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Compressive Sensing: An Overview
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Conventional CS 

 Solely a simple sparsity model is considered for the underlying 

signal

 Entries of Φ are iid random variables:

 i.i.d. zero mean Gaussian 

 i.i.d. Bernoulli {+1,-1}

 Identically distributed entries leads to uniform distribution of the 

sensing energy among all the signal coefficients

 All the signal coefficients are treated equally at sampling phase

 The underlying assumption is that all the coefficients are equally 

important!
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Motivation for Non-uniform CS

 In many application, different coefficients might have 

different importance levels

 Specifically we might have a region of interest (ROI) and 

uniform sampling is not efficient 

 Intelligent and adaptive CS techniques are needed to leverage 

signal model or side information about the coefficient

Salient area in a sequence of video frames.
Photo source: The DIEM Project 

[online: https://thediemproject.wordpress.com/]
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Related Work

Adaptive 
CS

Sequentially designs the measurement matrix to focus sampling 
into a desired subspace of signal.

Not concerned with recovering time-varying signals.

Adaptive CS (Iwen et al. 2011), Near-optimal adaptive CS (Malloy et 
al. 2014), constrained adaptive sensing (Davenport et al. 2016), 
sequentially designed CS (Haupt et al. 2012), compressive binary 
search (Davenport et al. 2012), info-greedy sequential adaptive CS 
(Braun et al.), sequential CS (Malioutov et al. 2010) 

Dynamic 
CS

The information from the previous observations are  utilized to 
modify the recovery step. 

Not  concerned with the sampling step.

Modfied CS (Vaswani et al. 2010) and Kalman filtered CS (Vaswani
2008), Dynamic CS via AMP (Ziniel et al. 2013),  Time Correlated CS 
(Shahrasbi et al. 2011), Bayesian online recovery (Wijewardhana, et al.)
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Our Contribution

 The main idea of Non-uniform CS (NCS) is to sample the 
crucial part of the information with more energy than the 
rest.

 Due to dynamic nature of the problem, soft importance level 
information is advantageous.
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Adaptive Non-uniform Compressive Sampling (ANCS)

Setting up the probability 
model.

Calculating the probability 
distributions of the desired 
variables.

Designing the measurement 
matrix

Steps of ANCS
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Bayesian Data Analysis: Probability Model (1)

ෝ𝒙

Estimate of the signal

𝒓 ∈ [𝟎, 𝟏]: 
overall reliability 

𝒄𝒏 ∈ [𝟎, 𝟏] : 

Importance level of 

the 𝑛𝑡ℎ coefficient.

𝒖𝒏 ∈ {𝟎, 𝟏}:  Coefficient-

specific reliability 

𝜶𝒏 ∈ {𝟎, 𝟏}: Estimate of 

the ROI for coefficient 𝑛.

Hidden Variables

Observed Data
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Bayesian Data Analysis: Probability Model (2)

ෝ𝒙 Prior information on hidden 
variables are modeled by:

𝑃 𝐻 =

These distributions can be exploited to 
obtain the joint prior distribution over all 
the hidden variables:
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Bayesian Data Analysis: Probability Model (3)

We can define the probability distribution for observed data 

given the hidden variables 𝑃 𝐷 𝐻 as:

0 1

𝑐𝑛
1 − 𝑐𝑛

0 1

𝑐𝑛
1 − 𝑐𝑛

𝑢𝑛
𝛼𝑛

𝑢𝑛 = 1

𝑢𝑛 = 0

Distribution with true 

parameters (reliable data)

Distribution with 

incorrect parameters 

(faulty data)
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Bayesian Data Analysis: Inference

 We wish to obtain 𝑃 𝐻 𝐷 .

 𝑃 𝐻 𝐷 can be formulated using the prior information 𝑃(𝐻)

and the sampling distribution 𝑃 𝐷 𝐻 .

𝑃 𝐻 𝐷 ∝ 𝑃 𝐷 𝐻 𝑃(𝐻)

𝑃 𝐷 𝐻𝐻 𝐷

Cause/Input Effect/Output Model/Process

Inference: Given the 

effect/output find the 

cause/input.
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Bayesian Data Analysis: Inference (1)

 To handle the intractable integrals of the inference 

procedure, variational inference is often employed.

 The posterior distribution is approximated by a family of 

distributions, for which the inference procedure is tractable.

𝑃 𝐻 𝐷 ≈ 𝑄 (𝐻)

 We aim to find the most similar approximation that 

minimizes the KL divergence:

𝑄 𝐻 = 𝑎𝑟𝑔min
𝑄(𝐻)

𝐷𝐾𝐿 (𝑃 𝐻 𝐷 ||𝑄 𝐻 )
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Bayesian Data Analysis: Inference (2)

 The posterior distribution is assumed to be fully factorized 

over all the hidden variables. i.e.

 By decoupling the variables, the inference procedure 

becomes tractable. And the update rules can be derived in 

closed form.

𝑄 𝐻 =
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Generating  𝚽𝐴𝑁𝐶𝑆

 The importance levels of the coefficients, inferred by the 

Bayesian method, is utilized to distribute the energy among 

the columns of the sensing matrix. 

𝝋𝑛 2 ∝ ҧ𝑐𝑛
 ҧ𝑐𝑛 is a point estimate of the random variable 𝑐𝑛, (mean,  

median, or mode). 

 We also assume that the available sensing energy is 𝐸𝑎𝑣𝑎𝑖𝑙 .

𝝋𝑛 2 = 𝐸𝑎𝑣𝑎𝑖𝑙
ҧ𝑐𝑛

σ𝑛 ҧ𝑐𝑛
2
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Results: Sparse Signal in Canonical Domain

 N = 200, SNR = 20 dB

 T = 30 time steps

Needs less number of 

measurements.

Decreases the lower bound.

ANCS: The proposed non-uniform sampling + L1 minimization as the recovery algorithm.

Uniform CS: Gaussian matrix + L1 minimization as the recovery algorithm. 

SA-MMSE: Support-aware minimum mean square error estimator as the recovery 

algorithm (lower bound).

TNMSE: Time-averaged normalized mean square error (averaged over T = 30 time steps).

 Window size: W = 5

 𝑝01 = 0.02, 𝜆 = 0.1,
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Results: EPFL data set

 97 sensors deployed in a 
heterogeneous urban 
environment. 

 For our numerical 
experiments, 80 most active 
sensors are sampled minutely.

 Ambient temperature, surface 
temperature, and relative 
humidity of the sensors are 
normalized and stacked in a 
vector (N = 240).

~ 280 meters

~
 4

30
 m

e
te

rs
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Results: EPFL data set

 M = 140

 T = 66 minutes

 W = 5

 Sparsifying matrix: DCT

 ROI is defined as the sensors 
that:
 Has the largest humidity 

(top %25) AND
 One of their temperatures is 

also in top %25. 

t = 7 t = 9 t = 12 t = 14
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Future Research Directions

 Finding the optimal energy distribution and analyzing the 

lower bound of the error.

 Employing higher level statistics of the inferred distributions.

 Exploiting spatial correlation, as well as temporal 

correlation, e.g. camera sensor or spectrum sensor networks.
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Thank you!
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Results: Sparse Signal in Canonical Domain

 A sparse signal contaminated with AWGN noise:

𝒚(𝑡) = 𝝋𝐴𝑁𝐶𝑆
(𝑡)

𝒙(𝑡) + 𝒏(𝑡), t = 1,2, … , T

 Two random processes describe the signal:

1. Support of the signal (𝑠𝑛 = 0 𝑜𝑟 1) described by a binary 

Markov chain process

 defined by 𝑝01 = 𝑃{𝑠𝑛
𝑡
= 1|𝑠𝑛

𝑡−1
= 0} and 𝜆 = 𝑃{𝑠𝑛

𝑡
= 1}

2. Amplitude of the coefficients  𝑎𝑛 , described by a Gaussian 

process with zero mean

 𝑎𝑛
(𝑡)

= 1 − 𝜌 𝑎𝑛
𝑡−1

+ 𝜌 𝜐𝑛
(𝑡)

 𝜐𝑛
(𝑡)

= 𝑁(0, 𝜎𝐿
2)

 𝜌 = 1 (No correlation) / 𝜌 = 0 (No variation) 

 𝑥𝑛
(𝑡)

= 𝑠𝑛
(𝑡)

× 𝑎𝑛
(𝑡)
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Results: EPFL data set
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Results: EPFL data set

Importance level of different sensors 
Starts with unbiased estimate 

of importance levels

False alarms can impact up to 

W = 5 time slots.

Error propagation, as well as computational complexity, are the main 

reasons that choosing large values for inference window should be avoided.
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