsity level s
and v = 1. The convergence criteria is ||y — Az!|| < 1077
and the maximum number of iterations is 1500.

Figure 1 shows the mean number of time steps over 50
trials when (a) all processors take the same amount of time
to complete an iteration, and (b) half of the processors are
slow, meaning that they complete an iteration every four time
steps. It is evident that time steps required using the Bayesian
update rules have decreased compared to standard non-parallel
Stochastic IHT and Tally-based asynchronous IHT [15].

As mentioned in Section IV, the proposed inference algo-
rithm is an iterative algorithm and needs to run the update rules
alternatively to reach convergence. However, we also evaluate
the performance of the non-iterative inference algorithm in
which, at each StoIHT iteration, the inference runs the update
rule for each variable only once. Figure 1 shows that the non-
iterative and iterative algorithms performs similarly.

B. Experiments in C++

In this set of experiments, to have a better understanding of
the behavior of the algorithms in a real parallel environment,
different sparse recovery methods are implemented and tested
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Figure 1: Comparison of the number of time steps until convergence
versus the number of processors used in different methods, when (a)
all processors complete an iteration in a single time step and (a) half
of the processors complete an iteration every four time steps.

using the C++ programming language and OpenMP [21], a
multiprocessor shared memory programming platform. Here,
we take N = 10000, m = 3000, and s = 200. All other
simulation parameters are same as Section V-A. Running time
reflects the time required to execute all the steps of the al-
gorithms, including initialization, preprocessing, convergence,
and post-processing. All simulations have been performed in
the Ubuntu 16.04 environment on a PC equipped with an Intel
Xeon E5-1650 processor (3.20 GHz) with 12 processors and
8 GB of RAM. Parallel AMP, a synchronous sparse recovery
algorithm, is a row-wise multi-processor approximate message
passing algorithm, as described in [9]. Here, we use the
non-iterative version of the Bayesian asynchronous Sto-IHT
algorithm. All the results are based on 50 Monte-Carlo trials.

Figure 2(a) and Figure 2(b) show the execution time per
iteration and total convergence time, respectively, for different
numbers of processors. In this experiment, slow processors
sleep for 100 ms at each StoIHT iteration and make up 20%
of the processors; i.e., no slow processors for P < 5, one for
5 < P < 10, and two for P = 10. After adding the first
slow processor, the execution time for parallel AMP increases
significantly, illustrating the fact that synchronous parallel
algorithms suffer from the presence of slow processors. On the
other hand, the execution time of the asynchronous algorithms
does not change significantly. It is worthwhile to mention that
at P = 10, when the second slow processor is added to the
system, there is no increase in the execution time of any of
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Figure 2: Performance of different multi-processor sparse recov-
ery algorithm implemented using C++ programming language and
OpenMP platform. Twenty percent of the processors are slow.

the algorithms, since more slow cores with the same sleep
time does not increase the wait time of the system. Figure
2(b) shows that although the execution time per iteration of
the asynchronous algorithms is decreasing after adding more
processors, the total convergence time increases slightly, since
more cores increases the processor/thread scheduling overhead
and takes the inference algorithm longer to converge.
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Figure 3: Mean convergence time of different multi-processor sparse
recovery algorithms over 50 trials. Ten processors are solving the
sparse recovery problem and two cores are slow.

Figure 3 demonstrates the effect of the sleep time of the two
slow processors (of ten) on the execution time. Note that the
convergence times of synchronous multi-processor algorithms
increase linearly as the processors become slower, since all
processors need to wait for slower processors at each iteration.
The convergence time of the asynchronous algorithms depend

less on the sleep time of the slow cores.

VI. CONCLUSIONS

In this work, we modified the stochastic iterative hard
thresholding algorithm to solve the sparse recovery problem
in an asynchronous parallel manner. We proposed a Bayesian
framework to assign reliability scores to the processing nodes,
using both their current estimate of the support and their itera-
tion number. The update rules for the reliability score and the
support estimate are derived in closed form using variational
inference. This computationally inexpensive inference makes
the algorithm more robust to slow, unreliable processing nodes.
An interesting future direction is to utilize this framework for
other sparse recovery algorithms such as AMP [22], which is
known to have a better phase-transition threshold.

APPENDIX

In this section, the derivations of the update rules for the
inference algorithm are presented. As discussed in Section IV,
the posterior distribution is approximated by a family of dis-
tributions for which the calculations are tractable, employing
the naive mean field approach [19].

In (2), H is divided into disjoint groups Hy,k = 1,...,
where each Hj, is representing one of the hidden variables
in . The variational distribution of each partition Q{*} is
given by [20, Chapter 10]

In(Q{#1}) = Ejur{In(P{D, H})} + const,  (4)
where E;.,{.} is the expectation with respect to distributions
Q{H;}. Plugging in P{D, H} and using the exponential form
of the distributions, we obtain the variational distributions. The

constant is determined by normalizing the distribution.
It is worthwhile to state that if  ~ Bernoulli(p), then

In(P{z}) = In(5 fp)x +1In(1 — p) )

and if x ~ Binomial(n, p), we have

1fp) +nln(17p)+ln((z>). (6)
Also, if = ~ Beta(b',b°), we have
In(P{z}) = (b* — 1)In(z) + (b° — 1) In(1 — x) + const
E{ln(e)} = w(b!) — 66! + 1),
E{In(1 - 2)} = 0(°) — 6! +1°),

In(P{z}) = In(

O]
where 1(-) is the digamma function. We now present the
update rules to obtain the approximate posterior distributions.

A. Tally Score
Using (4), (5), (7) and integrating out all variables but ¢,
we have
In(Q{¢n}) E{ln(P{D,H})} + const.
= const + In(P{¢nla},a’})
+ Eqqu,;} {IIn(P{oni|uni, n})}
= const + (al — 1) In(¢pn) + (a8 — 1) In(1 — é,)

+ By e In( 725 )ons + In(1 = 62)

1983



where ¢ is the updating processor index. The prior knowledge
on the tally and (7) provide the first two terms; the last com-
bines processor information, given the observation reliability.

This expression can be further written in the form of (&} —
1) In(é,) + (a2 — 1)In(1 — ¢,,) + const, which is a Beta
distribution with parameters

>

n = g+ Egpu,.y {tnitoni,

d% (J,g + EQ{u,,,,;}{uni}(l — Oni)-
Here, Eg(y,,3{.} is expectation with respect to Q{un;} and
Eq{u,,}{tni} can be calculated using Q{uy;}, which will be
discussed shortly. This update rule simply means that if 0,,; =
1, we will increase the positive count by Eqyy,,} {tni}s if
on; = 0, we will increase the negative count by Eqyy,,,}{tni}-

®)

B. Processor Reliability Score
Similarly, to update reliability of each processor i, we have
In(Q{ri}) = const + (8 — 1) In(r;) + (87 — 1) In(1 —ry)
+1n(5 " Ve +In(1 — ) K;

i

+ DB quy (= Jni + In(1 = i)}
n

Ti

— 7

= const + ln(m)(ﬁil + ZEQ{HM}{UM} + ki — 1)
+In(1 =) (B + D> [ = Bgu,, ) {uni}] + Ki — ki — 1).

Comparing this to the exponential form of the Beta distribu-
tion, we see that Q{r;} is a Beta distribution with parameters

le = ﬁzl + ZE@{UM}{UM} +k;
- o " )
B =By + > _[1 = Egpu,{un}] + K — ki.

n

The sum is only over coefficients with a new observation.

C. Observation Reliability

Again, by integrating out all the variables except u,;, we
have

In(Q{uni}) = const + B, 3 {In(P{uni|ri})}
+ Eqo,y {In(P{oni|uni, ¢n})}
By employing (5) and (7), we have

In(Q{uni}) = unilor 3 {In(ri)} + (1 — uni)Eggr, 3 {In(l — 74)}
+ (1 — uni) In(0.5) + uni[oniEq(s, 1 {In(én)}
+ (1 = oni)Eqgs, 3 {In(l — ¢n)}] + const.

This update rule, like the others, is a simple expression, as the
observations are either 0 or 1. The inference algorithm cannot
update wu,; if processor ¢ has not reported a measurement
on coefficient n. Thus, the update rule is employed for each
coefficient on which processor ¢ has a new observation.

To update the distribution, we evaluate the expression for
Up; = 0 and u,; = 1. Since Q{¢,} and Q{r;} are
Beta distributions, Egg.1{In(¢n)}, Egee 1 {In(l — ¢n)},
Egqr,{In(rs)}, and Eggr3{In(l — 7;)} can be calculated
using (7).

After normalizing the probabilities to have a valid Bernoulli
distribution, the parameter of the distribution can be updated

as Tp; = EQ{uni}{uni} = Q{um‘ = 1}
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