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Abstract—This paper devises a novel adaptive framework for
energy-aware acquisition of spectrally-sparse signals. The adap-
tive quantized Compressive Sensing (CS) techniques, beyond-
Complementary Metal Oxide Semiconductor (CMOS) hardware
architecture, and corresponding algorithms which utilize them
have been designed concomitantly to minimize the overall cost
of signal acquisition. First, a spin-based Adaptive Intermittent
Quantizer (AIQ) is developed to facilitate the realization of the
adaptive sampling technique. Next, a framework for smart and
adaptive determination of the sampling rate and quantization
resolution based on the instantaneous signal and hardware
constraints is introduced. Finally, signal reconstruction algo-
rithms which process the quantized CS samples are investigated.
Simulation results indicate that an AIQ architecture using a
spin-based quantizer incurs only 20.98µW power dissipation on
average using 22nm technology for 1 to 8 bits uniform output.
Furthermore, in order to provide 8-bit quantization resolution,
85.302µW maximum power dissipation is attained. Our results
indicate that the proposed AIQ design provides up to 6.18mW
power savings on average compared to other adaptive rate and
resolution CMOS-based CS Analog to Digital Converter (ADC)
designs. Additionally, the Mean Square Error (MSE) values
achieved by the simulation results confirm efficient reconstruction
of the signal based on the proposed approach.

Index Terms—Adaptive sampling rate; Adaptive quantization
resolution; Compressive sensing; Beyond-CMOS devices; Mag-
netic Tunnel Junction (MTJ).

I. INTRODUCTION

ADAPTIVE signal acquisition and conversion circuits us-
ing emerging spin-based devices offer a new and highly-

favorable range of accuracy, bandwidth, miniaturization, and
energy trade-offs. The use of such approaches specifically
targets new classes of Analog to Digital Converter (ADC)
designs providing sampling rate (SR) and quantization resolu-
tion (QR) adapted during acquisition by a cross-layer strategy
considering both signal and hardware specific constraints.

Prior works on adaptive rate and resolution ADCs [1–8]
have optimized the rate/resolution trade-off assuming a low-
pass signal model and utilizing Complementary Metal Oxide
Semiconductor (CMOS) technology. However, in this work,
we use the theory of Compressive Sensing (CS) [9, 10]
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and spin-based devices [11–24] to advance beyond these
limitations. Compressive sensing is a modern signal acqui-
sition paradigm that aims to measure sparse signals close to
their information rate rather than their Nyquist rate. This is
specifically critical for spectrally sparse wide-band signals
in which conventional sampling becomes impractical due to
challenges associated with building sampling hardware that
operates at prohibitively high Nyquist rates.

Quantized CS [25–28] aims at addressing the existing trade-
off between the number of measurements and the number
of bits used to quantize each measurement for a fixed bit
budget. Although this trade-off has been studied previously
[25–28], adaptive optimization of the SR and QR during signal
acquisition has not been investigated. Moreover, despite the
fundamental theoretical discoveries in this field, quantized CS
techniques are mostly designed and implemented oblivious
to the specifics and limitations of the hardware platform
that performs the sampling/acquisition. In other words, in
the rate/resolution trade-off, both signal dependent constraints
(e.g., sparsity and noise level) and hardware dependent con-
straints (e.g., energy, bandwidth, and battery capacity) play
an important role and as these constraints vary during signal
acquisition, dynamic and cross-layer optimization of SR and
QR is desirable for efficient signal acquisition. While adaptive
SR and QR seem to be viable approaches from the signal
processing and algorithmic point of view, the actual imple-
mentation of them requires a hardware platform that can adapt
itself to these variations.

The above-mentioned challenges motivated us to devise
an adaptive framework for efficient acquisition of spectrally
sparse signals utilizing emerging spin-based devices. In the
first contribution herein, we propose a Spin-based Adaptive
Intermittent Quantizer (AIQ) to perform adaptive signal sam-
pling and quantization. AIQ utilizes Voltage-Controlled Mag-
netic Anisotropy Magnetic Tunnel Junction (VCMA-MTJ)
devices to provide fast SR and adaptive QR in a novel
energy-efficient fashion. By leveraging non-volatility, a spin-
based AIQ can reduce energy consumption via instant off/on
operation without use of a backing store.

The second contribution herein focuses on investigating the
trade-offs between SR and QR under power and bandwidth
constraints using dynamic optimization of SR and QR. The
energy consumption, hardware limitations, and specifics of the
underlying sampler and quantizer become central to system
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optimization. Specifically, computationally efficient signal re-
construction algorithms are developed to reconstruct the origi-
nal signal from its non-uniform quantized CS measurements. It
not only reduces the computational complexity of the proposed
algorithm in comparison with the batch-based reconstruction
algorithms proposed in the Quantized Compressive Sensing
(QCS) literature, but also eliminates the corresponding frame
processing delay. This is further explained in Section IV-C.

The proposed beyond-CMOS hardware architecture and cor-
responding adaptive quantized CS techniques are considered in
synergy with each other. Together these are used to minimize
the overall cost of signal acquisition which is later formulated
as a combination of the amount of dynamic energy consumed
in hardware for acquisition (energy constraint) and the number
of bits acquired for each frame (bandwidth constraint) within
the reconstruction error (MSE) for a spectrally-sparse input
signal.

The key innovations and contributions of our developed
approach are listed below:
• A novel framework for efficient and intelligent sensing

through integration of resource allocation, quantized com-
pressive sensing, and spin-based devices is introduced,

• SR and QR trade-offs under resource constraints are stud-
ied and an energy-aware adaptive SR / QR optimization
framework to tune the sampling rate and quantization
resolution is innovated,

• Novel sampling and reconstruction algorithms are devel-
oped in the context of adaptive quantized CS,

• The utility of VCMA-MTJ devices within the proposed
AIQ architecture is demonstrated to realize faster and
more energy-efficient sampling and signal processing
while achieving reduced area footprint compared to con-
ventional CMOS designs, and

• An energy equation for the SR / QR optimization process
is derived.

The remainder of this paper is organized as follows. A
general introduction of the proposed acquisition approach is
provided in Section II. A realization of the acquisition method
utilizing the spin-based VCMA-MTJ devices is presented
in Section III. The proposed energy-aware quantized CS
approach is introduced in Section IV. Section V provides
the simulation results and comparisons. Finally, Section VI
concludes the paper.

II. PROPOSED CROSS-LAYER APPROACH

In this paper, we develop a novel cross-layer de-
vice/circuit/architecture design for adaptive signal sampling,
reconstruction, and the enabling hardware for energy-efficient
acquisition of wide-band spectrally sparse signals. First, a
framework for smart and adaptive determination of the sam-
pling rate and quantization resolution based on the instan-
taneous signal and hardware constraints is introduced. Fur-
thermore, computationally effective signal reconstruction al-
gorithms from the quantized CS samples are investigated. Sec-
ond, we develop a spin-based Adaptive Intermittent Quantizer
(AIQ) to facilitate the realization of the adaptive sampling
proposed herein. Fig. 1(a) shows the system-level diagram

for our proposed design. In this figure, the input signal x(t)
is compared with the estimate signal x̂(t). The error signal
e(t) then goes through our proposed AIQ which samples each
frame of the input at a specific sample rate, i.e. frame nf
is sampled at t = mτ (nf ), quantized to symbols cm and
subsequently to the corresponding bit stream bm. Note that
τ (nf ) is the sampling interval, which is adaptively determined
for frame nf of the signal.

To encode the signal more efficiently, x(t) is estimated
from bm in a feedback loop, utilizing a sparsity promoting
algorithm in the Sparse Component Estimator (SCE) block.
The AIQ later quantizes and encodes the estimation error
signal e(t) = x(t)− x̂(t) to the sequence of bits bm. Note that
at the transmitter, the AIQ block could alternatively encode the
input signal x(t) itself, however that would be redundant in the
sense that we do not need to encode and transmit part of the
signal that is predictable from the previously encoded sequence
of bits. In other words, the proposed approach is preferred
as it only encodes the unpredictable part of the input signal
(e(t)) by subtracting the predictable part (x̂(t)). Taking this
approach, we observe that the dynamic range of the input e(t)
is significantly reduced in comparison with x(t) itself which
enables the transmitter to decrease the number of quantization
levels and bits needed to encode it and hence further reduces
the bandwidth requirement. Utilizing this approach, recon-
struction by quantized compressive sensing is still possible at
a negligible additional computation overhead as described in
Section IV-C. Note that this is a common strategy already used
in popular Delta and Sigma-Delta modulation ADCs when the
input signal is band-limited. However, it has not been utilized
with sparse signals in the context of compressive sensing
before. The corresponding receiver block shown in Fig. 1(b)
utilizes the same sparsity-promoting algorithm to reconstruct
x(t) from the received sequence of erroneous stream of bits
denoted by b̂m.

The adaptive Sample-Rate (SR) / Quantization-Resolution
(QR) controller is a key innovation of our approach. This block
optimizes SR ( 1

τ(nf ) Hz) and the number of digital bits used to
quantize each sample (QR) for each frame of the input signal.
For that, this block utilizes the signal parameters (e.g., sparsity,
noise level) estimated at the previous frame and hardware-level
constraints (e.g., energy, bandwidth). This block provides the
optimized clock period and bit depth for the next frame of
the signal. The same block is present at the receiver to extract
bit-depth resolution and the sampling rate from the received
sequence of bits. Components of our design are described
below.

Spin-based devices have been extensively researched as
promising companions to CMOS devices. As CMOS scaling
trends continue, the need to identify viable approaches for
reducing leakage power increases. With attributes of non-
volatility, near-zero standby energy, and high density, Mag-
netic Tunneling Junction (MTJ) has emerged as a promising
alternative post-CMOS technology for embedded memory and
logic applications [11–14]. The basic concept of spin-based
Non-Volatile Memory (NVM) devices is to control the intrinsic
spin of electrons in a ferromagnetic solid-state nano-device.
Recent research studies have shown that use of the Voltage-
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(a)

(b)

Fig. 1: (a) The system-level block diagram of the proposed signal
acquisition and (b) the corresponding reconstruction technique.

Controlled Magnetic Anisotropy (VCMA) effect facilitates the
use of an electric field to ease or eliminate the demand of
charge current for switching the state of MTJ devices. As
a result of using VCMA-MTJ devices, the majority of the
dynamic power dissipation caused by ohmic losses and joule
heating during the switching of the spin-based devices can be
significantly reduced [14–19].

Adaptive Intermittent Quantizer (AIQ): Herein, to im-
plement the adaptive rate/resolution sampling, a recently-
developed type of spin-based device, namely the VCMA-
MTJ, is utilized to provide faster and more energy-efficient
signal sampling and quantization. Previously, emerging spin-
based technologies have been explored as an alternative to
CMOS technology for embedded and data storage applications
due to their non-volatility, near-zero standby energy, and high
density. These emerging devices, such as Spin Transfer Torque
Magnetic RAM (STT-MRAM) and Spin-Hall Effect Magnetic
RAM (SHE-MRAM), have been the focus of the research in
recent years [11–14, 20–22]. Using spin-based devices can
increase energy efficiency via a significant reduction in leakage
energy. Furthermore, these devices offer small area footprint
and can be fabricated in 3D stacks on top of baseline CMOS
design using the same backend fabrication process. A detailed
explanation of this block is provided in Section III.

Sparse Component Estimator (SCE): The quantized
Sparse Component Estimator (SCE) block estimates the sparse
spectral components from the output bit stream utilizing an
iterative algorithm. Unlike the previously proposed batch-
based algorithms for quantized compressive sensing [25–28],
our proposed algorithm operates only one iteration on each
frame of the input by utilizing the previous estimate as an
initial value. This way, the computational burden on the signal
acquisition block is reduced and the sparse spectral compo-

nents gradually converge to the actual values across iterations.
This block is used at both acquisition and reconstruction
phases to predict the signal estimate x̂(t) (in the feedback
loop at acquisition). A detailed explanation of this block is
provided in Section IV-C.

Adaptive SR/QR Optimization: The concept of energy-
aware SR/QR optimization is motivated by the fact that, in any
practical scenario, sensing operations need to be able to satisfy
the power and bandwidth constraints. Under a bandwidth
constraint, the sensing device is constrained by a bit-rate
when transmitting or storing the signal. On the other hand,
the energy supply might impose strict constraints on the SR
and/or QR. Thus, it is desirable to have a system that adapts
SR and QR to maximize the sensing performance in the long
run, while considering the power and bandwidth constraints. A
detailed explanation of this block is later provided in Section
IV-D.

III. INTERMITTENT SPIN-BASED ADAPTIVE QUANTIZER
USING VCMA-MTJ DEVICES

A. Background and Related Work

The basic concept of spin-based devices is to control the
spin of electrons in a ferromagnetic solid-state nano-device.
Fig. 2 shows a STT-MRAM cell structure using a single
transistor, known as “one-transistor-one-MTJ (1T-1R)” config-
uration [12]. Each bit cell is accessed via the corresponding
bit-line within the resident word selected by the word-line.
These MTJ devices are constructed with layered pillars of
ferromagnetic and insulating materials to utilize magnetic
orientations that can be controlled and sensed in terms of
electrical signal levels as shown in Fig. 2.

The non-volatile MTJ consists of two Ferromagnetic (FM)
layers, which are called the fixed-layer and the free-layer, and
one tunneling oxide layer between the two FM layers [12]. FM
layers could be aligned in two different magnetization config-
urations, Parallel (P) and Anti-Parallel (AP). Accordingly, the
MTJ exhibits low resistance (RP ) or high resistance (RAP )
states, respectively [12]. Based on STT switching principles,
the P or AP state of the MTJ is configured by means of the
bidirectional current that passes through it, IMTJ , which can
readily be produced by simple MOS based circuits. The states
of the MTJ are switched when IMTJ exceeds critical current,
IC .

B. VCMA-MTJ Devices for Energy-Efficient Architectures

Although MTJs offer non-volatility, near zero stand-by
power dissipation, area efficiency, and fast read operation, their
write energy is still significantly higher than volatile switching
devices. Thus, it is proposed here to address energy-inefficient
and slow write operation by investigating a new approach
to modify the switching energy barrier [14]. Due to the
current-driven operation of spin-based devices, the majority
of the dynamic power dissipation during the switching is
caused by ohmic losses and joule heating [15]. In order to
solve this issue, researchers have studied the magnetoelectric
effect to enable new switching mechanism as an alternative
to conventional approaches. The magnetoelectric effect is
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Fig. 2: 1T-1R STT-MRAM cell structure.

achieved via utilizing an electric field in order to change
the state of the magnetic devices such as MTJs. Using the
magnetoelectric effect, MTJ devices will benefit from faster
and more efficient switching while consuming less energy [14–
16]. Recent research studies have shown that use of the VCMA
effect facilitates the use of an electric field to ease or eliminate
the demand of charge current for switching the state of MTJ
devices. VCMA generates an electric field that causes an
accumulation of electron charge and results in a change of
occupation of atomic orbitals at the interface, which causes
a change in the magnetic anisotropy of the MTJ. Using a
VCMA approach can result in a deterministic change of the
magnetic state of the MTJ in an energy-efficient and rapid
manner. In other words, use of VCMA can lower the energy
barrier between the P and AP states and facilitate the MTJ
to switch states using a voltage applied across its terminals.
The effective Perpendicular Magnetic Anisotropy (PMA) of an
MTJ in the presence of VCMA effect can be modeled using
the following equations [14]:

Keff (Vb) =
MsHeff (Vb)

2
=
Ki(0)−Ki(Vb)

tf
−2πM2

s , (1)

∆(Vb) =
Eb(Vb)

kBT
= ∆(0)−Ki(Vb)

A

kBT
, (2)

Vc = ∆(0)
kBTtox
Aξ

, (3)

where Vb is the bias voltage applied via VCMA effect,
Keff (Vb) is the effective PMA, Heff (Vb) is the effective mag-
netic field in the presence of bias voltage, Ms is the saturation
magnetization, Ki(0) is the initial interfacial PMA energy,
Ki(Vb) is the interfacial PMA energy after applying the bias
voltage, tf is the MTJ’s free-layer thickness, A is the sectional
area of the MTJ, ∆(0) is the thermal stability factor under zero
bias voltage, ∆(Vb) is the thermal stability factor under bias
voltage of Vb, Eb(Vb) is the voltage-dependent energy barrier,
kB is the Boltzmann constant, T is the temperature, Vc is the
critical voltage required by VCMA effect to modify the energy
barrier, ξ is the VCMA coefficient, and tox is the MTJ’s oxide
thickness.

VCMA-MTJ devices require a bias voltage to lower their
energy barrier between the two stable states of Parallel (P) and
Anti-Parallel (AP). This will result in a more efficient method
of switching the device between the P and AP states. When
the energy barrier is lowered, a current with smaller magnitude

and pulse duration can switch the magnetic orientation or the
state of the MTJ devices. As a result, the energy consumption
of the write operation will be reduced. The VCMA bias voltage
that is required to modify the energy barrier can be found
using (3). Additionally, as experimental results in [14–16]
have shown, Ki(Vb) demonstrates a linear dependency to the
electric field, hence, we can simplify it as Ki(Vb) = ξ Vb

tox
[14].

Furthermore, modeling of the VCMA effect can be realized
through modifying the Landau-Lifshitz-Gilbert (LLG) equa-
tion, shown in (4), while updating ~Heff (Vb). As shown in
(6), the voltage dependent anisotropy field, ~Hani (Vb), changes
with the VCMA bias voltage. The changes in (6) will then
result in the modification of ~Heff (Vb) in (5), which presents
the effective magnetic field vector. As a result, the VCMA
effect will enable the MTJ devices to switch faster and with
reduced switching currents due to the lowered energy barrier
caused by the VCMA bias voltage. By requiring reduced
current magnitude for a shorter pulse duration, this approach
will reduce the overall energy consumption of MTJ devices
during the write operation. Additionally, in order to observe
the switching of the magnetic orientation of the MTJ devices
in the z-axis of the Cartesian coordinate system, we need to
solve the LLG equation shown in (4). The modifications made
in the LLG equation to model the VCMA effect are shown
below [14]:

d~m

dt
= −γ ~m× ~Heff (Vb)+α~m×

d~m

dt
−ρstt ~m×(~m×~mr), (4)

~Heff (Vb) = ~Hext + ~Hdem + ~Hth + ~Hani(Vb), (5)

~Hani(Vb) =

(
2Ki(0)tox − 2ξVb

µ0tfMstox

)
mz, (6)

where ~m is the magnetization vector of the MTJ’s free-
layer {mx,my,mz}, ~mr is the polarization vector, γ is the
gyromagnetic ratio, α is the Gilbert damping factor, ~Heff (Vb)
is the effective magnetic field vector in the presence of bias
voltage, ρstt is the STT factor, ~ is the reduced Planck
constant, P is the STT polarization factor, Jstt is the driving
current density inducing STT, e is the elementary electron
charge, µ0 is the vacuum permeability, ~Hext is the external
magnetic field vector {Hx, Hy, Hz}, ~Hdem is the demagne-
tization field vector, ~Hth is the thermal noise field vector,
and ~Hani(Vb) is the voltage-dependent anisotropy field vector.
As it can be observed from (6), using the VCMA effect, by
applying a positive bias voltage across the MTJ, the PMA will
be reduced and will result in reduction of its coercivity. On
the other hand, by applying a negative voltage across the MTJ,
the PMA will be increased and as a result, its coercivity will
increase as well. Fig. 3 shows the effects of VCMA on an
MTJ device.

C. Proposed AIQ Architecture

In recent studies, researchers have exploited the use of
emerging devices for signal processing applications. In par-
ticular, they have explored designing ADCs using emerg-
ing devices such as SHE-MTJ [20], Domain Wall Motion
(DWM) [23], and Racetrack Memory [29]. Herein, we propose
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(a) (b)

Fig. 3: (a) Structure of the VCMA-MTJ. (b) Modification of energy
barrier (Eb(Vb)) using the VCMA effect. When Vb > Vc, the energy
barrier is completely eliminated. Additionally, if 0 < Vb < Vc, the
energy barrier will be reduced to facilitate the switching of the state
of the MTJ. On the other hand, for Vb < 0 the energy barrier will
increase.

Fig. 4: The Proposed AIQ Architecture.

an Adaptive Intermittent Quantizer (AIQ) to perform signal
sampling and quantization. AIQ uses VCMA-MTJ devices
to provide fast SR and adaptive QR, along with energy-
efficient sampling and quantization operations. Use of VCMA-
MTJs enables AIQ to provide various quantization levels by
changing the energy barrier of MTJ devices. An example of
Q-level AIQ architecture is shown in Fig. 4, where Q is the
number of QR levels determined by the optimization algorithm
described in Section IV. The operation of AIQ has three main
steps:
• First, during the Reset step, all active VCMA-MTJ de-

vices will be reset to zero representing a Parallel state,
• Second, during the Sampling step, based on the deter-

mined SR and QR (as discussed in Section IV-D), first a
bias voltage, Vb, will be applied across the active VCMA-
MTJ devices’ terminals to modify and set their energy
barrier followed by the analog input, e(t), to write into
the active VCMA-MTJ devices, as shown in Fig. 1(a),
and

• Third and final step is the Read (or Sensing) step to sense
the data stored in each device using a sense amplifier in
a conventional fashion.

Fig. 5: Schematic of the PCSA used to read the state of an MTJ.

Based on the architecture shown in Fig. 4, during the Reset
step, Source Line (SL) is set to zero, Bit Line (BL) is set to
one, and Read Lines (RLs) are high impedance, which causes
all devices to go to the P state. During the Sampling step,
SL is set to input voltage (Vin), BL is set to zero, and RLs
are high impedance. In this state, an Input Voltage Generator
circuit is used to allow the VCMA bias voltage, Vb, followed
by the analog input, e(t), to be applied through Vin to adjust
the threshold of MTJ devices and write into the MTJs. A signal
called Adaptive Clock (AClk), which is set based on the τ (nf )

as described in Section II, will control the sampling rate of the
input signal. During the Read (or Sensing) step, SL is set to
high impedance, BL is set to zero, and RLs are sent to sense
amplifiers to read the value stored in each MTJ. The design
of the sense amplifiers for an MTJ read operation is discussed
broadly in the literature [12].

The combination of switches and resistors included in
our proposed architecture is used to realize the adaptive
quantization resolution levels. The switch ladder is used to
adaptively set the resolution and the resistance ladder is used to
provide different VCMA bias voltages, Vb, for different MTJs.
By providing different bias voltage levels for different MTJs,
some MTJs turn on with lower input voltages while some
require higher input voltages to switch state. Furthermore, the
switches, which are realized using transmission gates in order
to provide reliable switching [11], enable the Adaptive SR/QR
Controller shown in Fig. 1(a) to optimize the QR by turning
unused MTJs off. As demonstrated subsequently, this results
in significant energy savings.

As shown in Fig. 5, a Pre-Charge Sense Amplifier (PCSA)
[24] is used to read the value stored in the SHE-MTJ devices.
In the PCSA, during the pre-charge stage, SEN signal is low,
turning MN2 off while turning MP0 and MP3 on. This will
pre-charge the output nodes OUT and OUT to VDD. As a
result, MN0 and MN1 will turn on while MP1 and MP2
are still off. As soon as the sensing stage begins, MP0 and
MP3 turn off and MN2 turns on. As a result, based on
the difference between MTJ In and MTJ ref resistances,
which is determined by the magnetization orientation of their
free-layer compared to their fixed-layer, one of the two output
nodes begins to discharge more rapidly to GND, leading either
MP1 or MP2 to turn on and charge the other output to VDD.

The AIQ circuit provides different QR levels. A Look-up
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Table (LUT)-based encoder is used to encode the values for
different levels into bits. For instance, the example shown in
Fig. 4 can provide 1 bit with 1 level, 2 bits with 3 levels,
3 bits with 7 levels, and so forth. Since the number of active
components of the LUT-based encoder depends on the number
of active levels, spin-based devices have also been utilized
within the encoder structure. Correspondingly, depending on
how many QR levels our algorithm is using, we can adaptively
disable the parts of the LUT-based encoder that are not being
used in the encoding process. This will lead to significant
energy savings and improved performance as shown in [13]
compared to conventional CMOS encoders since spin-based
devices offer zero leakage energy consumption.

The behavior of a single VCMA-MTJ device is demon-
strated in Fig. 3. As it is observed different values of Vb
results in different energy barrier heights. As discussed earlier
in this Section, different energy barrier heights result in
different switching behavior for the VCMA-MTJ devices. In
our proposed AIQ design, we have utilized an example of 255
VCMA-MTJ devices to realize a wide range of quantization
resolutions from 1-bit to 8-bit ADC operation. Additionally,
different Vb values will be applied to the active VCMA-
MTJ devices to realize discriminable quantization resolutions.
Moreover, for 1-bit resolution, one level is used, which is set to
650mV and in the middle of our signal range that is normalized
between [0 − 1.3]V. Additionally, the levels are spaced by
542mV, 201mV, 90mV, 43mV, 21mV, 10mV, and 5mV for 2-
bit, 3-bit, 4-bit, 5-bit, 6-bit, 7-bit, and 8-bit resolution levels,
respectively.

IV. ENERGY-AWARE QUANTIZED CS VIA ADAPTIVE RATE
AND RESOLUTION

A. Background and Related Work

The proposed architecture utilizes tools from the general
theory of Compressive Sensing (CS) [9, 10] and hardware-
specific constraints to minimize the overall cost of acquisition
for wide-band but spectrally sparse signals. Spectrally sparse
signals arise in many applications such as cognitive radio
networks, frequency hopping communications, radar/sonar
imaging systems, and musical audio signals. In many cases,
the sparse components are spread over a wide-band spectrum
and need to be acquired without prior knowledge of their
frequencies. This is a major challenge in spectrum sensing that
is an essential block in any spectrum-aware communication
system. Spectrum-aware communication networks require Ra-
dio Frequency (RF) and mixed-signal hardware architectures
that can achieve very wide-band but energy-efficient spectrum
sensing.

Several architectures have already been proposed for wide-
band signal acquisition at rates close to its information rate.
These include the Random Demodulator (RD) [30–32], the
Multi-coset Sampler [33] and the Modulated Wideband Con-
verter (MWC) [34, 35]. However, the measurements need to
be quantized and encoded to bits for subsequent transmission
or processing. In many potential applications the available bit
budget is constrained, which suggests a trade-off between the
SR and QR. This trade-off is well studied in the Quantized

Compressive Sensing [25–28] literature. Generally speaking,
in high observation SNR, fewer but fine-quantized measure-
ments yield better reconstruction quality. However, in the
low SNR case, more but coarse-quantized measurements are
preferred. As the observation noise varies during acquisition,
dynamic optimization of the rate/resolution trade-off is favor-
able, which is a key innovation of our approach.

So far, several algorithms have been proposed for sparse
signal reconstruction from quantized measurements [36, 37].
The extreme case of 1-bit compressive sensing has been exten-
sively studied [38–41]. In the proposed architecture, the input
signal is compared with the level signal, and measurements of
the error are acquired. The level signal is adaptively predicted
in a feedback loop at the ADC. The idea of acquiring sign
measurements of level comparisons was applied in [42] to
overcome the scale ambiguity in 1-bit CS reconstruction. In
[43, 44], the levels were adaptively varied during acquisition.

The proposed architecture considers both the reconstruction-
level and hardware-level cost functions to adapt and optimize
the instantaneous sampling rate and quantization resolution
along acquisition. The reconstruction-level cost originates
from the constrained bit budget as mentioned above, and the
hardware-level cost is the power consumed by the underlying
hardware for sampling and quantization.

There has been some effort to investigate the trade-off
between resolution and the rate in a sensing system [28, 45–
47]. However, most of the related works do not include the
power constraint in their model. For instance, as in [45], Fisher
information can be used to quantize the asymptotic perfor-
mance of the sensing system. More related to the developed
scheme, authors in [28] derived an upper bound for error of
quantized compressive sensing without any power constraints.
Most recently, authors in [47] derived Cramer-Rao bound for
quantized compressed sensing and investigated the trade-off
between SR and QR. However, to the best of our knowledge,
there is no work on investigating the rate/resolution trade-
off under both power and bandwidth constraints for quantized
compressive sampling systems.

B. Spectrally-Sparse Signal Model

Similar to [30–32, 48], we approximate a spectrally sparse
signal x(t) by the sum of exponential components x(t) =∑
s∈S xs(t) in which S = {s1, s2, ..., sN} and xsi(t + ε) =

esiεxsi(t) and assume that only a few number of the compo-
nents have significant amplitudes ‖xs(t)‖0.

Now consider a frame of the signal as Xm =[
x(mτ) x((m− 1)τ) · · · x((m−M + 1)τ)

]T
in

which (τ = τ (nf )) is the corresponding sample period
adapted for the frame and T = (M − 1)τ is the frame length.
Let us define Φ by

Φ =


1 1 · · · 1

e−s1τ e−s2τ · · · e−sNτ

...
...

. . .
...

e−s1(M−1)τ e−s2(M−1)τ · · · e−sN (M−1)τ

 .

(7)
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We can write Xm = ΦX ′m, where X ′m =[
xs1(mτ) xs2(mτ) · · · xsN (mτ)

]T
is the sparse

representation of Xm. Defining a diagonal predictor
matrix P = Diag(eMs1τ , eMs2τ , · · · , eMsNτ ), we get
X ′m = PX ′m−M , which shows the relation between the
sparse representations of the signal for two consecutive
frames. This relation later will help us in designing an
iterative reconstruction algorithm.

C. Sparse Component Estimation (SCE)

Consider the signal model addressed in IV-B. Moreover,
let a frame of the corresponding estimate signal l(t) and
the corresponding quantized symbols cm’s be denoted by
Lm =

[
l(mτ) l((m− 1)τ) · · · l((m−M + 1)τ)

]T
and Cm =

[
cm cm−1 · · · cm−M+1

]T
, respectively. We

can formulate the sparse spectral estimation as

X̂ ′m = arg min
X′m
‖X ′m‖0 s.t. Cm = AQ(ΦX ′m − Lm),

(8)

in which AQ(.) is the element-wise Adaptive Quantizer op-
erator. The number of quantization levels is a function of
the optimized QR values, and it changes adaptively during
acquisition.

To estimate the vector of sparse components X ′m, we take
an iterative gradient-based optimization approach followed by
hard thresholding similar to [36]. To this end, we solve (9), in
which the first term of the cost function enforces consistency
with the sequence of quantized symbols, the second term
guarantees smooth update of the solution, and the constraint
ensures sparsity of the solution. Note that in (9), X̂ ′m−M
represents the estimate of the vector of sparse components for
the previous frame and K is the number of non-zero spectral
components.

X̂ ′m = arg min
X′m

‖Cm −AQ(ΦX ′m − Lm)‖22

+ λ
∥∥∥X ′m − PX̂ ′m−M∥∥∥2

2
s.t. ‖X ′m‖0 ≤ K

(9)

To decrease the computational complexity, we take a sliding
window strategy and apply only one iteration of gradient
descent on each frame utilizing the estimate of the previous
frame as an initial estimate. This is different from the literature
on Quantized Compressive Sensing (QCS) which propose
reconstruction algorithms that are both iterative and batch-
based. This means that the previously proposed reconstruction
algorithms need to apply several iterations on each frame of
the input signal to reconstruct the sparse spectral components.
Thus, such is not only computationally demanding, but also
introduces a frame processing delay at least equal to the frame
length. Utilizing the sliding window approach decreases the
computational burden and enables the proposed algorithm to
dynamically follow slow changes in the input signal along
iterations.

D. Adaptive Energy-Aware SR/QR Optimization

For a clear exposition of our rationale, we assume that the
frame length is adjusted such that the signal and noise statistics
do not change significantly during a single frame. As a result,
there exists a single QR and SR that optimizes the performance
metric for that frame. However, the optimal SR and QR might
change from frame to frame. We further assume that the frame
length is fixed during signal acquisition. Thus, to optimize the
SR, we need to optimize the number of measurements M per
frame.

To formalize the SR/QR optimization problem, consider
a bandwidth constraint that enforces the total number of
acquired bits to be less than a bit budget, i.e., M (nf )β(nf ) ≤
B(nf ), where M (nf ) is the number of measurements, β(nf ) is
the bit resolution of the measurements, and B(nf ) is the bit-
budget for frame nf . Furthermore, the energy constraint can
be expressed as E(β(nf ),M (nf )) < C

(nf )
p , where E(β,M)

is the required sensing energy as function of SR and QR
and C

(nf )
p is the energy available to the device for sampling

the frame nf . Based on the discussion presented in Section
V-A, an estimation for the dynamic energy consumption of the
proposed architecture is E(β,M) = 16.63× 2βM (fJ/frame).
To find the optimal values of β and M at each frame, i.e.
β(nf ) and M (nf ), we need to solve the following problem:

minimize F (nf )(M,β),

subject to Mβ ≤ B(nf ),

E(β,M) < C
(nf )
p .

(10)

F (nf )(M,β) is the error metric at frame nf . In general,
the reconstruction performance can be a function of signal
characteristics such as SNR and sparsity level, leading to
potentially different error metric F (nf )(M,β) for different
frames.

In this work, we use the upper bound of the reconstruction
error as the error metric, due to its popularity in CS literature.
Assume that the signal being sampled at frame nf can be
represented in terms of only K bases out of the N available
bases and the nonzero coefficients are drawn from a zero-mean
Gaussian with standard deviation σ(nf )

x . Further, the signal is
contaminated with zero-mean Gaussian noise with standard
deviation σ

(nf )
n . Due to [28], we can approximate the upper

bound on reconstruction error as:

c

Mβ
(Kσ

(nf )
x

2
β2(−2β) +Nσ

(nf )
n

2
β(1 + 2(−2β))), (11)

where c is a constant and the signal parameters, i.e., σ(nf )
n

and σ
(nf )
x , can be estimated from previous time frames.

Thus, we can use the expression in (11) as the objective
of the optimization problem formulated in (10). The result
of optimizing this problem is used as a lookup table in the
proposed acquisition scheme to adapt the optimal SR and QR
values in an online manner during acquisition. Optimization
results considering the power and bandwidth constraints are
reported in Section V-B, which gives us intuition into the inner
workings of the SR/QR trade-off.
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V. SIMULATION RESULTS AND ANALYSIS

A. AIQ Sampling Results and Performance Analysis

In order to evaluate and validate the behavior and func-
tionality of the proposed AIQ design, SPICE and MATLAB
simulations were performed. We have utilized the 22nm Pre-
dictive Technology Model (PTM) [49] as well as VCMA-MTJ
model represented in [14] along with other circuit parameters
and constants listed in Table I in our simulations to implement
and evaluate the proposed AIQ design.

To examine the performance and potential of the VCMA-
MTJ devices in circuit designs and applications, the circuit
behavior of VCMA-MTJ devices maintaining resistance in P
(θ = 0◦) and AP (θ = 180◦) states as well as the voltage-
dependent TMR effect are modeled by Kang, et al. [14] and
expressed using the following equations [11, 14]:

RP =
tox

Factor ×Area ·
√
φ
exp(

2
√
2me

~
× tox ·

√
φ) (12)

TMR(Vb) =
TMR(0)

1 + ( Vb
Vh

)2
(13)

RMTJ(Vb) = RP

1 + ( Vb
Vh

)2 + TMR(0)

1 + ( Vb
Vh

)2 + TMR(0)[0.5(1 + cos(θ))]
(14)

where Vb is the bias voltage, TMR(Vb) is the Tunnel
Magneto-Resistance (TMR) ratio, Vh = 0.5V is the bias
voltage when TMR ratio is half of the TMR(0), tox is
the oxide thickness of MTJ, Factor is obtained from the
resistance-area product value of the MTJ that relies on the
material composition of its layers, Area is the surface area of
the MTJ, and φ is the oxide layer energy barrier height. The
switching of the perpendicular magnetization of the VCMA-
MTJ’s free-layer is determined by θ is the polar angle of the
magnetization vector of the free-layer, ~m. In other words,
mz = cos(θ) provides the component of the magnetization
vector, ~m, along the z-axis of the Cartesian coordinate system.
The parameters and constants used in the VCMA-MTJ model
for the simulation results are provided in Table I [14].

As depicted in Fig. 6(b), a growing sinusoidal signal is
sampled by 3 levels to 2 bits based on the AClk signal,
shown in Fig.6(a), with 12 sampling intervals resulting in the
bit budget of B(nf ) = 24. Additionally, Fig. 6(c) illustrates
the switching of each of the 3 VCMA-MTJ devices with
different switching energy barriers resulting in different levels.
According to our results, the energy consumption of this
sampling configuration equals 596.31fJ, which consists of the
reset, sample, and read operations as well as the peripheral
circuitry energy consumption during the 50ns signal duration.
The corresponding quantized CS reconstruction algorithm
achieves a Mean Square Error (MSE) of 4.7 × 10−5 on
this signal which proves efficient reconstruction capability of
the proposed design. Furthermore, Fig. 7(b) depicts sampling
of the same growing sinusoidal using the AClk signal with
8 sampling intervals, as shown in Fig. 7(a), to achieve to
3 bits resolution while maintaining the same bit budget of
B(nf ) = 24. Moreover, Fig. 7(c) demonstrates the switching of
each of the 7 VCMA-MTJ devices. The energy consumption of

TABLE I: Circuit parameters and constants with their corresponding
values for the VCMA-MTJ model.

Parameter Description Default Value
Ms Saturation magnetization 0.625× 106A/m

Ki(0) Initial interfacial PMA energy 0.32mJ/m2

tf Free-layer thickness 1.1nm
α Gilbert damping factor 0.05

∆(0) Thermal stability factor at Vb = 0 40
T Temperature 300K
ξ VCMA coefficient 60fJ/V ·m
tox Oxide-layer thickness 1.4nm

Hx External Magnetic Field 4.8× 104 ◦/m
P STT polarization factor 0.58
d MTJ diameter 50nm
φ Potential barrier of MgO 0.4V

TMR(0) TMR ratio at Vb = 0 200%
Vh Bias Voltage at TMR2 0.5V

Constants Description Default Value
γ Gyromagnetic ratio 2.21276× 105m/(A · s)
kB Boltzmann constant 1.38× 10−23J/K

µ0 Vacuum permeability 1.2566× 10−6H/m

m Electron mass 9.11× 10−31kg

e Elementary charge 1.6× 10−19C

~ Reduced Planck constant 1.054× 1034Js

this configuration is 906.39fJ during the 50ns signal duration.
The proposed reconstruction algorithm achieves an MSE of
1.2× 10−4 in this case.

It is observed that as the bit budget is fixed in the experimen-
tal scenarios of Fig. 6 and Fig. 7, an increase in the number of
QR results in a decreased SR considering the SR / QR trade-
off introduced in Section IV-D. This is observed in Fig. 6(b)
and Fig. 7(b) when the number of samples is decreased from
12 to 8 in the provided snapshot of the signal. The MSE values
achieved show that for the experiment parameters (noise,
power, bit budget, etc.), an increased number of coarsely
quantized samples, as shown in Fig. 6, perform better than
accurately quantized samples acquired at a decreased rate, as
shown in Fig. 7.

According to our results, the energy consumption of each
VCMA device is ∼ 17fJ, which consists of a reset and a
sample operation for a single VCMA-MTJ device. Meanwhile,
the energy consumption of the peripheral circuit that sets
the VCMA bias voltages and performs the read operation is
∼ 2fJ. Fig. 8 illustrates the energy consumption versus QR
for 22nm technology node, considering two different sampling
rates of 5 samples and 10 samples within the same sampling
duration of 50ns. It can be observed that for every extra
resolution bit, the number of VCMA-MTJs added to the design
to provide required QR levels grows exponentially. As a result,
the number of reset, sample, and read operations will increase
based on the number of active levels. It is known that the lower
bound for power of ADCs grows exponentially for every bit of
resolution [50, 51]. Thus, QR plays a crucial role in the energy
cost of the device. The energy consumed by the proposed MTJ
devices can be simplified to a formula to calculate and estimate
the amount of dynamic energy consumption for each frame as
EL×2βM , where EL is the dynamic energy per QR level that
is a technology dependent value. According to our simulation
results, the EL value equals 16.63fJ. Hence, the energy per
frame is given by 16.63 × 2βM , where β is the number of
bits and M is the number of samples.

Accordingly, for every VCMA-MTJ read, write, and reset
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Fig. 6: (a) shows the AClk signal over time, (b) depicts the e(t)
signal being sampled with 2 bits (3 levels) with 12 sampling intervals,
and (c) illustrates the switching of the 3 VCMA-MTJ devices in the
sampling intervals.

operations, approximately 16fJ is required using a 22nm tech-
nology node library. The aforementioned energy equation can
be employed in the SR/QR optimization process as discussed
in Section IV-D. According to our results, it can be estimated
that using VCMA-MTJ devices, overall reset, sample, and read
operations would require about 1ns in 22nm technology node
library to provide a reliable outcome. As the results show,
increasing the QR can increase the energy consumption due
to the increase in the number of active MTJ devices. However,
by decreasing SR if possible, in cases where increased QRs are
required, energy consumption can be decreased. Additionally,
an increase in the SR can result in an increase in the energy
consumption of AIQ. This is because an increase in SR
requires fast reset, sampling, and read steps. Hence, the MTJ
devices require to be demagnetized at a faster pace, which
can incur extra energy cost. This would be exacerbated if an
increase in QR is required, since additional devices will need
to be rapidly demagnetized. Overall, energy consumption in
the hardware is not simply a function of the bit budget, i.e.,
B(nf ). Rather, it is a complex function of its components SR
and QR as well as circuit elements and peripherals that are
added for every additional quantization level. In this paper,
we investigated and formulated the hardware energy cost and
trade-offs as a function of SR and QR and utilized the results
in the proposed cross-layer energy-aware SR/QR optimization,
as discussed in Section IV-D.
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Fig. 7: (a) shows the AClk signal over time, (b) depicts the e(t)
signal being sampled with 3 bits (7 levels) with 8 sampling intervals,
and (c) illustrates the switching of the 7 VCMA-MTJ devices in the
sampling intervals.

Fig. 8: Energy consumption versus Quantization Resolution (QR).

B. SR and QR Optimization

Fig. 9 shows the values of SR and QR that minimize the
upper bound in (11). As shown, for low SNRs (< 10 dB), the
device needs to sample more measurements with QR of only
1 bit. This is intuitive, since capturing a low quality signal
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Fig. 9: Optimal values of SR and QR for different SNRs for signal
dimension of N = 1000 and and sparsity level of K = 50, without
considering the energy constraints.

with high-resolution is wasteful. As the SNR increases, the
optimal QR increases and the device should sample the signal
with fewer high resolution measurements. For instance, for a
bit budget of 500 bits and SNR of 50 dB, we should collect
only 50 samples with 10 bits of resolution. These results, and
other similar works in the literature [45, 47, 52], ignore the
energy cost of the sensing task.

To investigate the energy-aware SR/QR optimization, Fig.
10 shows optimal QR and SR for the case when the energy
cost of sampling is taken into account. In this simulation,
it is assumed that the dynamic energy budget for AIQ is
17.03 pJ/frame. As expected, the energy constraint changes
the outcome of the SR/QR optimization. For instance, for a
bit budget of 500 bits and in a high SNR regime, the device
is limited by the power constraint and is not able to collect
high resolution samples.

Furthermore, to illustrate the necessity of adapting SR and
QR during acquisition, we plot the optimal QR and SR values
versus the frame number in Fig. 11. Note that in this simulation
scenario, the variance for the e(t), which is the input to our
proposed AIQ block, is decreasing with the frame number.
This is because l(t) becomes increasingly accurate estimate of
x(t) along iterations. However, the input noise is considered
random. The resulting SNR along with the QR and SR values
that minimize the performance upper bound and the energy
bound introduced in Section IV-D are provided in Fig. 11. As
the SNR of the signal varies over time, the controller needs
to tune the SR and QR to minimize the error metric. It is also
worthwhile to point out the fact that, due to exponential growth
of the energy with QR, the energy constraint prevents us from
sampling the signal with high QR. Thus, adding an energy
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Fig. 10: Optimal values of SR and QR for different SNRs. The
dynamic energy of AIQ is constrained to be less than 17.03pJ/frame.
N = 1000 and K = 50.

budget to the simulation places a limit on the QR. These results
further encourage adaptive and energy-aware adjustments of
SR and QR to improve the performance of the proposed signal
acquisition process.

Fig. 12 shows the reconstruction results for 10 consecutive
frames of a sparse signal generated at random with 5% spectral
sparsity factor. The signal is sampled non-uniformly in frames
of 2.5 × 10−2 seconds. In this simulation, the bit budget is
25 bits/frame and the energy budget is 850 fJ/frame. Fig.
12(a) shows the input and level signals, i.e., x(t) and l(t).
Fig. 12(b) shows the optimal SR and QR values derived from
signal statistics and, Fig. 12(c) shows the corresponding error
signal e(t), which is normalized in [0− 1.3]V to reside in the
input operation range of the AIQ circuit. Additionally, Fig.
12(c) depicts the optimized non-uniform sampling instances
utilizing the proposed AIQ circuit.

C. Reliability Analysis

In order to evaluate the functionality of our proposed
AIQ design in the presence of Process Variation (PV), we
have conducted a series of Monte Carlo (MC) simulations
with 10, 000 instances for the sample operation and 10, 000
instances for the read operation. During the MC simulation,
we have considered 10% variation for the components of the
peripheral circuitry such as threshold voltage of the CMOS
transistors as well as 1% variation for the MTJ devices in
agreement with [53]. This can cover a wide range of possible
variations enabling a comprehensive PV analysis. We have
analyzed our circuit separately for sample operation, as well
as read operation. The results of the reliability analysis for the
sample operation are shown in Fig. 13. As it can be observed
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Fig. 11: (a) Optimal QR and (b) optimal SR for different frames.
The dashed line shows the SNR of the signal.

from Fig. 13(a), for sampling duration within the range of
3ns to 3.5ns with VCMA-MTJ switching duration within the
range of 0.4ns to 0.5ns, depicted as dark blue region in Fig.
13(a), the sample error rate is near 0.0%. However, in order
to minimize the energy consumption of the sample operation,
sample duration should be within the range of 5ns to 5.5ns
with VCMA-MTJ switching duration within the range of 0.3ns
to 0.35ns according to Fig. 13(b). Hence, there is a trade-
off between sample error rate and energy consumption. Thus,
the dark blue region in Fig. 13(b) reflects a reduced energy
consumption at the expense of the corresponding sample error
rate indicated in Fig. 13(a).

Furthermore, the results of the reliability of the read circuit
are provided on Fig. 14. Herein, we have conducted the
reliability analysis for the four of the most commonly-used
approaches for sensing according to the study presented in
[53]. As shown in Fig. 14, the Variation Immune Sense
Amplifier (VISA) proposed in [11] and the Separated Pre-
Charge Sense Amplifier (SPCSA) proposed in [54], provide
highly-reliable outputs considering Tunnel Magnetoresistance
Ratio (TMR) of 200% by only incurring 0.05% and 0.07%
error rate during the read operation, respectively. However,
VISA and SPCSA incur large area and energy consumption
overheads compared to the Energy Aware Sense Amplifier
(EASA) proposed in [11] and the Pre-Charge Sense Amplifier
(PCSA) proposed in [24]. As shown in [53], EASA and PCSA
provide area- and energy-efficient sensing circuits, while VISA
and SPCSA provide more reliable sensing circuits at the cost
of increased energy consumption and area footprint.
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Fig. 12: The reconstruction results for a typical sparse signal sampled
by the proposed scheme.

D. Comparisons

In Table II, we compare the performance of the developed
adaptive acquisition framework with prior non-uniform ADC
architectures. The proposed AIQ exhibits power dissipation
of 0.32uW for 1-bit resolution, 1uW for 2-bit resolution,
2.33uW for 3-bit resolution, 5.02uW for 4-bit resolution,
10.37uW for 5-bit resolution, 21.08uW for 6-bit resolution,
42.48uW for 7-bit resolution, and 85.3uW for 8-bit resolution.
Furthermore, our results indicate that the energy consumption
per sample for 1-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, 7-bit, and
8-bit quantization resolutions are 16.68fJ, 51.79fJ, 120.46fJ,
258.54fJ, 533.98fJ, 1.09pJ, 2.19pJ, and 4.39pJ, respectively.

Since our proposed design benefits from intermittent op-
eration, which enables the proposed AIQ to turn off parts
of the circuit that are not being utilized during the sampling
process and turn them on whenever appropriate, its dynamic
power dissipation is averaged from 1-bit to 8-bit resolutions
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TABLE II: Comparison with prior ADC designs utilizing Non-Uniform Sampling

Uniform Process Adaptive Power Maximum Energy
Digital (SupplyVoltage) SR QR (Average Power) Effective per
Output (#Bits) Bandwidth Sample

Bellasi, et al. [1] No 28nm Yes X
No 7.5mW 2.4 2.9

(1.0V) (4-bit) GHz pJ

Varshney, et al. [2] No 45nm Yes X
Yes X 80µW-1.15mW 120 3.68

(1.2V) (4-6 bit) (442µW) MHz pJ

Wu, et al. [3] Yes X
65nm Yes X

No 30mW 20 5
(1.0V) (4-bit) MHz pJ

Naraghi, et al. [4] No 90nm Yes X
No 14µW 300 98

(1.0V) (9-bit) KHz fJ

Kurchuk, et al. [5] Yes X
65nm Yes X

Yes X 1.1mW-10mW 2.4 36
(1.2V) (1-3 bit) (6.2mW) GHz fJ

AIQ (herein) Yes X
22nm Yes X

Yes X 0.319µW-85.302µW 500 1
(1.0V) (1-8 bit) (20.98µW) MHz pJ

(a)

(b)

Fig. 13: (a) The sample operation error rate trade-off with sample
duration and VCMA-MTJ switching duration, and (b) The energy
consumption trade-off with sample duration and VCMA-MTJ switch-
ing duration.

for a single sample. It should be noted that the amount
of energy required for our proposed framework depends on
the SR and QR values adapted for each frame. Hence, we
report the power consumed averaged for different number
of bits in a frame. According to our simulation results, the
proposed acquisition framework incurs only 20.98µW power
dissipation on average, while providing uniform digital output
of 1 to 8 bits. Furthermore, our results indicate that our AIQ
architecture on average consumes ∼ 1pJ energy per sample.

Fig. 14: The read operation error rate trade-off with different TMR
values for PCSA, EASA, SPCSA, and VISA.

As it can be observed in Table II, our proposed AIQ design
provides 421µW and 6.18mW power savings on average
compared to other adaptive rate and resolution ADC designs
proposed in [2] and [5], respectively, while offering a wider
range of quantization resolution up to 8 bits. Additionally,
our proposed AIQ design consumes ∼ 1.34pJ less energy per
sample on average compared to other state-of-the-art ADC
designs proposed in [1–5]. Moreover, despite utilizing an
adaptive clock for sampling operation, our proposed AIQ
design utilizing VCMA-MTJ spin-based devices achieves a
performance comparable with other state of the art CMOS-
based architecture as shown in Table II in terms of average
power dissipation and energy consumption per sample, while
providing adaptive SR and QR.

Moreover, since the MTJ devices are considered as non-
volatile memory cells, there is no need for an external FLASH
memory or latch to store the data after each sampling opera-
tions. The sampled data will remain in the MTJ devices even if
the power failure occurs. As a result, an extreme area reduction
is achieved. For example, in the 8-bit resolution ADC, 256
comparators are used, and each comparator is connected to
a latch for storing the sampled value. However, by utilizing
MTJ devices, 256 latches can be eliminated from the circuit,
resulting in a significant area reduction. Furthermore, since the
MTJ devices can be fabricated on top of the baseline CMOS
process, they need not occupy extra area in lateral space, which
further advances an area efficient design.
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VI. CONCLUSION

To advance energy-sparing sampling methods , the contribu-
tions of the developed cross-layer design can be summarized
as follows: (1) a novel framework for efficient and intelli-
gent sensing through the integration of resource allocation,
quantized compressive sensing, and configurable spin-based
devices are introduced using a multilayered approach, (2) the
utility of VCMA-MTJ devices within the proposed AIQ ar-
chitecture are demonstrated to realize rapid and more energy-
efficient sampling and signal processing while achieving re-
duced area footprint compared to conventional CMOS designs
is demonstrated, (3) the energy consumption of VCMA-MTJ
is formulated and the energy equation that was derived was
then utilized for SR/QR optimization, (4) SR and QR trade-
off under resource constraints are studied and an energy-
aware adaptive SR/QR optimization framework to tune the
sampling rate and quantization resolution is demonstrated,
and (5) the adaptive SR/QR controller is integrated with the
proposed AIQ for energy-efficient signal acquisition. Finally,
the novel sampling and reconstruction algorithms, which have
been developed in the context of adaptive quantized CS, open
the door to broader applications beyond those addressed in
this paper.
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