
A Code-Based Distributed Gradient Descent Method
Elie Atallah

Department of Electrical and Computer Engineering
University of Central Florida

Orlando, FL
elieatallah@knights.ucf.edu

Nazanin Rahnavard
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL

nazanin@eecs.ucf.edu

Abstract—Distributed gradient descent is an optimization al-
gorithm that is used to solve a minimization problem distributed
over a network through minimizing local functions that sum up
to form the overall objective function. These local functions fi(.)
contribute to local gradients adding up incrementally to form
the overall gradient. Recently, the gradient coding paradigm
was introduced for networks with a centralized fusion center
to resolve the problem of straggler nodes. Through introducing
some kind of redundancy on each node, such coding schemes
are utilized to form new coded local functions gi from the
original local functions fi. In this work, we consider a distributed
network with a defined network topology and no fusion center. At
each node, linear combinations of the local coded gradients ∇ḡi
can be constructed to form the overall gradient. Our iterative
method, referred to as Code-Based Distributed Gradient Descent
(CDGD), updates each node’s local estimate by applying an
adequate weighing scheme. This scheme adapts the coded local
gradient descent step along with local estimates from neighboring
nodes. We provide the convergence analysis for CDGD and we
analytically show that we enhance the convergence rate by a
scaling factor over conventional incremental methods without
any predefined tuning. Furthermore, we demonstrate through
numerical results significant performance and enhancements for
convergence rates.

Index Terms—decentralized optimization, gradient coding,
consensus, distributed networks

I. INTRODUCTION

OPTIMIZATION in decentralized distributed systems has
played a significant role for solving various problems

such as distributed spectrum sensing in cognitive radio net-
works, distributed parameter estimation in wireless sensor
networks, source localization in cellular networks as well
as processing big-data in machine learning [5, 9]. The op-
timization problem is posed as a minimization program of
the sum of local objective functions. These functions add
up incrementally to form the total overall objective func-
tion to be minimized, that is f =

∑n
i=1 fi [11, 13]. For

such minimization, different algorithms have been proposed
ranging from distributed gradient based methods to methods
using Lagrangians and dual variables throughout their variant
forms [1]. This optimization process can be carried out on
either centralized or decentralized networks. Moreover, these
methods have achieved sublinear convergence rates for convex
functions. When the convex functions are nonsmooth, the
sublinear convergence rate matches the centralized gradient

method. More recent studies have used predefined tuning to
conventional incremental gradient methods to achieve linear
convergence rate [6]. Our method seeks such an improvement
by a scaling factor on the conventional methods convergence
rate through utilizing new local functions. That can also
be better improved if adequately enhanced by tuning. Ac-
cordingly, we present a decentralized algorithm for solving
optimization problems in static networks dependent upon the
specified connection topology and utilizing a gradient descent
approach. The nodes should have a number of connecting
neighbors that satisfy a corresponding gradient coding scheme
[7, 14, 17]. Consequently, this scheme is used to construct
a corresponding weighting structure along with coded local
functions, carrying some redundancy, that add up to form the
overall objective function. This structure is used in updating
the solution estimates per each node. Thus, each node updates
its estimates by adding all the weighted local estimates of
the neighboring nodes with its local gradient descent-direction
step. After exchanging their local estimates, the structure of
such updating ensures that all agents reach both consensus and
optimality.

The remainder of the paper is organized as follows. In
Section II we present the problem setup with the considered
model assumptions. In Section III, we formulate our proposed
algorithm CDGD with the needed background material. In
Section IV, we state our main fundamental theorem for the
validity of the algorithm convergence. In Section V we prove
the convergence of our algorithm. Afterwards, we find the
convergence rate in Section VI. We complement our work
in Section VII with simulation results. Finally, Section VIII
concludes our paper. In what follows, we reserve capital letters
e.g. A,B for matrices.Scalar variables and vectors are denoted
by lower case letters e.g x, y as it is understood from the
context. A row of matrix A is denoted by Ai while the entry
of index (i, j) is denoted by [A]ij . While matrix [A][i:i′ ][j:j′ ]
is the matrix block formed by varying row index from i to
i
′

and column index from j to j
′
, respectively. ∇f denotes

the gradient of f and A
′

denotes the transpose of A, while
1m×n is reserved for the all 1′s vector or matrix of dimension
m × n. ‖M‖∞ = maxi

∑n
j=1 |[M ]ij |, the infinity norm of a

matrix M and ‖M‖2,∞ = maxi(
∑n
j=1[M ]2ij)

1
2 the norm of

the row with the maximum Euclidean norm in a matrix M .
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II. PROBLEM SETUP

We consider a distributed convex optimization problem over
an undirected graph G = (V, E) that represents the network
topology, where V is the set of vertices of cardinality |V | = n
and E ⊂ V ×V is the set of edges. The neighborhood of node
i is Ni = {j | (i, j) ∈ E} ∪ {i}. We aim on solving an
optimization problem in a distributed manner. That is,

min
x∈RN

f(x) =

m∑
i=1

fi(x), (1)

where f(x) is the global overall function to be minimized,
fi(x) are local functions related to the used partition, and m
is the number of partition subsets.

Instead of using uncoded local gradients of local functions
(that sum up incrementally to the overall objective function)
[2, 11, 13], we use coded local gradients dependent on the
network topology by borrowing the coded paradigm presented
in [17]. That is, instead of solving

min
x∈RN

f(x) =
n∑
i=1

fi(x) (2)

where the number of partitions m is equal to the number of
nodes n, we divide the global function into the sum of l local
functions gi(x) available at each node. In the first approach
(2) the coefficient of each function is set to unity so that each
node can incrementally add its local function share to form
the overall function. However, in our proposed coded gradient
approach (3), each node has a local function gi(x) which is
a combination of the original uncoded functions in such a
manner that a combination of these new coded local functions
forms the overall function. That is,

min
x∈RN

f(x) =

n∑
i=1

fi(x) =

l∑
j=1

Aijgj(x), (3)

where gi(x) is a combination of fi(x) according to the
coding scheme structure at each node (cf., III-B) and A is
the weighing combination matrix.

According to the nodes connection topology at each itera-
tion (here we assume a fixed topology), we apply an adequate
weighting to construct the estimate update at each node. Thus,
when examining scenarios of different network topologies,
each network is identified with a specific coding scheme. Each
of which is a coding scheme in [17], which is usually used
when some nodes are vulnerable to failures or delays known
as stragglers.

Assumption 1. We list the following assumptions essential for
the applicability of our algorithm.
(a) The network G is strongly connected [3, 18].
(b) The function f is convex and each coded function ḡi :
RN → R is convex for 1 ≤ i ≤ 2n.
(c) The solution set of (3) and the optimal value exist.
x∗ ∈ X∗ = {x|f(x) = minx′ f(x

′
)},

f∗ = f(x∗) = min f(x)
(d) The gradients ∇fi(x), where i ∈ V are bounded over the
RN , i.e. there exists a constant F such that

||∇fi(x)|| ≤ F for all x ∈ RN and all i ∈ V (i.e., ‖gi(x)‖ ≤
G =

√
n‖B‖2,∞F

Remark 1. Where ḡi used in Assumption 1 (b) means the
coded local function gi for 1 ≤ i ≤ n available at node i and
−gi−n for n+ 1 ≤ i ≤ 2n available at node i−n. That is, gi
convex if the corresponding coefficients of node i used in Afit
are all positive and gi concave if the corresponding coefficients
of node i used in Afit are all negative and gi linear if some
of the corresponding coefficients of node i are positive and
the others are negative. (N.B. in our detailed to be published
work we use the more relaxed assumption of requiring only
the global function f to be convex.)

III. MAIN ALGORITHM

A. Gradient Coding Scheme

We begin with an overview of gradient coding as introduced
in [17] since it is fundamental in forming the weighing matrix
used in our distributed algorithm.

Problems in networks arise when worker nodes become
stragglers (Li et al. [10], Ho et al. [8], Dean et al. [4]) i.e.
fail or get delayed significantly when computing or commu-
nicating their local information. Tandon et al. [17] discuss
one way to resolve this problem by replicating some data
across machines in a defined coding scheme. This scheme
is described on a centralized network where local workers
exchange their local gradients with the master node to solve
the global optimization problem. To that end, they propose a
deterministic construction based on a defined coding scheme
accompanied with an efficient decoder, which is used to
recover the full gradient update at iteration k from a fixed
number of local gradients from ∆(k) ⊂ {1, .., n} returning
machines with |∆(k)| ≥ n − s, where s is the maximum
number of allowed stragglers. This coding scheme can be
used without any feedback and coordination for identifying
the straggler nodes. Particularly, ∆(k) contains all partition
subsets Ji for i ∈ {1, ..,m} (i.e. ∪mi=1Ji ⊂ partitions of
∆(k)). Thus, the overall cost function, gradient respectively, of
the system can be determined from the set ∆(k). The coding
theoretic question is to design a code such that any n−s linear
combination of these individual linear combinations contains
the overall gradient of the function f =

∑m
i=1 fi. A coding

scheme robust to any s stragglers corresponding to n nodes
and m data partitions can be identified by a system of linear
equation:

AB = 1(n
s)×m

, (4)

where
(
n
s

)
denotes the number of combinations of connected-

nodes/stragglers scenarios, A ∈ R(n
s)×n and B ∈ Rn×m.

Without loss of generality, we assume the number of nodes n
equals to the number of partition subsets m in our algorithm.
The ith row of B, Bi is associated with node i. The support
of Bi, supp(Bi), corresponds to the local functions fl, (i.e the
corresponding local functions fl of partitions Jl), which node i
has access to, and the entries Bij encode a linear combination
over the gradients that node i transmits to the task master at
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the aggregation step. Let∇f , [∇f1, ...,∇fm]′ ∈ Rm×N be a
matrix with each row being the partial gradient corresponding
to the function fi of partition Ji. Then, node i transmits
∇ḡi , Bi∇f while each row of A corresponds to a specific
failure/straggler scenario, (i.e. only for the maximum allowed
number of stragglers case). The support of Ai, supp(Ai),
corresponds to the scenario where the nodes in supp(Ai) are
connected. A and B can be computed using Algorithm 1 and
Algorithm 2 in [17], respectively.

The aforementioned outline is based on the particular coding
scheme introduced in [17], however there exist other schemes
with different coding structures [7, 14].

B. Forming the matrix Afit
The following steps in Algorithm 1 are used for identifying

the matrix Afit corresponding to the gradient coding scheme.

C. Code-based Distributed Gradient Descent (CDGD) over a
Network

As previously mentioned, for achieving convergence of our
algorithm to the optimal desired solution we need to consider
a matrix that carries as close as possible the features of
stochastic matrices. More specifically, we form a block matrix
O with each block of size 2n× 2n such that

O =

 Afit εI2n×2n

I2n×2n −Afit

(
D − εIn×n 0
0 D − εIn×n

)  . (5)

CDGD performs the following updating iterations at each
node i for i ∈ {1, 2, . . . , n}. Please note that Γi is the fixed
support of the row of Afit identified with node i:

x+
i (k + 1) =

∑
j∈Γi

[Afit]ijxj(k) + εy+
i (k)− αk∇ḡi(x+

i (k))

x−i (k + 1) =
∑
j∈Γi

[Afit]ijxj(k) + εy−i (k) + αk∇ḡi(x−i (k))

y+
i (k + 1) = x+

i (k)−
∑
j∈Γi

[Afit]ijxj(k) +
∑
j∈Ni

[D]ijy
+
j (k)− εy+

i (k)

y−i (k + 1) = x−i (k)−
∑
j∈Γi

[Afit]ijxj(k) +
∑
j∈Ni

[D]ijy
−
j (k)− εy−i (k)

(6)

Each node i ∈ V maintains four vectors: two estimates
x+
i (k), x−i (k), and two surpluses y+

i (k) and y−i (k), all in RN ,
where k is the discrete time iteration. We use xj(k) to mean
either x+

j (k) and x−j−n(k) for 1 ≤ j ≤ n and n+1 ≤ j ≤ 2n,
respectively. At the kth iteration, node j sends its estimates
and surpluses to each of its neighbors, i ∈ Nj such that each
estimate is weighted by [Afit]ij and each surplus is weighted
by [D]ij . We can initialize our estimates x+

i (0) and x−i (0)
randomly or set them initially to zero.

The CDGD algorithm can be summarized by the following
recursive equation:

zi(k + 1) =

4n∑
j=1

[O]ijzj(k)− αk∇ḡi(zi(k)) for 1 ≤ i ≤ 4n, (7)

Algorithm 1 Forming Afit and the Updating Matrix O
Input: The Static Network Graph G = (V, E)

1: Find n = |V |.
2: Finding Neighborhoods: Find Ni for all nodes i.
3: Find si = n− |Ni|.
4: Choosing Coding Scheme: Choose a coding scheme [17]

with bn2 c ≥ s ≥ maxi si where s is the allowed number
of stragglers.

5: Forming Rows of A
′
: Match the sets of nonzeros in the

A matrix of [17] corresponding to node i. Identify each
column of A with a unique fixed node. That is:

6: for i = 1 to n do
7: for l = 1 to

(
n
s

)
do

8: if supp(Al) ⊂ Ni then
9: A

′

i = Al
10: end if
11: end for
12: end for
13: Forming A

′′
: Move the negative coefficient at column

1 ≤ j ≤ n of A
′

to be the opposite positive coefficient at
n + j. That is, define A

′′
= [A

′
0n×n]. If [A

′
]ij < 0 →

[A
′′
]ij = 0 and [A

′′
]i(j+n) = −[A

′
]ij .

14: Normalizing A
′′

: Normalize the rows of A
′′

by their l1
norm.

15: Forming Afit: Afit =

[
A

′′

A
′′

]
. For 1 ≤ i ≤ n, row or

column i of Afit correspond to node i. For n+1 ≤ i ≤ 2n,
row or column i of Afit corresponds to node i− n. The
2n× 2n matrix Afit is formed.

16: Identifying the local coded gradient ∇gi at each node
i: Local gradient ∇gi corresponds to row i of matrix B
of [17].

17: Forming adjacency matrix D: Form D, the Adjacency
Matrix of the network G, as a stochastic matrix, where

[D]ij =

{ 1
deg(j)+1 , i ∈ Nj

0, otherwise

∑n
i=1[D]ij =

1,∀j
18: Choosing ε: Choose perturbation ε satisfying Theorem 1
19: Forming Matrix O according to Definition 2.

where

zi(k) =


x+
i (k), 1 ≤ i ≤ n

x−i−n(k), n+ 1 ≤ i ≤ 2n

y+
i−2n(k), 2n+ 1 ≤ i ≤ 3n

y−i−3n(k), 3n+ 1 ≤ i ≤ 4n

We take ∇ḡi(zi(k)) to correspond to the coded gradients
relative to the first 2n variables identified with the estimates
xi. And ∇ḡi(k) = 0 for 2n + 1 ≤ i ≤ 4n corresponding to
the surplus variables yi. That is,

∇ḡi(zi(k)) =


∇gi(zi(k)) = ∇gi(x+

i (k)), 1 ≤ i ≤ n
−∇gi−n(zi(k)) = −∇gi−n(x−i (k)), n+ 1 ≤ i ≤ 2n

0, 2n+ 1 ≤ i ≤ 3n
0, 3n+ 1 ≤ i ≤ 4n
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The step-size αk ≥ 0 and satisfies
∑∞
k=0 αk =

∞,
∑∞
k=0 α

2
k < ∞. The scalar ε is a small positive number

which is essential for the convergence of the algorithm and
satisfying the conditions of Theorem 1. The steps of CDGD
are summarized in Algorithm 2. We will prove in Section V
that all nodes reach consensus to the optimal solution.

Algorithm 2 The CDGD Algorithm

Input: Initialization: Initialize estimates x+
i (0), x−i (0) and

surpluses y+
i (0), y−i (0) at each node i. Define Tolerance

value tol for halting the algorithm and set ei(0) = tol.
k = 0.

1: while ei(k) ≥ tol do {Halting is done at each node
independently with no coordination}

2: k = k + 1
3: At each node i Update Estimates using (7).
4: Find error ei(k) = ‖wi(k)−wi(k−1)‖ where wi(k) =

[x+
i (k)′, x−i (k)′, y+

i (k)′, y−i (k)′]′ for all 1 ≤ i ≤ n
5: end while

Output: x+
i (k) for the corresponding k for each node

D. Conditions on the Network Topology

Definition 1. δ(G) is the minimum degree of the network
graph. The degree of a node deg(i) is equal to the number of
edges connected to node i. Hence, δ(G) = mini deg(i). Let
si = n− |Ni| be the number of nodes that are not connected
to i.

Condition 1. For the coding schemes presented in [17] we can
use a coding scheme with the allowed number of stragglers
s satisfying bn2 c ≥ s ≥ maxi si. This means that δ(G) ≥
n− s− 1. It is easy to check that δ(G) ≥ bn2 c.

IV. MAIN FUNDAMENTAL THEOREM

A. Bounds on ε, characteristics of O and convergence of the
algorithm:

Let us define matrices Q and F as

Q =

 Afit 02n×2n

I2n×2n −Afit

(
D 0n×n

0n×n D

) 
and

F =

(
02n×2n I2n×2n

02n×2n − I2n×2n

)
.

Then O = Q+ εF .
And for a future reference, let us define

ε̄ =
1

(20 + 8n)n
(1− |λ4|)n, (10)

where λ4 is the fourth largest eigenvalue of matrix Q.

Lemma 1. The matrix Q has spectral radius equal to 1 and
eigenvalue 1 is a semi-simple eigenvalue of multiplicity 3. That
is, eigenvalues 1 = |λ1| = |λ2| = |λ3| > |λ4| > ... > |λ4n|.

Proof: We follow a similar analysis as [3] modified to fit
our case, that we refrain from mentioning it here due to the
limited space.

Theorem 1. Suppose that the graph G of the network is
strongly connected and O is the matrix defined in (5) with
the parameter ε satisfying ε ∈ (0, ε̄) where ε̄ is defined in
(10), with λ4 the fourth largest eigenvalue of matrix O by
setting ε = 0. Then
(a) limk→∞Ok → P . Specifically, limk→∞Ok1 = 12n×1π

′

and limk→∞Ok2 = 0, where O1 = [O][1:2n][1:2n] = Afit and
O2 = [O][1:2n][2n+1:4n] = εI2n×2n.
(b) For all i, j ∈ V, [Ok]ij converge to P as k → ∞ at a
geometric rate. That is, ‖[Ok]− P‖ ≤ Γγk where 0 < γ < 1
and Γ > 0.
(c) ε̄ is a necessary and sufficient bound such that for every
ε < ε̄ we have (a) and (b) above.

Proof : We begin by subsequently proving the following
lemmas to get the above result.

Lemma 2. If the parameter ε ∈ (0, ε̄) with ε̄ defined in (10)
where λ4 is the fourth largest eigenvalue of matrix Q, then
1 > |λ4(ε)|, ..., |λ4n(ε)| > 0, the eigenvalues corresponding
to matrix O.

Proof: We follow a similar analysis as [3] modified to fit
our case, that we refrain from mentioning it here due to the
limited space.

Lemma 3. (a) The changes of the semi-simple eigenvalue
λ1 = λ2 = λ3 = 1 of Q under a small perturbation εF
are dλ1(ε)

dε = 0, dλ2(ε)
dε = −1 and 0 > dλ3(ε)

dε ≥ −2n2,
respectively.
(b) Particularly, for ε ≤ ε̄ where ε̄ = 1

(20+8n)n (1− |λ4|)n then
1 ≈ |λ1(ε)| ≥ |λ2(ε)| ≥ |λ3(ε)| > 0.

We omit the proof here as it uses the method provided in
Chapter 2 [15].

We refer the reader to Theorem 2.8 in [16] for its use in
the next lemma.

Lemma 4. If ε ≤ ε̄ where ε̄ defined in (10), the eigenvalues
corresponding to the dominant factor are λ1(ε) ≈ 1, λ2(ε) ≈
1, λ3(ε) ≈ 1 and the invariant subspace corresponding to the
first three dominant eigenvalues are almost the same.

Lemma 5. Assume that the network graph G is strongly
connected and O is the updating matrix of the algorithm
defined in (5). Then
(a) limk→∞O

k → P .
(b) For all i, j ∈, [Ok]ij converge to P as k → ∞ at a
geometric rate. That is, ‖[Ok]−P‖ ≤ Γγk, where 0 < γ < 1
and Γ > 0.

Proof : The algebraic and geometric multiplicities of
eigenvalue 1 of matrix O are equal to 3. Since Lemma states
that all eigenvalues have moduli less or equal to 1. Assume the
left and right eigenvectors of eigenvalue 1 are v1, v2, v3 and
u1, u2, u3 respectively. And v4, v5, ..., v4n and u4, u5, ..., u4n
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are the left and right eigenvectors of eigenvalues λ4, λ5, ..., λ4n

counted without multiplicity.
Then, O represented in Jordan Form decomposition is
such that ‖Ok − P‖ = ‖

∑4n
i=4n−3 PiJ

k
i Oi‖ ≤∑4n

i=4n−3 ‖Pi‖‖Jki ‖‖Oi‖ ≤ Γγk where Γ < ∞ and γ ∈
(0, 1). And limk→∞O

k = limk→∞Q
k = P .

Lemma 6. For 0 < ε ≤ ε̄ where ε̄ is defined in (10), then
limk→∞Ok = limk→∞Qk = P . That is, ε̂ is a necessary
bound for limk→∞Ok = limk→∞Qk = P .

Proof : This follows from the contrapositive of Lemma
2.

Lemma 7. For 0 < ε < ε̂ ≤ ε̄ where ε̄ is defined in (10), ε̂ is
a sufficient bound for limk→∞Ok = limk→∞Qk = P .

Proof : This follows from Lemmas 1-5.

Lemma 8. For 0 < ε ≤ ε̄ where ε̄ is defined in (10), then
limk→∞Ok = limk→∞Qk = P . And ε̄ is a necessary and
sufficient bound for limk→∞Ok = limk→∞Qk = P .

Proof : This follows from Lemmas 6 and 7.
That is, P = limk→∞Ok = limk→∞Qk. But

P = lim
k→∞

Ok = lim
k→∞

Qk = P + lim
k→∞

4n∑
i=4n−3

PiJ
k
i Qi (11)

= lim
k→∞

 Afit 0

I2n×2n −Afit

(
D 0
0 D

) k

That is

P =

(
limk→∞A

k
fit 0

P3

(
P4

) )

But Afit is a row stochastic matrix, then limk→∞Akfit =

12n×1π
′

which is of dimension 2n×2n of rank 1 (repeated row
π) where π is the stationary state of matrix Afit. This result
is needed in Lemma 10 and 12, that is [P ]jl = [P ]ql = πl for
1 ≤ j, q ≤ 2n. Therefore, we have proved Theorem 1 which
is the main edifice for the validity of our algorithm.

Therefore, by using Lemma 2 to Lemma 8 we prove
Theorem 1.

V. CONVERGENCE ANALYSIS

A. Auxiliary Variables Definitions
Using (7), we define ẑl(k) =

∑4n
i=1[O]lizi(k). Then

ẑl(k + 1) =

4n∑
i=1

[O]li

4n∑
j=1

[O]ijzj(k)− αk
4n∑
i=1

[O]li∇ḡi(zi(k))

=

4n∑
i=1

[O]liẑi(k)− αk∇f(zl(k)),

where ∇f(zl(k)) =
∑
j∈Γl

dj(k) i.e. ∇f(zl(k)) =∑
j∈Γl

Afit(l)n,j∇ḡj(zj(k)) for 1 ≤ l ≤ 2n. Thus,

ẑl(k + 1) =

4n∑
i=1

[O]liẑi(k)− αk
∑
j∈Γl

Afit(l)n,j∇ḡj(zj(k))

(14)

Next, we define ˆ̄zl(k) =
∑4n
i=1[P ]liẑi(k). Then

ˆ̄zl(k + 1) =
4n∑
i=1

[P ]liẑi(k)− αk
4n∑
i=1

[P ]li
∑
q∈Γi

Afit(i)n,q∇ḡq(zq(k))

(15)

for 1 ≤ l ≤ 2n by having P = limk→∞Ok and [P ]i,j = 0
for 1 ≤ i ≤ 2n and 2n+ 1 ≤ j ≤ 4n

Remark 2. We define Afit(i)n,j to mean the entry of Afit in
the row corresponding to node i and column corresponding
to node j. Then we have

∑
j∈Γi

Afit(i)n,j which makes it
an easier notation for the analysis of the proof. Although we
could have used

∑
j [Afit]ij′ where j

′
= j for 1 ≤ j′ ≤ n and

j
′

= j + n for n + 1 ≤ j
′ ≤ 2n to mean the same quantity.

Note that in Afit a node i corresponds to two rows: row i
and row i+ n.

B. Convergence Theorems
Theorem 2. Suppose that the graph G of the network is
strongly connected and O is the matrix defined in (5) with the
parameter ε satisfying ε ∈ (0, ε̄) where ε̄ is defined in (10).
Then the algorithm defined by zi(k+1) =

∑4n
j=1[O]ijzj(k)−

αk∇ḡi(k) converges to the optimal result and consensus over
all nodes. That is, for 1 ≤ i, j ≤ 2n, limk→∞ f(zi(k)) =
limk→∞ f(zj(k)) = f∗.

Proof : We begin by subsequently proving the following
lemmas to get the above result.

Lemma 9. Let Assumption 1 holds, then the sequence ˆ̄zj(k)
for 1 ≤ j ≤ 2n, defined earlier follows
‖ˆ̄zj(k + 1)− x‖2 ≤ ‖ˆ̄zj(k)− x‖2

+ 2αk

4n∑
i=1

[P ]ji
∑
q∈Γi

‖Afit(i)n,q∇ḡq(zq(k))‖‖ˆ̄zj(k)− zj(k)‖

+ 4αk

4n∑
i=1

[P ]ji
∑
q∈Γi

GAfit(i)n,q‖zj(k)− zq(k)‖

− 2αk

4n∑
i=1

[P ]ji
∑
q∈Γi

(Afit(i)n,q ḡq(zj(k))−Afit(i)n,q ḡq(x))

+ α2
k‖

4n∑
i=1

[P ]ji
∑
q∈Γi

Afit(i)n,q∇ḡq(zq(k))‖2

(16)

We omit the proof here due to the space limits.

Lemma 10. Let Assumption 1 holds. Then zj(k) and ˆ̄zj(k)
satisfy the following bounds:
For 1 ≤ j ≤ 2n and k ≥ 1

‖ˆ̄zj(k)− zj(k)‖ ≤
4n∑
l=1

‖zl(0)‖Γγk

+ 4n

k−1∑
r=1

Γγk−rαr−1‖Afit(i)n‖2,∞G

+ 2

k−1∑
r=1

αr−1‖P‖2,∞‖Afit(i)n‖2,∞G

+ αk−1‖P‖2,∞‖Afit(i)n‖2,∞G+ αk−1G

(17)
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Proof : We have

zi(k) =

4n∑
j=1

[Ok]ijzj(0)−
k∑
r=1

4n∑
j=1

[Ok−r]ijαr−1∇ḡj(zj(r − 1))

(18)

Then by using (7) and (15) successively we get

‖ˆ̄zj(k)− zj(k)‖ ≤ ‖
4n∑
l=1

zl(0)([P ]jl − [Ok]jl)‖

+

k−1∑
r=1

4n∑
l=1

‖[P ]jl − [Ok−r]jl‖‖αr−1

∑
q∈Γl

Afit(l)n,q∇ḡl(zl(r − 1))‖

+

k−1∑
r=1

4n∑
l=1

‖[P ]jl‖‖αr−1

∑
q∈Γl

Afit(l)n,q(∇ḡq(zq(r − 1))−∇ḡl(zl(r − 1)))‖

+αk−1‖
4n∑
l=1

[P ]jl
∑
q∈Γl

Afit(l)n,q∇ḡq(zq(k − 1))‖+ αk−1‖∇ḡj(zj(k − 1))‖

(19)
since [P ]jl− [Ok]jl ≤ Γγk (see Theorem 1 (b)) and using

the bounds on ‖Afit‖2,∞, ‖B‖∞, ‖∇ḡj‖, ‖P‖2,∞ (in fact P is
doubly stochastic so ‖P‖∞ = 1) and zl(0) the result follows.

Lemma 11. Let Assumption 1 holds. Then for 1 ≤ j ≤ 2n
we have

∑∞
k=0 αk‖ˆ̄zj(k)− zj(k)‖ <∞.

Proof : Using (19) from Lemma 10 and multiplying each
term by αk and summing the terms over k from 0 to ∞, then
using the bounds below we have
K∑
k=0

αkγ
k ≤ 1

2

K∑
k=0

(α2
k + γ2k) ≤

K∑
k=0

1

2
α2
k +

1

2

1

1− γ2
<∞

since
∑∞
k=0 α

2
k <∞ and 0 < γ < 1. Similarly,

K∑
k=0

k−1∑
r=1

αkαr−1γ
(k−r) <

1

2

K∑
k=0

α2
k

k−1∑
r=1

γ(k−r)

+
1

2

K−1∑
r=1

α2
r−1

K∑
k=r+1

γk ≤ 1

1− γ

K∑
k=0

α2
k

Thus,
∞∑
k=0

k−1∑
r=1

αkαr−1γ
(k−r) ≤ 1

1− γ

K∑
k=0

α2
k <∞

Same for
∑K
k=0

∑k−1
r=1 αkγ

2(k−r) < ∞ and∑K
k=0

∑k−1
r=1 αkαk−1 < ∞ and ‖zl(0)‖ bounded. (By

initialization in a bounded space.)
Also P, A and B are fixed thus ‖P‖2,∞, ‖B‖∞and‖A‖2,∞

are bounded. More precisely ‖P‖∞ = 1 (doubly stochastic
matrix) and ‖Afit(i)n‖∞ = 1 (row normalized matrix). Thus
the proof follows.

Lemma 12. Let Assumption 1 holds. Then
(a) For 1 ≤ j, q ≤ 2n we have

∞∑
k=0

αk‖zj(k)− zq(k)‖ <∞, and (20)

(b)

lim
k→∞

‖zj(k)− zq(k)‖ = 0 (21)

That is limk→∞ zj(k) = limk→∞ zq(k) for all j and q (i.e.
1 ≤ j, q ≤ 2n)

Proof : For (a),
∞∑

k=0

αk‖zj(k)− zq(k)‖ ≤
∞∑

k=0

αk

4n∑
l=1

‖[Ok]jl − [P ]jl‖‖zl(0)‖

+

∞∑
k=0

αk

4n∑
l=1

‖[P ]jl − [P ]ql‖‖zl(0)‖

+
∞∑

k=0

αk

4n∑
l=1

‖[Ok]ql − [P ]ql‖‖zl(0)‖

+
∞∑

k=0

αk

k−1∑
r=1

4n∑
l=1

‖[Ok−r]jl − [P ]jl‖αr−1‖∇ḡl(zl(r − 1))‖

+

∞∑
k=0

αk

k−1∑
r=1

4n∑
l=1

‖[P ]jl − [P ]ql‖αr−1‖∇ḡl(zl(r − 1))‖

+

∞∑
k=0

αk

k−1∑
r=1

4n∑
l=1

‖[Ok−r]ql − [P ]ql‖αr−1‖∇ḡl(zl(r − 1))‖

+

∞∑
k=0

αkαk−1‖∇ḡj(zj(k − 1))−∇ḡq(zq(k − 1))‖

(22)

But [P ]jl = [P ]ql for 1 ≤ j, q ≤ 2n and 1 ≤ l ≤ 2n. (see
Theorem 1 (a))

Then, the above becomes

∞∑
k=0

αk‖zj(k)− zq(k)‖ ≤ 2

∞∑
k=0

αk

4n∑
l=1

Γγk‖zl(0)‖

+ 2

∞∑
k=0

αk

k−1∑
r=1

4n∑
l=1

Γγk−rαr−1‖∇ḡl(zl(r − 1))‖

+

∞∑
k=0

αkαk−1‖∇ḡj(zj(k − 1))−∇ḡq(zq(k − 1))‖.

(23)

Similarly using bounds as in the proof of Lemma 11 we get

∞∑
k=0

αk‖zj(k)− zq(k)‖ <∞. (24)

Thus (a) follows.
For (b), using a modified expression of (22) without the
summation over αk and having,
αk → 0 and γk → 0 as k →∞ and ‖∇ḡj(k)‖ ≤ G then,

lim
k→∞

‖zj(k)− zq(k)‖ → 0. (25)

Thus, (b) follows.

Remark 3. The use of Theorem 1 (a) in Lemma 12 parts
(a) and (b) restricts j, q to be 1 ≤ j, q ≤ 2n for the results to
follow.

Lemma 13. Let Assumption 1 holds. Then
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2
∞∑

k=0

αk

4n∑
i=1

[P ]ji
∑
q∈Γi

(Afit(i)n,q ḡq(zj(k))−Afit(i)n,q ḡq(x)) ≤

‖ˆ̄zj(0)− x‖2

+

∞∑
k=0

2αk

4n∑
i=1

[P ]ji
∑
q∈Γi

‖Afit(i)n,q∇ḡq(zq(k))‖‖ˆ̄zj(k)− zj(k)‖

+ 4

∞∑
k=0

αk

4n∑
i=1

[P ]ji
∑
q∈Γi

GAfit(i)n,q‖zj(k)− zq(k)‖

∞∑
k=0

α2
k‖

4n∑
i=1

[P ]ji
∑
q∈Γi

Afit(i)n,q∇ḡq(zq(k))‖2

(26)

Proof : Using Lemma 9 and summing from k = 0 to ∞
the result follows.

Lemma 14. From Lemmas 11, 12(a), 12(b) and 13 and As-
sumption 1(d), we have for 1 ≤ i, j ≤ 2n, limk→∞ f(zi(k)) =
limk→∞ f(zj(k)) = f∗.
Proof : Take x = x∗ the optimal value, in Lemma 13.

Inspecting the RHS of the inequality of (26), we have:
‖ˆ̄zj(0) − x∗‖2 < ∞ as the initial estimate and the
solution are fixed (Bounded space). And since from
Lemma 11 we have

∑∞
k=0 αk‖zj(k) − ˆ̄zj(k)‖ < ∞

for the involved estimates 1 ≤ i ≤ 2n. And∑∞
k=0 αk‖zj(k) − zq(k)‖ < ∞ from Lemma 12(a).

And the fourth term of (26) bounded by Assumption 1(d)
and the fixed P and Afit. Then we get that the LHS is finite,
that is 2

∑∞
k=0 αk

∑4n
i=1[P ]ji

∑
q∈Γi

(Afit(i)n,q ḡq(zj(k)) −
Afit(i)n,q ḡq(x

∗)) <∞.

But from Lemma 12(b) we have zj(k) = zq(k)
for 1 ≤ j, q ≤ 2n and we have f(zj(k)) =∑
q∈Γi

(Afit(i)n,q ḡq(zj(k)). Similarly, f(x∗) =∑
q∈Γi

Afit(i)n,q ḡq(x
∗). But for k ≥ 0, we have

f(zj(k)) − f(x∗) ≥ 0 and
∑∞
k=0 αk = ∞ and from what

preceeded 2
∑∞
k=0 αk

∑4n
i=1[P ]ji(f(zj(k)) − f(x∗)) < ∞

then we get limk→∞ inf(f(zj(k)) − f(x∗)) = 0. Thus,
limk→∞ f(zj(k)) = f∗.

VI. RATE OF CONVERGENCE

After elaborating more on Lemma 9 and knowing that∑K
k=0 αk(fmin − f(x∗)) ≤

∑K
k=0 αk(f(zi(k)) − f(x∗)),

where fmin = min0≤k≤Kf(zi(k)), we get the following :

fmin − f(x∗) ≤ A∗∑K
k=0 αk

+
B∗
∑K

k=0 α
2
k∑K

k=0 αk

(27)

where

A∗ =
1

2‖P‖2,∞
(dist2(ˆ̄z(0),X ∗)− 1

2‖P‖2,∞
dist2(ˆ̄z(k),X ∗)

+
5

2

‖Afit‖2,∞Γ‖B‖2,∞
√
nF

1− γ2

4n∑
l=1

‖zl(0)‖

(28)

and

B∗ =
7

2
‖Afit‖2,∞‖B‖22,∞nF 2(‖P‖2,∞‖‖Afit‖2,∞ +

10

7
)

4n‖Afit‖2,∞‖B‖22,∞nF 2 Γ

1− γ (‖Afit‖2,∞ + 4)

+ 3‖Afit‖2,∞‖B‖2,∞
√
nFΓ

4n∑
l=1

‖zl(0)‖

(29)

where we used G =
√
n‖B‖2,∞F . For αk = 1√

k
then the

convergence rate is a scaled coefficient adequate to the coding
scheme/network topology of rate O( lnk√

k
).

Therefore, the convergence rate of this algorithm is a scaled
version of the convergence rate of the distributed gradient de-
scent (DGD) presented in [12, 18] (for directed and undirected
graphs) with a scaling factor depending on the considered
adapted gradient coding scheme. Thus, we can perfectly adjust
this scaling factor according to a desired coding scheme so
that the algorithm is tuned to perform better than DGD by
that factor yet still under O( lnk√

k
) for αk = 1√

k
.

However, from the norm inequality

‖M‖F ≤
√
n‖M‖2,∞ (30)

we have the minimum of ‖M‖2,∞ attained when M = 1
n1

′
1

where ‖M‖F = 1 and ‖M‖2,∞ = ‖M‖F√
n

= 1√
n

.
But Afit and P are stochastic matrices (particularly row

normalized). The first relative to n and the latter relative to 2n
although the sizes are 2n× 2n and 4n× 4n respectively.(i.e.,
P involved is for 1 ≤ i ≤ 2n rows and the corresponding
nonzero columns are 1 ≤ j ≤ 2n). Therefore,

1√
n
≤ ‖Afit‖2,∞ ≤ 1, and 1√

2n
≤ ‖P‖2,∞ ≤ 1.

Thus the scaling in (28) and (29) can be adjusted to be less
than one. Hence, a better convergence rate than DGD.

Moreover, if we implement our algorithm but with no
coding(no redundancy (i.e., local functions fi) where we have
‖B‖2,∞ = 1 and ‖Afit‖2,∞ = 1√

n
, we are still able to achieve

a better convergence rate than DGD although our updating
matrix can be of a larger size (4n rather than n). We can
reach that by suitably choosing the updating matrix O so that
its limit P has a value of ‖P‖2,∞ as close as possible as 1√

2n
.

VII. SIMULATION RESULTS

The purpose of this simulation is to examine the conver-
gence rate of our proposed algorithm for different network
topologies. Two types of performance metrics are used given
by
Estimation Error := ‖x∗ − xi(k)‖

Consecutive Error := ‖xi(k + 1)− xi(k)‖
In Fig. 1 we compare CDGD with the conventional incre-

mental gradient descent on a distributed network with n = 21
nodes, where the step size is αk = 1

(k+10000)
1
2

. The estimation

error of our approach decreases significantly in comparison
with the other algorithm. Specifically, after a slight bump
increase in the estimation error due to large nonadaptive step
sizes αk for the initial hundred iterates (1 < k < 100),
the algorithm error decreases significantly. This shows that
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our method achieves a better convergence rate. Moreover, the
consecutive error of our method decreases gradually.
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Fig. 1. Estimation and consecutive errors vs iteration of CDGD for a 21-node
decentralized network.

In Fig. 2 we compare the convergence rate of CDGD to the
incremental gradient descent on a n = 7 node network with
the step size αk = 1

(k+100000)
1
2

. From the plot we can verify

the closeness of our algorithm to the expected rate at this step
size taking into consideration the scaling factor. As shown in
the figure the consecutive error of the incremental gradient
descent is the most decreasing, while its estimation error is
the least. However, the closeness of the consecutive error to
the estimation error for our method verifies the use of this first
error as an indicator measure to reaching the exact solution.
Moreover, our algorithm has a better convergence rate, which
is apparent in the figure.

0 2000 4000 6000 8000 10000 12000

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of iterations (k)

E
rr

o
r

 

 

CDGD consecutive error

 CDGD estimation error

incremental gradient descent consecutive error

incremental gradient descent estimation error

Fig. 2. Estimation and consecutive errors vs iteration of CDGD for a 7-node
decentralized network.

VIII. CONCLUSION

We presented in this paper a distributed decentralized algo-
rithm for minimizing convex functions using coded local gra-
dients referred to as Code-Based Distributed Gradient Descent
(CDGD). Each type of network topology is identified with a
corresponding coding scheme that adapts the coded gradients
in an attempt to enhance the convergence rate. A proof for the
convergence of this algorithm was provided that relies implic-
itly on the structure of the updating matrix. In implementing

such approach, we matched the convergence rates of O( lnk√
k

)
in compliance with the uncoded incremental gradient methods
[6, 11]. However, by adapting a convenient coding scheme
we enhanced our convergence rate over conventional methods.
This was achieved by affecting the constant scaling factor
without using any predefined tuning. Detailed analysis of this
work will be presented in an upcoming publication, where the
more relaxed assumption of requiring only the global function
f to be convex is used as mentioned earlier.
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