## Adaptive Non-uniform Compressive Sampling for Time-varying Signals

Alireza Zaeemzadeh, Mohsen Joneidi, and Nazanin Rahnavard Presenter: Alireza Zaeemzadeh Communications and Wireless Networks (CWN) Lab Electrical and Computer Engineering Department University of Central Florida <u>http://cwnlab.eecs.ucf.edu/</u>







## **Conventional CS**

- Solely a simple sparsity model is considered for the underlying signal
- Entries of  $\Phi$  are iid random variables:
  - i.i.d. zero mean Gaussian
  - i.i.d. Bernoulli {+1,-1}
- Identically distributed entries leads to *uniform* distribution of the sensing energy among all the signal coefficients
- All the signal coefficients are treated equally at sampling phase
- The underlying assumption is that all the coefficients are equally important!

## Motivation for Non-uniform CS

- In many application, different coefficients might have different importance levels
- Specifically we might have a region of interest (ROI) and uniform sampling is not efficient
- Intelligent and adaptive CS techniques are needed to leverage signal model or side information about the coefficient



Salient area in a sequence of video frames. Photo source: The DIEM Project [online: https://thediemproject.wordpress.com/]

#### **Related Work**

| Adaptive<br>CS | Sequentially designs the measurement matrix to focus sampling into a desired subspace of signal.                                                                                                                                                                                                                               |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Not concerned with recovering time-varying signals.                                                                                                                                                                                                                                                                            |
|                | Adaptive CS (Iwen et al. 2011), Near-optimal adaptive CS (Malloy et al. 2014), constrained adaptive sensing (Davenport et al. 2016), sequentially designed CS (Haupt et al. 2012), compressive binary search (Davenport et al. 2012), info-greedy sequential adaptive CS (Braun et al.), sequential CS (Malioutov et al. 2010) |
| Dynamic<br>CS  | The information from the previous observations are utilized to modify the recovery step.                                                                                                                                                                                                                                       |
|                | Not concerned with the sampling step.                                                                                                                                                                                                                                                                                          |
|                | Modfied CS (Vaswani et al. 2010) and Kalman filtered CS (Vaswani                                                                                                                                                                                                                                                               |

2008), Dynamic CS via AMP (Ziniel et al. 2013), Time Correlated CS (Shahrasbi et al. 2011), Bayesian online recovery (Wijewardhana, et al.)

### **Our Contribution**

- The main idea of Non-uniform CS (NCS) is to sample the crucial part of the information with more energy than the rest.
- Due to dynamic nature of the problem, *soft importance level information* is advantageous.



#### Adaptive Non-uniform Compressive Sampling (ANCS)

Steps of ANCS

Setting up the **probability model**.

**Calculating the probability distributions** of the desired variables.

Designing the measurement matrix

#### Bayesian Data Analysis: Probability Model (1)



#### Bayesian Data Analysis: Probability Model (2)

- Prior information on hidden variables are modeled by:
- $r \sim \text{Beta}(b^1, b^0)$   $u_n \sim \text{Bernoulli}(r)$  $c_n \sim \text{Beta}(\beta_n^1, \beta_n^0)$

These distributions can be exploited to obtain the joint *prior distribution* over all the hidden variables:

$$P(H) = \prod_{n=1}^{N} \mathbb{P}\{u_n | r\} \prod_{n=1}^{N} \mathbb{P}\{c_n | \beta_n^1, \beta_n^0\} \mathbb{P}\{r | b^1, b^0\}$$



#### Bayesian Data Analysis: Probability Model (3)

We can define the probability distribution for observed data given the hidden variables P(D|H) as:



#### **Bayesian Data Analysis: Inference**



- We wish to obtain P(H|D).
- P(H|D) can be formulated using the prior information P(H)and the sampling distribution P(D|H).  $P(H|D) \propto P(D|H)P(H)$

#### Bayesian Data Analysis: Inference (1)

- To handle the intractable integrals of the inference procedure, *variational inference* is often employed.
- The posterior distribution is approximated by a family of distributions, for which the inference procedure is tractable.

# $P(H|D) \approx Q(H)$

• We aim to find the most similar approximation that minimizes the KL divergence:

# $\widehat{Q}(H) = \arg\min_{Q(H)} D_{KL} \left( P(H|D) || Q(H) \right)$

#### Bayesian Data Analysis: Inference (2)

• The posterior distribution is assumed to be fully factorized over all the hidden variables. i.e.

$$Q(H) = \prod_{n} \mathbb{Q}\{c_{n} | \hat{\beta}_{n}^{1}, \hat{\beta}_{n}^{0}\} \mathbb{Q}\{u_{n} | \tau_{n}\} \mathbb{Q}\{r_{n} | \hat{b}^{1}, \hat{b}^{0}\}$$

 By decoupling the variables, the inference procedure becomes tractable. And the update rules can be derived in closed form.

# Generating $\Phi_{ANCS}$

 The importance levels of the coefficients, inferred by the Bayesian method, is utilized to distribute the energy among the columns of the sensing matrix.

## $\|\boldsymbol{\varphi}_n\|_2 \propto \bar{c}_n$

- $\overline{c}_n$  is a point estimate of the random variable  $c_n$ , (mean, median, or mode).
- We also assume that the available sensing energy is  $E_{avail}$ .  $\|\boldsymbol{\varphi}_n\|_2 = \sqrt{E_{avail}} \frac{\bar{c}_n}{\sqrt{\sum_n \bar{c}_n^2}}$

#### Results: Sparse Signal in Canonical Domain

- N = 200, SNR = 20 dB Window size: W = 5
- T = 30 time steps  $p_{01} = 0.02, \lambda = 0.1$ ,



**ANCS:** The proposed non-uniform sampling + L1 minimization as the recovery algorithm. **Uniform CS:** Gaussian matrix + L1 minimization as the recovery algorithm. **SA-MMSE:** Support-aware minimum mean square error estimator as the recovery algorithm (lower bound).

**TNMSE:** Time-averaged normalized mean square error (averaged over T = 30 time steps).

#### Results: EPFL data set

- 97 sensors deployed in a heterogeneous urban environment.
- For our numerical experiments, 80 most active sensors are sampled minutely.
  Ambient temperature, surface
- Ambient temperature, surface temperature, and relative humidity of the sensors are normalized and stacked in a vector (N = 240).



#### Results: EPFL data set

- M = 140
- T = 66 minutes
- W = 5
- Sparsifying matrix: DCT

- ROI is defined as the sensors that:
  - Has the largest humidity (top %25) AND
  - One of their temperatures is also in top %25.



#### **Future Research Directions**

- Finding the *optimal* energy distribution and analyzing the lower bound of the error.
- Employing higher level statistics of the inferred distributions.
- Exploiting spatial correlation, as well as temporal correlation, e.g. camera sensor or spectrum sensor networks.

# Thank you!

#### References

- 1. A. Zaeemzadeh, M. Joneidi, and N. Rahnavard, "Adaptive Non-uniform Compressive Sampling for Timevarying Signalss," (Accepted) Annual Conference on Information Sciences and Systems (CISS'17), Baltimore, MD, March 2017.
- 2. B. Shahrasbi and N. Rahnavard, "Model-Based Nonuniform Compressive Sampling and Recovery of Natural Images Utilizing a Wavelet-Domain Universal Hidden Markov Model," IEEE Transactions on Signal Processing, vol. PP, no. 99, p. 1, 2016.
- 3. B. Shahrasbi, A. Talari, and N. Rahnavard, "TC-CSBP: Compressive sensing for time-correlated data based on belief propagation," in 201145th Annual Conference on Information Sciences and Systems, pp. 1–6, IEEE, 3 2011.
- 4. M. L. Malloy and R. D. Nowak, "Near-Optimal Adaptive Compressed Sensing," IEEE Transactions on Information Theory, vol. 60, pp. 4001–4012, 7 2014.
- 5. J. Haupt, R. Baraniuk, R. Castro, and R. Nowak, "Sequentially designed compressed sensing," in 2012 IEEE Statistical Signal Processing Workshop (SSP), pp. 401–404, IEEE, 8 2012.
- 6. G. Braun, S. Pokutta, and Y. Xie, "Info-Greedy Sequential Adaptive Compressed Sensing," IEEE Journal of Selected Topics in Signal Processing, vol. 9, pp. 601–611, 6 2015.
- 7. M. A. Iwen and A. H. Tewfik, "Adaptive Strategies for Target Detection and Localization in Noisy Environments," IEEE Transactions on Signal Processing, vol. 60, pp. 2344–2353, 5 2012.
- 8. M. A. Davenport and E. Arias-Castro, "Compressive binary search," in 2012 IEEE International Symposium on information Theory Proceedings, pp. 1827–1831, IEEE, 7 2012.
- 9. U. L. Wijewardhana and M. Codreanu, "A Bayesian Approach for Online Recovery of Streaming Signals from Compressive Measurements," IEEE Transactions on Signal Processing, pp. 1–1, 2016.
- 10. J. Ziniel and P. Schniter, "Dynamic Compressive Sensing of Time-Varying Signals Via Approximate Message Passing," IEEE Transactions on Signal Processing, vol. 61, pp. 5270–5284, 11 2013.
- 11. C. F. Mecklenbrauker, P. Gerstoft, A. Panahi, and M. Viberg, "Sequential Bayesian Sparse Signal Reconstruction Using Array Data," IEEE Transactions on Signal Processing, vol. 61, pp. 6344–6354, 12 2013.

#### **Results: Sparse Signal in Canonical Domain**

• A sparse signal contaminated with AWGN noise:

$$y^{(t)} = \varphi_{ANCS}^{(t)} x^{(t)} + n^{(t)}, t = 1, 2, ..., T$$

- Two random processes describe the signal:
  - 1. Support of the signal  $(s_n = 0 \text{ or } 1)$  described by a binary Markov chain process

• defined by 
$$p_{01} = P\{s_n^{(t)} = 1 | s_n^{(t-1)} = 0\}$$
 and  $\lambda = P\{s_n^{(t)} = 1\}$ 

2. Amplitude of the coefficients  $a_n$ , described by a Gaussian process with zero mean

• 
$$a_n^{(t)} = (1 - \rho)a_n^{(t-1)} + \rho v_n^{(t)}$$
  
•  $v_n^{(t)} = N(0, \sigma_L^2)$ 

•  $\rho = 1$  (No correlation) /  $\rho = 0$  (No variation)

• 
$$x_n^{(t)} = s_n^{(t)} \times a_n^{(t)}$$

#### Results: EPFL data set



22

#### Results: EPFL data set



Error propagation, as well as computational complexity, are the main reasons that choosing large values for inference window should be avoided.