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A Framework for Clustered and Skewed Sparse
Signal Recovery

Sheng Wang , Student Member, IEEE, and Nazanin Rahnavard, Member, IEEE

Abstract—A novel framework, clustered-skew normal mixture-
belief propagation, is developed to solve the reconstruction of
undersampled clustered signals, where the magnitudes of signal
coefficients in each cluster are distributed asymmetrically w.r.t the
cluster mean. To address the skewness feature, a finite skew-normal
density mixture is utilized to model the prior distribution, where
the marginal posterior of the signal is inferred by an efficient
approximate message-passing-based algorithm. An expectation-
maximization-based algorithm is developed to estimate the mixture
density. The clustered property is then modeled by the Potts model,
and a loopy belief propagation algorithm is designed to promote
the spatial feature. Experimental results show that our technique
is highly effective and efficient in exploiting both the clustered
feature and asymmetrical feature of the signals and outperforms
many sophisticated techniques.

Index Terms—Compressed sensing, asymmetrical signal, ap-
proximate message passing, expectation-maximization algorithms.

I. INTRODUCTION

COMPRESSIVE sampling is a paradigm to solve for the
correct target signal x ∈ RN×1 , of the under-determined

linear system,

y = Ax+ e, (1)

where A ∈ RM×N is a known random sampling matrix with
M � N , y ∈ RM×1 is the random measurement, and e ∈
RM×1 ∼ N (0, σ2

e IM×M ) is the measurement white Gaussian
noise.

Without any additional knowledge of the signal, solving for
the correct x is ill-posed, and there can be infinitely many so-
lutions satisfying (1). What compressive sensing theory [1]–[4]
states is that, reliable reconstruction of the signal from the under-
determined system (1) is possible, provided that x is adequately
sparse, and the sampling matrix A satisfies the so called Re-
stricted Isometry Property [1]. Here by sparse, it is intended
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that the energy of the signal is primarily carried by Q� N
coefficients of x, which is referred to as significant coefficients,
whereas the energy of the rest coefficients, i.e., insignificant
coefficients, are inconsequential.

The advantage of compressive sampling in solving an under-
determined system makes it attractive in fields where increasing
sampling rate is costly, and a great number of applications have
been inspired. For instance, Compressive Sampling has found
great applications in remote sensing [5], medical imaging [6],
wireless communication system [7], wireless sensor networks
[8], [9], multimedia processing [10]–[12], and anomaly detec-
tion [13], [14].

Reconstruction of clustered sparse signal is an attractive topic
of compressive sensing community. For example, in multime-
dia processing [11], it is found that significant pixels of video
difference frames tend to form clusters, due to the temporal
redundancy of consecutive video frames. Another promising
application can be found in sensor networks to detect abnormal
environment events [15], where in the presence of abnormality,
sensors close to the event give significant and correlated out-
puts, while those outside the scope of the event return outputs
resembling the no-event average.

Many sophisticated strategies have been proposed to exploit
the clustered property in compressive sensing tasks. In [16], a
pruning stage is designed to encourage clustered property based
on Orthogonal Matching Pursuit, and the developed method is
referred to as Structural Orthogonal Matching Pursuit (SOMP).
In [17], a Markov Chain Monte Carlo strategy is employed to
solve the compressive sensing of clustered structured sparse
signals (CluSS), and the developed method turns out to realize
faithful reconstruction in dealing with block clustered sparse
signals. In [11], a Structural Re-weighted �1 norm minimization
technique (SRL1) is developed, where signal coefficients are
allocated with weights determined by the magnitudes of their
corresponding neighbors. In [18], a Lattice Matching Pursuit
(LaMP) is developed, where the clustered sparsity of the signal
is modelled by the Ising model, with which the signal support is
estimated and the reconstruction is directed. A Pattern-Coupled
Sparse Bayesian Learning algorithm (PCSBL) is developed in
[48], and the clustered feature is exploited by a pattern-coupled
hierarchical Gaussian prior model and generalized approximate
message passing.

Compressive sensing of asymmetrical signals is another line
of research, and signals of this type can be found in Multi-
Input Multi-Output (MIMO) wireless communication systems
[22], and weather sensor networks [7], [15], [23]. In [24],
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Fig. 1. Satellite Image: clustered property and asymmetrical features (a) Satel-
lite image (b) Histogram and estimated density of significant coefficients using
skew-normal distribution mixture.

A Bernoulli non-negative Gaussian mixture is employed to
model the distribution of sparse signals with non-negative coeffi-
cients, and an efficient approximate message passing based algo-
rithm is proposed. An effective framework is proposed in [7] to
deal with sparse signals with skewness feature, where a two-state
normal and skew normal mixture density is utilized to model the
prior distribution of the signals. The asymmetrical feature is cap-
tured by the skew normal density component, and the signal is
estimated by an approximate message passing based algorithm.

In this work, we move one step further by approaching the
compressive sensing of clustered sparse signals, where the mag-
nitudes of each cluster are distributed asymmetrically about the
corresponding cluster mean. One motivating example can be
found in the Satellite image [48] shown in Fig. 1(a), where the
histogram of the significant coefficients of the image and es-
timated distribution1 are shown in Fig. 1(b). Specifically, the
clustered feature lies in the fact that structurally, Fig. 1(a) con-
tains 4 of yellow-to-orange rectangles which correspond to the
legs of Satellite, a green-to-yellow trapezoid in the center which
corresponds to the body, a number of light-blue poles, and the
dark-blue background. Besides, the asymmetrical feature can
be found in the histogram Fig. 1(b), where the pixel intensi-
ties of poles are distributed right-skewed about 10, whereas the
intensities of legs are distributed left-skewed about 60.

To get a faithful reconstruction of the signals, we adopt a
divide-and-conquer methodology, and decompose the task into
three modules.

First of all, to address the skewness feature, a finite skew-
normal distribution mixture is utilized to model the prior distri-
bution of the signal. Skew normal distribution [25] generalizes
normal distribution, and is more flexible in dealing with asym-
metric features. An efficient approximate message passing algo-
rithm, which takes the mixture distribution and the hidden states
of signal coefficients as inputs, is designed to iteratively derive
the marginal posterior and the Minimal-Mean-Squared-Error
(MMSE) estimate of the signal by propagating local beliefs
between x and y.

Subsequently, following the approximate message passing
module, an Expectation-Maximization-based algorithm is de-
veloped to estimate the mixture density from the MMSE es-
timate of the signal. The number of mixture components is
estimated in an efficient and non-parametric way.

1Estimated using our proposed skew-normal density mixture model.

Moreover, given the MMSE and the mixture density esti-
mates from previous modules, a loopy message passing based
algorithm is designed, where the compatibility of neighboring
coefficients is regularized by the Potts model, after which the
hidden states of signal coefficients can be estimated, and the
clustered property can be promoted.

Overall, our proposed technique, referring to as CL-SNM-BP,
alternates among exploiting the measurement, drawing infer-
ence of the finite mixture model, and taking advantage of the
clustered property. These three modules work sequentially and
iteratively, after which a refined reconstruction of the signal can
be obtained.

To the best of our knowledge, our method is among the first
few works taking both asymmetry and clustered sparsity into
account in compressive sensing tasks. Compared to [7] which
has analyzed general asymmetrical sparse signals, our developed
technique is designed to exploit the clustered features on top
of asymmetry. Moreover, compared to the two-states mixture
model [7] with fixed location parameters, our technique utilizes
a finite mixture model, which allows for multiple skew normal
distribution components with arbitrary location parameters, and
can therefore accommodate more general signals.

Existing studies [18], [26] utilize Markov random field and
Ising model [27] to exploit the clustered property. While being
highly effective in recovering the support sets of signals, they
are incapable of discriminating diverse hidden states of sig-
nificant coefficients. Taking advantage of the Potts model, our
developed method not only promotes clustered property, but is
also adequately responsive to different hidden states of signal
coefficients. Therefore, compared to existing methods, clustered
property is exploited in a more informative way.

The remainder of this paper is organized as follows. The sig-
nal model and the framework of our proposed technique are
introduced in Section II. Approximate message passing em-
ploying the skew normal mixture prior is detailed in Section III.
In Section IV, an Expectation-Maximization based algorithm is
put forward to infer the finite skew normal density mixture. The
hidden states estimate using loopy message passing and Potts
model is derived in Section V. Simulation results are summa-
rized in Section VI, and Section VII concludes the work.

The following notations are used throughout the paper. Bold
symbols denote matrices exclusively, and symbols with under-
line denote vectors. φ(·) and Φ(·) are reserved for standard
normal probability density function (pdf) and cumulative dis-
tribution function (cdf). SN (·) is reserved for the pdf of skew
normal density.

II. SIGNAL MODEL AND PROBLEM DEFINITION

A. Signal Model

1) Signal Representations: Denote the two dimensional sig-
nal x = (xij ) ∈ Rd×d as the outcome of random variable
X = (Xij ) ∈ Rd×d , where 1 ≤ i, j ≤ d, and d 2 = N . For ease
of notation, in this work, the two dimensional signalx is also rep-
resented as a one dimensional column vector, x = [x1 , . . . , xn ,
. . . , xN ]ᵀ, where xij is mapped to xn in one dimensional
form with n = (i− 1) × d+ j, and 1 ≤ n ≤ N . Similarly,



3974 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 15, AUGUST 1, 2018

X = [X1 , . . . , Xn , . . . ,XN ]ᵀ is the one dimensional represen-
tation of X.

It is also convenient to represent the signal as a concatenation
of clusters. Specifically, letG be the total number of clusters, out
of which, 0 ≤ Gs < G clusters are significant, with the remain-
ing being insignificant. Therefore, the signal can be written as,
x = [xᵀ

1 , . . . , x
ᵀ
g , . . . , x

ᵀ
G ]ᵀ, with xg = [xg(1) , . . . , xg(dg ) ]

ᵀ de-
noting the g-th cluster, where 1 ≤ g ≤ G. Besides, dg denotes
the cardinality of cluster g, and

∑G
g=1 dg = N .

In this work, it is assumed that signals are drawn from a prob-
abilistic density ensemble of K density components. Let Sn ∈
{1, . . . ,K} be a random variable indicating the corresponding
state of signal coefficientXn , and denote S = [S1 , . . . , SN ]ᵀ ∈
RN×1 as the state random vector, with the corresponding real-
ization s = [s1 , . . . , sN ]ᵀ being the state vector.

Without any constraint, the state vector s lies in the {1, . . . ,
K}N subspace of RN . To realize clustered property, we restrict
the states within a cluster to be homogenous, i.e., s(i) = s(j)
for any xi, xj ∈ xg .

Additionally, let V = (Vnk ) ∈ RN×K be the state probability
matrix, where Vnk denotes the probability of Xn taking state k,
with the non-negative probability constraint 0 ≤ Vnk ≤ 1, and
unitary row sum constraint

∑K
k=1 Vnk = 1.

2) Skew Normal Density: Skew normal density is a con-
tinuous probabilistic distribution generalized from the normal
distribution [25],

SN (X = x|ξ, ω, α) =
2
ω
φ

(
x− ξ

ω

)

Φ
(

α
x− ξ

ω

)

, (2)

where ξ,ω andα denote location, scale and shape parameters, re-
spectively. As can be seen in (2), compared to the normal distri-
bution, the shape parameter α allows for a non-zero skewness,2

thus enables to capture the skewness feature of signals.
3) Mixture Density Model: In this work, it is assumed that

for any cluster g, the states of its coefficients are homogeneous,
and the coefficients are jointly independent, conditioned on the
states, i.e.,

p
(
Xg = xg |S(xg ) = k

)
=

∏

x∈xg
SN (x|ξk , ωk , αk ), (3)

where skew normal density (2) is employed to represent the
density of state k ∈ 1, . . . ,K.

Besides, the states of clusters are assumed to follow a K-state
categorical distribution, e.g.,

p
(
S(xg ) = k)

)
= λk , (4)

where
∑K

k=1 λk = 1, and λk ≥ 0.
Therefore, the pdf of the signal can be written as the following

mixture,

f(x;Θ) ∼
K∑

k=1

λkp(x; θk ), (5)

where Θ = [θ1 , . . . , θK ]ᵀ represents the parameter matrix, with
θk = [ξk , ωk , αk ] denoting the parameter vector specifying the

2Skew normal distribution (2) becomes normal with α = 0, and is left-
skewed, and right-skewed when α < 0, and α > 0, respectively.

Fig. 2. Clustered sparse signal and skew normal mixture density (a) Signal
withG = 3 clusters, whereGs = 2 clusters are significant. (b) Mixture density
of K = 3 Skew Normal density components.

Fig. 3. Diagram of CL-SNM-BP.

k-th skew-normal density component, and λ = [λ1 , . . . , λK ]ᵀ

denoting the non-negative mixing weight vector.
Fig. 2(a) is a toy example of a clustered sparse signal, gen-

erated from the corresponding skew normal mixture density
shown in Fig. 2(b). Following previous notations, the signal in
Fig. 2(a) can be written as a concatenation of G = 3 clusters,
i.e., x = [xᵀ

1 , x
ᵀ
2 , x

ᵀ
3 ]ᵀ, where xᵀ

1 is an insignificant cluster (a
cluster with insignificant data values), xᵀ

2 and xᵀ
3 are signifi-

cant clusters. Besides, x1 is drawn from p(x1 ; θ1), with θ1 =
[ξ1 = 0, ω1 = 1, α1 = 0]ᵀ, x2 is drawn from p(x2 ; θ2), with
θ2 = [ξ2 = −10, ω2 = 2, α2 = −10]ᵀ, and x3 is drawn from
p(x3 ; θ3), with θ3 = [ξ3 = 10, ω1 = 2, α1 = 10]ᵀ. The mixing
weight in Fig. 2(b) is set to λ = [λ1 = 0.8, λ2 = 0.2, λ3 = 0.2].

B. Problem Definition and System Architecture

We adopt a Bayesian perspective in the reconstruction phase
of the compressive sensing task, with the goal being set to derive
a faithful estimate of signal by maximizing the posterior distri-
bution p(x|y,V,Θ). As neither mixture parameters Θ nor the
state probability V is known, an effective algorithm is devel-
oped to seek a reliable reconstruction of the signal by iteratively
applying the sub-modules shown in Fig. 3.

As can be seen in Fig. 3, at iteration i, CL-SNM-BP starts
with an approximate message passing module, where a MMSE
estimate of the signal is obtained by calculating the condi-
tional expectation of the posterior, i.e., x̂iMMSE = E[X|Y =
y,Vi−1 ,Θi−1 ].

Subsequently, x̂iMMSE is fed to the second module to get
an estimate of the mixture density parameters Θ. In our tech-
nique, this is realized by seeking a maximum likelihood estimate
(MLE) solution, Θ̂i

EM = arg max p (X = x̂iMMSE|Θ), using an
Expectation-Maximization-based method.

The last module involves estimating the probability state V.
Specifically, taking mixture density estimate Θ̂i

EM, and the re-
construction of signal x̂iMMSE as inputs, a loopy belief propaga-
tion based technique is set forth to infer the probability state,
while promoting the clustered property.
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The above completes the work flow of our technique. The pro-
posed method, CL-SNM-BP, alternates between these modules
and works in an iterative fashion, where at the end of iteration i,
the state probability matrix V̂ i and the parameters of the skew
normal mixture Θ̂i

EM, are fed back to the approximate message
passing module, and iteration i+ 1 starts.

III. APPROXIMATE MESSAGE PASSING EMPLOYING SKEW

NORMAL MIXTURE PRIOR

In this section, to capture the skewness feature, we employ a
finite skew normal density mixture (5) as the prior distribution
of the signals. Given V̂ i−1 and Θ̂i−1

EM , an efficient approximate
message passing algorithm is proposed to make inference of
the signal by exchanging beliefs between variable nodes x and
check nodes y.

It is worthy noticing that, a similar technique can be found
in [7], where a two-state normal and skew normal mixture is
employed to model signals whose significant coefficients are
skewed about the origin x = 0. Our work here considers a multi-
state skew normal mixture with arbitrary location parameters,
and is capable of accommodating varying number of mixture
components. Therefore, [7] can be viewed as a special case of
our work.

A. Bayesian Inference by Approximate Message Passing

Approximate message passing [28], [29] is a powerful method
enabling efficient and reliable Bayesian inference of the pos-
teriors. In approximate message passing, the sampling pro-
cess (1) is viewed as a bipartite factor graph, where x =
[x1 , . . . , xn , . . . , xN ]ᵀ is referred to as variable nodes, and
y = [y1 , . . . , ym , . . . , yM ]ᵀ is known as check nodes, with the
entry Amn being the edge connecting xn and ym .

The marginal posteriors are then estimated by iteratively ex-
changing local beliefs between variable nodesx and check nodes
y. Specifically, at iteration i, let ν(i)

xn →ym (xn ) denote the mes-
sage from the variable node xn to the check node ym , and
ν

(i)
ym →xn (xn ) represent the message from the check node ym to

the variable node xn , where

ν(i)
xn →ym

(xn ) = N (xn ;μ(i)
xnm

, σ2
xnm

(i) ), (6)

ν(i)
ym →xn

(xn ) = N (xn ;μ(i)
ymn

, σ2
ymn

(i) ), (7)

with the mean and variance being evaluated as,

μ(i)
xnm

=
∫ ∞

−∞
xnν

(i)
xn →ym

(xn ) dxn , (8)

σ2
xnm

(i) =
∫ ∞

−∞
(xn − μ(i)

xnm
)2ν(i)

xn →ym
(xn ) dxn , (9)

μ(i)
ymn

= (ym −
∑

t∈[1,...,N ]\{n}
Amtμ

(i)
xtm

)/Amn , (10)

σ2
ymn

(i) = (σ2
e +

∑

t∈[1,...,N ]\{n}
A2
mtσ

2
xtm

)/A2
mn . (11)

Combining the skew normal mixture density prior (2) and
(5), the message from xn to ym is updated in (i+ 1)-th

iteration as,

ν(i+1)
xn →ym

(xn ) ∼= N (xn ; a(i)
nm , b

2
n

(i))
K∑

k=1

λkSN (xn ; ξk , ωk , αk ).

(12)

where

a(i)
nm �

∑

u∈[1,··· ,M ]\{m}
Aunμ

(i)
yu n

, (13)

b2n
(i) � 1

M

∑

u∈[1,··· ,M ]

A2
unσ

2
yu n

(i) . (14)

It is noteworthy that (12) involves the product of nor-
mal density function and skew normal density function, i.e.,
N (x; a(i)

nm , b2n
(i))SN (x; ξq , ωq , αq ). A special case of this prob-

lem, where the location parameter is fixed to ξ = 0, was studied
in [7] for signals that are asymmetrical about the origin x = 0.
For arbitrary value of ξ, we come up with the following Lemma
1 and Lemma 2 to evaluate the corresponding statistics.

Lemma 1: Denote SN (x; ξ, ω, α) as the skew normal den-
sity with parameters being (ξ, ω, α), and let N (x; a, b2) be the
normal density function with mean value a and variance b2 ,
then the product Z(a, b, ξ, ω, α) × SN (x; ξ, ω, α)N (x; a, b2)
is a probability density function, i.e., Z(a, b, ξ, ω, α)

∫ ∞
−∞ SN

(x; ξ, ω, α)N (x; a, b2)dx = 1, with

Z(a, b, ξ, ω, α) =
ς

2φ
(
a−ξ
ς

)
Φ(η)

(15)

where ς =
√
b2 + ω2 , η = κ+hμ√

1+h2 σ 2 , h = α
ω , κ = −hξ, μ =

aω 2 +ξb2

ς 2 , and σ2 = b2 ω 2

ς 2 .
Proof:

SN (x; ξ, ω, α)N (x; a, b2) (16)

=
2
ωb
φ

(
x− a

b

)

φ

(
x− ξ

ω

)

Φ
(

α
x− ξ

ω

)

(17)

=
1

πωσ
exp

(
1

2σ2

(

μ2 − b2ξ2 + ω2a2

ς2
− (x− μ)2

))

Φ
(

α
x− ξ

ω

)

(18)

It is noticed that (18) involves Φ(αx−ξ
ω ), therefore, applying

Lemma 1 of [7], the above Lemma 1 holds. �
As a direct extension of Lemma 3 in [7], the following

Lemma 2 is derived.
Lemma 2: Let a random variable X follows the distribu-

tion X ∼ Z(a, b, ξ, ω, α) ×N (X; a, b2)SN (X; ξ, ω, α), then
the mean E(X) is given by

E(X) = μ+ ζ
φ(η)
Φ(η)

, (19)

and the variance is

Var(X) = μ2 + σ2 + ρζ
φ(η)
Φ(η)

− E2(X), (20)

where ζ = hσ 2√
1+h2 σ 2 , and ρ = 2μ+μh2 σ 2 −κhσ 2

1+h2 σ 2 .
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As a result of Lemma 2, and omitting the iteration superscript,
(12) can be approximated by the normal density as,

νxn →ym
(xn ) ∼= N (μxnm , σ

2
xnm

), (21)

in which

μxnm = F(anm , b2n ,Θ,V) = Cn

K∑

k=1

Vnk
Znk

Enk , (22)

σ2
xnm

= G(anm , b2n ,Θ,V)

=
K∑

k=1

pnk (E2
nk + V arnk ) −

(
K∑

k=1

pnkEnk

)2

, (23)

where Enk and V ar2
nk can be calculated as (19) and (20) with

corresponding parameters κ(i)
nm , ς

(i)
n , ξk , ωk and αk of (12). It

should be noted that, in evaluating the mean and variance of (12),
instead of using a uniform mixing weight λ = [λ1 , . . . , λK ] for
all coefficients, the state probability matrix V is utilized, where
signal coefficients are assigned with non-uniform weights.
More specifically, in (12), λ = [λ1 , . . . , λK ] is replaced with
[Vn1 , . . . , VnK ] for signal coefficient xn , where n ∈ [1, . . . , N ].
Therefore, pnk = Cn

Vn k
Zn k

, Cn = (
∑

k
Vn k
Zn k

)−1 , and Znk can be
calculated in (15).

B. First Order Approximation by Chain Rule and
Matrix Operations

The above message updating strategies (6), (7) and (21) en-
able an approximate MMSE solution by tracking O(MN) mes-
sages. To further simplify the belief propagation, we adopt a first
order approximation strategy [29], where a variable node xn
sends a uniform message to all check nodes y = [y1 , . . . , yM ].
Similarly, a check node ym sends a uniform message back to
all variable nodes x = [x1 , . . . , xN ], after which only O(N)
messages are needed to be updated in each belief propagation
iteration.

It should be noted that the first order approximate strategy
involves taking the derivatives of (22) with respect to κnm . As
anm is involved in equations, taking the derivative directly on
(22) as [7] is complicated and intractable for varying number of
mixture density components K. Therefore, we apply the Chain
Rule, where the derivative is obtained by decomposing (22) into
simpler constituent functions, the derivatives of which are then
evaluated, and eventually chained together to form the target
derivative.

To this end, the following update rules (24) to (28) are
derived,

a(i)
xn

=
M∑

m=1

Amnμ
(i)
ym

+ μ(i)
xn
, (24)

μ(i+1)
xn

= Fn (a(i)
xn
, b2 (i)) =

K∑

k=1

pnkE
(i)
nk , (25)

TABLE I
MESSAGE PASSING PARAMETERS

σ2
xn

(i+1) = Gn (a(i)
xn
, b2 (i))

=
K∑

k=1

pnk [(E
(i)
nk )

2 + V arnk
(i) ] −

(
K∑

k=1

pnkE
(i)
nk

)2

, (26)

μ(i+1)
ym

= ym −
N∑

n=1

Amnμ
(i)
xn

+
μ

(i)
ym

M

N∑

n=1

F ′
n (a(i)

xn
, b2 (i)),

(27)

b2 (i+1) = σ̂2
e +

1
M

N∑

n=1

σ2
xn

(i+1) , (28)

where F ′
n � dFn

dax n
and related parameters are calculated as Ta-

ble I, with iteration i being omitted for simplicity.
At implementation, μ(1)

ym in (24) is initialized at ym for m ∈
[1, . . . ,M ], and μ(1)

xn is set to 0 for n ∈ [1, . . . , N ]. Besides, b2

in (25) to (27) is initialized at 104 for robustness. Additionally,
a maximum iteration of 100 is set for the approximate message
passing module, and the convergence criteria is set to ‖μ̂i+1 −
μ̂i‖2 ≤ 10−8 , where μ̂(i) = [μ(i)

x1 , . . . , μ
(i)
xN ].

IV. PARAMETER ESTIMATION: AN

EXPECTATION-MAXIMIZATION APPROACH

In this section, given the current reconstruction of the signal
x̂iMMSE from the approximate message passing module, a novel
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Expectation-Maximization based algorithm is designed to learn
the underlying parameter set Θ that specifying the mixture.

A. Learning the Parameters

In our technique, the mixture density Θ is obtained by seeking
a MLE solution, Θ̂i

EM = arg max p (X = x̂iMMSE|Θ), using an
Expectation-Maximization-based method.

For the ease of derivation in estimating the density parameters,
it is assumed that signal coefficients are jointly independent.
Therefore, the log-likelihood function can be written as,

ln p(x̂|λ,Θ) =
N∑

n=1

ln

{
K∑

k=1

λkSN(x̂n |ξk , ωk , αk )
}

+ π

(
K∑

k=1

λk − 1

)

, (29)

where the last term comes from the constraint
∑K

k=1 λk = 1,
and π is a Lagrange multiplier.

Taking the derivative of (29) with respect to the mixing weight
λk , and set it to 0, the following is derived,

d ln p(x̂|λ,Θ)
dλk

=
N∑

n=1

SN(x̂n |ξk , ωk , αk )
∑K

k=1 λkSN(x̂n |ξk , ωk , αk )
+ π = 0.

(30)

Meanwhile, let

γnk =
λkSN(x̂n |ξk , ωk , αk )

∑K
k=1 λkSN(x̂n |ξk , ωk , αk )

(31)

be the probability3 of density component k on signal coefficient
xn . Given the above, and multiplying λk with (30), it is derived
that,

π = −N, and (32)

λ̂k =
∑N

n=1 γnk
N

, (33)

where (32) holds due to fact
∑K

k=1
∑N

n=1 γnk = N , and
∑K

k=1
λk = 1.

Besides, denote ψnk = φ(αk x̂n −ξkωk
)/Φ(αk x̂n −ξkωk

), and ξk
can then be updated by taking the derivative of (29) with re-
spect to ξk , and setting it to 0,

d ln p(x̂|λ,Θ)
dξk

=
N∑

n=1

γnk

[
x̂n − ξk
ω2
k

− αk
ωk
ψnk

]

= 0. (34)

Similarly, taking the derivative of (29) with respect to ωk
gives

d ln p(x̂|λ,Θ)
dωk

=
N∑

n=1

γnk
ω3
k

[(x̂n − ξk )2 − ω2
k

− ωkαk (x̂n − ξk )ψnk ], (35)

3Also known as soft responsibility in [30].

and ωk is updated as

ω2
k

N∑

n=1

γnk + ωkαk

N∑

n=1

γnkψnk (x̂n − ξk )

−
N∑

n=1

γnk (x̂n − ξk )2 = 0. (36)

Additionally, αk can be updated by solving

d ln p(x̂|λ,Θ)
dαk

=
N∑

n=1

γnkψnk
(x̂n − ξk )

ωk
= 0. (37)

Therefore, (31), (34), (36)(a)nd (37) complete one iteration of
the Expectation-Maximization update for γnk , ξk , ωk , and αk ,
where k ∈ [1, . . . ,K], and n ∈ [1, . . . , N ].

To summarize, our proposed Expectation-Maximization
module starts with an initialization Θ(0) and λ(0) = [λ1 , . . . ,
λK ], and alternates between the following Expectation and Max-
imization steps,

1) Expectation step: Given the current mixture parame-
ters Θ(i) , evaluate the soft responsibility γnk for k ∈
[1, . . . ,K], and n ∈ [1, . . . , N ].

2) Maximization step: With updated soft responsibility, for
k ∈ [1, . . . ,K], re-estimate ξk , ωk , and αk using (34),
(36), and (37) respectively.

where as in [31], [32], parameters are updated sequentially in
our proposed method.

It should be pointed out that the learning rules (34), (36),
and (37) for ξk , ωk , and αk are not in closed forms, thus the
solutions cannot be calculated explicitly. In this case, one can
take advantage of root-finding routines, including Golden Sec-
tion, Newton’s method, or Secant’s Method [33], to solve for
the solution.

B. Approximate ψnk Using Piecewise Functions

It is worth noticing that the learning rules of ξk (34), ωk
(36), and αk (37) involve evaluating the inverse mills ratio [34],
ψ(t) = φ(t)

Φ(t) , where t = αk
xn −ξk
ωk

, for k ∈ [1, . . . ,K], and n ∈
[1, . . . , N ].

Since Φ(t) → 0 as t→ −∞, the inverse mills ratio ψ(t)
is evaluated as Not a Number (NaN) when the operand goes
to extremes, which prevents the Expectation-Maximization and
root finding procedure from updating properly. As a motivating
example, ψ(t) is evaluated as NaN at t = −40, which will cause
the root finding procedure terminate before convergence, and
thus the correct solution cannot be found.

Given the fact ψ(t) is not an elementary function,4 our strat-
egy is to substitute it with an approximate that allows for reliable
and efficient evaluation for all real numbers t ∈ R.

4ψ(t) = φ(t)/Φ(t) is not elementary because the denominator Φ(t) is not
elementary. As [7], evaluating ψ(t) = φ(t)/Φ(t) is more than 10 times slower
than scaler operations.
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Inspecting the limit of φ(t)/Φ(t) as t→ −∞, and recall the
L′Hospital ′s rule [35], the following is derived,

lim
t→−∞

φ(t)/Φ(t)
t

= lim
t→−∞

(φ(t))′

(tΦ(t))′
(38)

= lim
t→−∞

(φ(t))′′

(tΦ(t))′′
(39)

= lim
t→−∞

(t2 − 1) exp(−t2/2)
(2 − t2) exp(−t2/2)

= −1, (40)

where (38) holds due to

lim
t→−∞ tΦ(t) = lim

t→−∞
Φ(t)
1/t

= lim
t→−∞

−t2√
2π

exp
(

− t
2

2

)

= 0,

(41)

and (39) holds due to

lim
t→−∞(tΦ(t))′ = lim

t→−∞ (Φ(t) + tφ(t))

= lim
t→−∞

t√
2π

exp
(−t2

2

)

= 0. (42)

Meanwhile, taking the limit of ψ(t) as t→ +∞ gives,

lim
t→+∞

φ(t)
Φ(t)

=
φ(t)
1

= φ(t). (43)

The above limits suggest that ψ(t) is asymptotically equiv-
alent to −t, and φ(t), in the limit of t→ −∞, and t→ +∞,
respectively. Therefore, a plausible approximate of ψ(t) can be
formed by joining an affine function, and a normal pdf func-
tion. To be more specific, it is intended to approximate ψ(t) by
ψ̂(t) as,

ψ̂(t) =

{
a1t+ a2 , if t ≤ Δ

c0φ( t−μ0
σ0

), if t > Δ
(44)

where Δ is the boundary dividing the domain, a1 and a2 are
the parameters defining the affine function, and c0 , μ0 , σ0 are
the corresponding parameters specifying the scaled normal pdf
function.

We adopt a numerical approach, where the goal is set to
solve for the approximate ψ̂(t) by fitting (44) to the samples of
ψ(t) = φ(t)/Φ(t). Since the approximate (44) is not piecewise
linear, finding the optimal parameters (Δ, a1 , a2 , c0 , μ0 , σ0) is
intractable [36]. To this end, an effective k-means [30](b)ased
greedy algorithm is designed in Algorithm 1 to find the param-
eters of (44).

Algorithm 1 starts with a pre-partition step, and is followed by
a loop that alternates between piecewise fitting and re-partition
steps. In pre-partition, a set of evenly spaced sampling points
δ = [δ1 , . . . , δq ] are drawn from the interval [δ−, δ+], with a step
size ε. Subsequently, δ is split at the boundary Δ into two vectors
δl and δu , where [δl , δu ] = δ, and v ≤ Δ < w holds for v ∈ δl ,
w ∈ δu . Additionally, applying ψ(t) to elements of δl and δl ,
leads to the regressands ψ(1)

l
and ψ(1)

u
, respectively.

To find the parameters of the approximate, at iteration i, ψ(i)
l

and ψ(i)
u

are fitted by the affine function and normal function
(44), respectively. In Matlab, the least square error fit of (44)

Algorithm 1: Approximatingψ(t) = φ(t)/Φ(t) by a Piece-
wise Function

Initialize: Δ(0) = 103 , Δ(1) = −2, ε = 10−4 , tol = 10−8 ,
δ− = −30, δ+ = 30, Imax = 100, and i = 1
Algorithm:
Pre-partition:

1) Build the sampling vector δ = [δ1 , . . . , δq ] by
drawing
samples evenly from the interval [δ−, δ+], with a
step ε

2) Split δ as δl and δu at the boundary Δ1 , such that
[δl , δu ] = δ, and v ≤ Δ1 < w holds for v ∈ δl ,
w ∈ δu .

3) Build the regressands vectors ψ(1)
l

and ψ(1)
u

by
applying
ψ(t) to t ∈ δl , and t ∈ δu , respectively.

while i ≤ Imax and |Δ(i) − Δ(i−1) | ≤ tol, do
4) Fit affine function a1t+ a2 to ψ

l
(i) ,

[â(i)
1 , â

(i)
2 ] = fit(ψ

l
(i))

5) Fit scaled normal pdf function c0φ( t−μ0
σ0

) to ψ
u

(i) ,

[ĉ0 (i) , μ̂0
(i) , σ̂0

(i) ] = fit(ψ
u

(i))

6) Find the intersection t∗ of two fitted functions by
solving,

â
(i)
1 t∗ + â

(i)
2 = ĉ0

(i)φ

(
t∗ − μ̂0

(i)

σ̂0
(i)

)

,

and update the boundary Δ(i+1) = t∗

7) Update ψ(i+1)
l

and ψ(i+1)
u

as of the steps in

Pre-partition using the boundary Δ(i+1)

8) i = i+ 1
end while
Return: Δ = Δ(i) , a1 = â

(i)
1 , a2 = â

(i)
2 , c0 = ĉ

(i)
0 ,

μ0 = μ̂
(i)
0 ,

and σ0 = σ̂
(i)
0 .

can be obtained by calling polyfit and fit functions, leading to
â

(i)
1 t+ â

(i)
2 , and ĉ0 (i)φ( t−μ̂0

( i )

σ̂0
( i ) ), correspondingly.

Moreover, the intersection of two fitted functions can be found
by solving for t∗ of the following,

â
(i)
1 t∗ + â

(i)
2 = ĉ0

(i)φ

(
t∗ − μ̂0

(i)

σ̂0
(i)

)

. (45)

The above completes one iteration of the piecewise fitting
step. At iteration i+ 1, the data is re-partitioned by setting
the boundary to the intersection of two fitted functions, i.e.,
Δ(i+1) = t∗, and the loop continues until the convergence of
the boundary.

The fitted results utilizing Algorithm 1 are shown in Fig. 4,
where for numerical stability and efficiency, the interval [δl , δu ]
is fixed to a limited range with δl = −30, δu = 30, and the
sampling step is set to ε = 10−4 .
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Fig. 4. Fit piecewise function to φ(t)/Φ(t). (a) Root Mean Square (RMS)
Errors of Fit. (b) Comparison of ψ(t) = φ(t)/Φ(t) and its piecewise ap-
proximate a1 t + a2 for t ≤ Δ, and normal function c0φ( t−μ 0

σ 0
) for t >

Δ, where Δ = −3.1727, a1 = −0.994, a2 = 0.1795, c0 = 8.944, μ0 =
−4.0153, and σ0 = 2.2836.

As can been seen in Fig. 4(a), the Root Mean Square
(RMS) of the fit error5 gradually decreases as the iteration in-
creases, and eventually converges to RMS = 0.022, where the
parameters are found to be Δ = −3.1727, a1 = −0.994, a2 =
0.1795, c0 = 8.944, μ0 = −4.0153, and σ0 = 2.2836. More-
over, as can be seen in Fig. 4(b), the approximate (44) resembles
ψ(t) = φ(t)/Φ(t) quite decently.

C. Initialization Strategy

It is worth noticing that, as Expectation-Maximization only
finds local optimums, a good initialization strategy is critical
in building an effective parameter estimation procedure. In our
work, given the number of mixture components K, the pa-
rameters are initialized by matching the moments of mixture
component.

Specifically, the coefficients of current estimate x̂ are divided
intoK groups x̂ = [x̂1 , . . . , x̂K ] by utilizing k-means algorithm
[30].

Additionally, given the K clusters, the parameters for each
density component are initialized in a way where sample mean,
variance, and skewness match the population mean, variance,
and skewness, respectively. Concretely, denote mk as sample
mean, vk 2 as sample variance, and gk as sample skewness,
respectively. Then the location, scale, and shape parameters of
skew normal density component k are initialized at ξk , ωk , and
αk by solving,

mk = ξk + ωk
αk√

π(1 + α2
k )/2

, (46)

vk
2 = ω2

k

(

1 − 2α2
k

π(1 + α2
k )

)

, (47)

∣
∣
∣

αk√
1 + α2

k

∣
∣
∣ =

(
π

2
|gk | 2

3

|gk | 2
3 + ((4 − π)/2)

2
3

) 1
2

, (48)

where the sample skewness gk is capped to a maximum absolute
value of 0.95 for numerical stability, and the sign of αk is same
as gk .

5RMS of a vector ε ∈ Rn is defined as εrm s =
√

1
N (ε21 + ε22 + · · · ε2n ).

D. Estimate the Number of Density Components K

Selection of the number of componentsK is fundamental for
techniques utilizing mixture model, and a variety of methods
have been proposed to develop effective way for estimating
K. In our work where the mixture component is skew normal,
a non-parametric method is developed, where the number of
components is estimated based on the modality of the kernel
density estimate.

Specifically, given the signal coefficients, x̂ = [x̂1 , . . . , x̂N ],
a kernel U : R → R+ , is placed at sample point t ∈ R, and
each signal coefficient x̂n ∈ x̂ contributes a non-negative den-
sity massU(t− x̂n ). Utilizing the Gaussian kernelU(t) = φ(t),
the density at sample point t ∈ t, can be estimated by summing
up the normalized contributions from all coefficients as,

f̂(t) =
1

NW

N∑

n=1

φ

(
t− x̂n
W

)

, (49)

where t = [t1 , . . . , tL ] is a vector of L = 200 evenly spaced
sampling points drawn in the range of x̂, andW is the bandwidth
that controls the spread of the density mass, and ultimately the
smoothness of the density estimate.

It should be noted that the kernel density estimate found by
(49) is highly sensitive to the choice of bandwidth W , where
a large value leads to an over-smoothed estimate that under-fits
the real density, and a small value makes the estimate under-
smoothed and over-fits the real one. Therefore, a proper value of
W is a good balance of under-smoothing and over-smoothing,
where a well-behaved W is generally set manually by cross
validation procedures.

In our work, the problem is tackled by a robust two-stage
procedure. In the first place, the kernel density is estimated
as (49), where the bandwidth is set to W = 0.05 to pick up
the local variability of the density. Subsequently, a Gaussian
weighted moving average filter is followed as the second stage
to capture the overall modality of the underlying density, i.e.,

f̂g (t) =
Wf∑

j=1

f̂(t− j + 1)V (j), (50)

where V (i) = exp( −i2
2σf 2 ) is the Gaussian smoothing kernel,6

with window sizeWf = 10, and standard deviation σf = 0.2 ×
Wf = 2. It is found out that although a good choice of W , Wf

and σf are problem dependent, the above settings work decently
in practice.

Given the above, the number of components K is estimated
by counting the number of modes, i.e., f̂g (i− 1) < f̂g (i) <
f̂g (i+ 1) for i ∈ [1, . . . , L]. In Matlab, this can be obtained by
calling the function findpeaks.

E. Evaluations of Parameter Estimation

Fig. 5 is a demonstration of the proposed Expectation-
Maximization based mixture density estimation. To test the ef-
fectiveness of the module, a signal x is generated by drawing

6In practice, the kernel is normalized to
∑

j
V (j) = 1, and the length of

filtered output is same as the input.
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Fig. 5. Expectation-maximization mixture density estimate. (a) True and es-
timated mixture density of the significant coefficients. (b) Log-likelihood eval-
uated at expectation maximization iterations.

TABLE II
TRUE AND ESTIMATED PARAMETERS

N = 2000 random samples from a mixture ofK = 4 skew nor-
mal density components, with the parameters being shown in
Table II. Specifically, the insignificant coefficients of x are gen-
erated from skew normal density with parameter θ1 . Besides, the
significant coefficients are generated from θ2 , θ3 , and θ4 . The
mixing weights are set to λ1 = 0.7, λ2 = 0.1, λ3 = 0.1, and
λ4 = 0.1, respectively. The density of significant coefficients is
plotted in Fig. 5(a) with solid line.

The signal x is then sampled by (1), i.e., y = Ax+ e, with
length of y being set to M = 1650. Meanwhile, the mea-
surement white Gaussian noise e is added such that SNR =
10 log10(

‖Ax‖
‖e‖ ) = 30 dB, where ‖e‖ =

∑M
m=1 |em |2 . Addition-

ally, the signal reconstruction x̂ is obtained by employing the
proposed signal inference module with an un-informative prior.

The proposed Expectation-Maximization module is applied to
x̂ to estimate the mixture density, with the maximum iteration
being set to 100. The log-likelihood of each iteration is tracked
by evaluating (29), where convergence is reached when the
consecutive difference of log-likelihood ≤ 10−6 . Besides, the
parameters found at each iteration are tracked, and the proposed
module returns the solution with the maximum log-likelihood.

As can be seen in Fig. 5(b), the log-likelihood of the den-
sity estimate improves gradually as the iteration increases, and
eventually converges with a gain of 1697.3. The estimated sig-
nificant densities are plotted in Fig. 5(a) with dashed line. The
true and estimated density parameters are compared at Table II.
As can be seen, the proposed module recovers the number of
mixture components as K̂ = 4 precisely. Besides, although de-
viated mildly in θ̂2 , our technique faithfully recovers the overall
modality and skewness of the signal.

V. STATES ESTIMATION USING BELIEF PROPAGATION AND

POTTS MODEL

Given the reconstruction of the signal x̂iMMSE , and the es-
timated mixture density parameters Θ̂i

EM , in this section, we
are aiming to promote the clustered property, and take infer-
ence of the underlying hidden states S, by estimating the state
probability matrix V.

We approach the task by modelling the clustered property
using the Potts model [37], where neighboring hidden state pairs
are encouraged to be consistent through the regularization of the
compatibility function. A belief propagation based technique is
then employed to infer the hidden states and exploit clustered
property by exchanging local beliefs.

A. Potts Model

In this work, a K-state Potts model is considered. Specifi-
cally, let Si,j ∈ [1, . . . ,K] be the hidden state variable of sig-
nal coefficient Xi,j , and 1 ≤ i, j ≤ d. Besides, Sn and Xn

correspond to Si,j and Xi,j respectively, with the transform
n = (i− 1) × d+ j, and 1 ≤ n ≤ N .

Borrowing the terminology from Statistical Mechanics, the
energy of a hidden state configuration S = s ∈ [1, . . . ,K]N is
defined as [38],

E(s) = −
∑

〈u,v 〉
J0(su , sv ) −

N∑

n=1

H0(sn , x̂n ), (51)

where J0(su , sv ) is the interaction function that measures the
consistency of neighboring hidden state pairs, H0(sn , x̂n ) is
the field function that quantifies the coherence between esti-
mated signal coefficients and the corresponding hidden states,
and 〈u, v〉 denotes neighboring pairs.

Subsequently, denote J(su , sv ) = exp(J0(su , sv )) as the
compatible function, and let H(sn , x̂n ) = exp(H0(sn , x̂n )) be
the evidence function, the joint probability function of a hidden
states s can be evaluated by Boltzmann’s law as [38],

P (s) =
1
Zp

exp(−E(s))

=
1
Zp

∏

〈u,v 〉
J(su , sv )

∏

n

H(sn , x̂n ), (52)

where Zp is a normalization constant.
As can be seen from (51) and (52), Potts model can be config-

ured by proper choice of compatibility and evidence functions,7

such that compatible and evident hidden state configurations are
preferred probabilistically over the chaotic counterparts.

B. Hidden State Inference by Belief Propagation

Given the Potts model, our goal is set to build appropriate
compatibility and evidence functions, and then estimate the hid-
den state sn for n ∈ [1, . . . , N ] by computing the corresponding
marginal probability from the joint probability (52). It should

7Or equivalently, interaction function and field function.
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be noted that calculating the marginal probability involves sum-
ming over all other hidden state nodes, and unless N is very
small, exact derivation is intractable in practice.

To this end, belief propagation is utilized to get an approxi-
mate estimate of the marginal probability by exchanging local
beliefs.8 Specifically, in the work, each density component of
Θ̂i
EM is associated with a value of sn ∈ [1, . . . ,K], where the

evidence H(sn , x̂n ) is utilized to measure the responsibilities
of mixture components on the specific signal coefficient. There-
fore, the evidence function can be written as a K-by-1 column
vector,

Hn = H(sn , x̂n ) ∼= [Hn1 , . . . , HnK ]ᵀ, (53)

with Hnk = SN(x̂n |ξ̂k , ω̂k , α̂k ).
Additionally, to promote clustered property, the compatibil-

ity function is defined in a way that neighboring pairs are en-
couraged to take identical hidden state. Therefore, following
the vector representation of evidence function, the compatibil-
ity function is defined accordingly as a K-by-K state transition
matrix [39],

J(t)(su , sv ) = J(t) = τ (t)IK×K + υ(t)(1K×K − IK×K ),
(54)

where t represents iteration, IK×K denotes identity matrix of
size K-by-K, and 1K×K represents matrix consisting of all ones.
Besides, to promote compatible pairs, the compatibility function
is made to be diagonally dominant by setting τ (t) � υ(t) , with
the constraints τ (t) + (K − 1)υ(t) = 1, and 0 ≤ τ (t) , υ(t) ≤ 1.

Given the above, the state probability vector hidden state sn
can be calculated as the product of corresponding evidence and
all incoming messages as [38], [39],

b̂
(t)
n

∼= Hn •
•∏

j∈Neighbor(n)

m
(t)
jn , (55)

wherem(t)
jn ∈ RK×1 denotes the message sending from sj to its

neighbor sn , and can be evaluated as,

m
(t)
jn

∼= J(t)
(

Hn •
•∏

k∈Neighbor(j )\n
m

(t−1)
kj

)

, (56)

with • representing the Hadamard product [47] of vectors,9 and
Neighbor(j) \ n denoting the set of neighboring nodes sj except
sn .

At implementation, the messages are initialized non-
informatively at m(0)

ij = [ 1
K , . . . ,

1
K ]ᵀ for all neighboring pairs

〈i, j〉. The messages are then propagated, and updated asyn-
chronously [39], [40] by iteratively calling the message update
rule (56) for 3 iterations. Besides, a first order neighborhood sys-
tem is employed, where the hidden state Su,v statistically inter-
acts with four adjacent neighbors, i.e., Su,v+1 , Su,v−1 , Su+1,v ,
and Su−1,v , for 1 ≤ u, v ≤ d.

8Similar to the message in Section III, belief in this context encodes the
marginal probability.

9Hadamard product of two vectors a = [a1 , a2 ]ᵀ and b = [b1 , b2 ]ᵀ gives
another vector a • b = [a1 b1 , a2 b2 ]ᵀ.

Additionally, the hyper-parameters τ (t) and υ(t) are set based
on the compatibility as,

τ (t) =
r

(t)
s

r
(t)
s + r

(t)
d

, (57)

υ(t) =
1

K − 1
(
1 − τ (t)), (58)

where r(t)
s and r(t)

d are updated with corresponding momentum
and compatibility measure as,

r(t)
s = r(t−1)

s +
κ(t)

ϑ(t) + κ(t) , (59)

and

r
(t)
d = r

(t−1)
d +

ϑ(t)

ϑ(t) + κ(t) . (60)

It should be noted that in the above, the compatibility measures
κ(t) andϑ(t) are evaluated as the number of compatible pairs and
incompatible pairs respectively, where at iteration t, a pair 〈u, v〉
are said to be compatible if they have identical dominant state,

i.e., argmax
(
b̂
(t)
u

)
= argmax

(
b̂
(t)
v

)
, or incompatible otherwise.

VI. COMPLEXITY ANALYSIS

Similar to other approximate message passing based tech-
niques [7], [28], [29], our signal inference module is highly
efficient. Concretely, the complexity of the module is domi-
nated by two major operations. The first comes from evaluating
(24), which when implemented by matrix, leads to the multipli-
cation of a matrix of size RM×N with a vector of size RN×1 .
Therefore, a Floating Point Operations (FLOP) proportional to
O(M(2N − 1)) is expected. The second rises from (25) and
(26), which calls for the element-wise product of size RN×K ,
leading to a FLOP of O(NK). As K �M holds in practice,
the overall FLOP of the approximate message passing module
is O(TsM(2N − 1)), where the maximum iteration is capped
to Ts = 100.

Besides, the parameter estimation module involves finding
the root of the function consisting of N terms for each of
K density components. Considering the overhead [41] of root
finding procedure,10 and the fact that each density component
has 3 parameters, the FLOP is expected to be O(15TemKN)
Expectation-Maximization module, where the maximum itera-
tion is set to Tem = 100.

Additionally, the state estimation module enjoys great com-
putation efficiency as well. Specifically, as (56) involves only
element-wise product, a FLOP of O(4TpKN) is expected for
belief propagation, where the leading constant 4 comes from the
size of neighborhood, and maximum iteration of Tp = 3 is set
for the state estimation module.

Moreover, as discussed in Section II-B, our technique alter-
nates between the aforementioned individual modules, and a
maximum global iteration I = 4 is adopted. Therefore although

10A factor of log2 (32) = 5 is anticipated for root finding procedure using
Newton’s method with a 32 digits precision representation.
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TABLE III
FLOPS OF ALGORITHMS (VALUES ARE TRIMMED FOR VISIBILITY, AND

LEADING CONSTANTS COME FROM THE DEFAULT MAXIMUM ITERATIONS OF

CORRESPONDING ALGORITHMS)

involving multiple modules, our proposed technique is highly
efficient in exploring the salient features of the signals. As a
rule of thumb, the time complexity of our proposed technique
is estimated to be O(800MN) FLOP.

Table III shows the complexities of several sophisticated al-
gorithms. To compare, CluSS calls for a FLOP of O(N 2) [17],
whereas in PCSBL [48], assuming a default maximum iteration
of 400, a FLOP of O(400MN) is expected. Additionally, as
noted in [50], SOMP has a similar computational complexity
as Orthogonal Matching Pursuit (OMP) [49], and thus a FLOP
of O(QMN) is anticipated [49], with Q being the number
of significant coefficients. Analyzing the structure of Bayesian
Compressive Sensing (BCS) [44] reveals that its FLOP scales as
O(MN + 100N + δ), where the overhead δ scales in the cube
of a small fraction ofN , which is negligible in practice. In Spec-
tral Projected-Gradient �1 minimization (SPGL1) [43], the com-
plexity is dominated by matrix-vector product, therefore a FLOP
scales as O(10M 2N) is needed, where quadratic term of M
comes from matrix-vector operations (MN ) and maximum iter-
ation 10M . The FLOPs of Expectation-Maximization Gaussian
Mixture Approximate Message Passing (EMGAMAMP) [42]
and Skew-Normal Approximate Message Passing (SNAMP) are
found to be O(20MN) and O(160MN), respectively.

VII. EXPERIMENTS

In this section, the performance of our proposed method is
evaluated under a variety of numerical simulations. For each
test, the signal x is sampled by (1), where the coefficients of
the sampling matrix A are drawn from i.i.d. Gaussian ensem-
ble, with the columns of A being normalized to unit �2 norm,
i.e., A = [A1

ᵀ, . . . , AN
ᵀ]ᵀ, and ‖An‖2 = (

∑M
m=1 A

2
mn )

1
2 =1,

for 1 ≤ n ≤ N .
At the reconstruction phase, the signal is estimated by the

proposed technique that alternates among signal inference, mix-
ture density estimate, and hidden state inference modules. The
process is executed for a maximum of i = 4 iterations, or till
the convergence of reconstruction, i.e., ‖x̂i − x̂i−1‖2

2/‖x̂i‖2
2

≤ 10−4 .
At iteration i = 1, an un-informative setting is adopted, where

the mixture is assumed to consist ofK = 2 normal density com-
ponents, and the parameters are set to Θ̂0 = [θ1 , θ2 ], where θ1 =
[ξ1 = 0, ω1 = 0.5, α1 = 0], and θ2 = [ξ2 = 0, ω2 = 50, α2 =
0]. Besides, the corresponding mixing weights are assumed to
be λ1 = 0.8, and λ2 = 0.2. At iteration i = 1, the state proba-
bility matrix is set to b̂0 = [b1 , . . . , bN ]ᵀ, with bn = [λ1 , λ2 ]

ᵀ,
for n ∈ [1, . . . , N ]. The variance of measurement noise in (28)

Fig. 6. Pictorial Demonstration. (a) Ground truth of the signal of size 63-by-
63 that consists of GS = 13 significant clusters. (b) Reconstruction at iteration
i = 1, with NMSE = 8.24 × 10−5 . (c) Reconstruction at iteration i = 4,
with NMSE = 2.62 × 10−6 . (d) NMSE vs. iterations.

TABLE IV
MIXTURE DENSITY PARAMETERS

is initialized at σ̂2
e = 1, and can be estimated based on residual

as σ̂2
e = 1

M ‖y − A ∗ x̂‖2
2 .

A. Pictorial Demonstration

As a demonstration, in this test, our proposed technique is ex-
amined by reconstructing an artificial signal x ∈ R63×63 shown
in Fig. 6(a), with the length of the signal being N = 3969.
The coefficients are drawn from a mixture consisting of K = 6
density components shown in Table IV, where without loss of
generality, θ1 denotes insignificant density component, and θ2
to θ6 represent significant density components.

As can be seen in Fig. 6(a), the signal x consists of Gs = 13,
disk-like significant clusters, with each cluster composing of 69
coefficients. In Table IV, the Weight of each density component
is adjusted by the number of clusters, which are set to 3, 2, 3,
2, and 3, for θ2 , θ3 , θ4 , θ5 , and θ6 , respectively. The signal is
sampled by (1), where the number of samples is set to M =
1794, and the measurement is noisy with SNR = 35 dB.

The signal is then reconstructed by our proposed technique,
and Fig. 6(b) and 6(c) show the reconstruction obtained at 1st,
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and 4th iteration, respectively. As can be seen in Fig. 6(b),
the reconstruction of 1st iteration missed 5 clusters, and the
signal estimate is corrupted by a large number of salt-and-
pepper noises. After a few iterations, our proposed technique
manages to recover all clusters, and as can be seen in Fig. 6(c),
the reconstruction of the last iteration reliably resembles the
ground truth of the signal.

The reconstruction error is tracked by evaluating NMSE �
1
N ‖x̂− x‖2

2/‖x‖2
2 at each iteration, and is plotted in Fig. 6 (d).

As can be seen, our proposed technique faithfully reduces the
reconstruction error, which eventually delivers NSE = 0.0104
at the last iteration.

B. Phase Transition

In the second test, the performance of our proposed algorithm
is evaluated under the phase transition test. Concretely, the size
of the signal is fixed to 54-by-54, with the length N = 2916.
Besides,M/N is varied from 0.1 to 0.5, at 0.05 intervals. Addi-
tionally, for each value of M , the number of significant clusters
Gs , is varied from 1 to �Md �, at steps of 1. Similar to previous
tests, the shape of cluster is disk, and each cluster consists 69
coefficients.11 The signal coefficients are drawn from the density
mixture shown in Table IV, where a maximum of 5 significant
densities, i.e., θ2 to θ6 , is considered. 200 independent trials are
performed for each combination of M and Gs , and for each
trial, the number of clusters corresponding to each significant
density, is generated uniform randomly.

Our proposed method is compared with several sophisticated
structure-aware methods, including SOMP [16], SRL1 [11],
SPGL1 [43], and BCS [44]. Additionally, our proposed algo-
rithm also compared to SNAMP [7] which is designed for asym-
metrical sparse signals. It should be noted that, SOMP requires
the prior knowledge of the number of significant coefficients.
Therefore, for fairness, similar to the setting of our proposed
technique, the sparsity in SOMP is set to 0.2.

Similar to [46] and [7], success rate is employed to measure
the goodness of the methods, and a successful trial is defined
as the one with NMSE ≤ 10−4 . The results are summarized
in Fig. 7, where Q/M vs M/N is depicted, and Q = 69 ×Gs

represents the number of significant coefficients. Similar to [46],
the area under each curve represents the range at which the
corresponding success rate ≥ 50%.

It can be seen in Fig. 7 that our proposed method gives com-
petitive results in the phase transition tests. Specifically, our
technique is most effective when M/N > 0.3. We believe this
advantage comes from the fact that mixture estimation requires
sizable significant coefficients to be efficient.

C. Noisy Reconstruction

In this test, our scheme is tested under noisy environments.
Specifically, Gaussian random noise e is added to the measure-
ments as in (1). Similar to Phase Transition tests, the size of
signal is set to 54-by-54. The signal coefficients are drawn from
the density mixture defined in Table IV. A total of Gs = 15

11�Md � represents the largest integer ≤ M
d .

Fig. 7. Phase Transition tests. The size of significant cluster is set to d = 69,
and the number of significant coefficients is Q = 69 ×Gs . M/N is varying
from 0.1 to 0.4 at 0.05 intervals, and Q/M is varying by increasing Gs from 1
to �Md � at steps of 1.

Fig. 8. NMSE vs. SNR.

significant clusters are generated, with each significant density,
i.e., θ2 to θ6 , contributing 3 clusters.

Fig. 8 shows the reconstruction NMSE under noisy environ-
ments, where SNR is varied from 12.5 dB to 30 dB, at 2.5 dB
intervals, and each data point is averaged over 200 independent
trials. It can be seen from Fig. 8 that, our proposed technique
CL-SNM-BP gives superior results under varying SNRs.

D. Runtime Tests

The time complexity of our proposed algorithm is evaluated
by the Runtime tests. The size of signal is set to d-by-d, where
d varies from 18 to 72, at steps of 9. The shape of significant
clusters is disk, with each containing 69 coefficients. Besides,
the number of significant clusters is fixed to Gs = 2, with one
cluster drawing from θ3 , and the other sampling from θ4 of
Table IV. Additionally, the number of measurements is set to
M = 276.

The experiments are performed on a desktop with hex core
3.2 GHz CPUs, and 16 GB of 1333 MHz memory. 20 inde-
pendent trials are performed for each value of d, and the run-
time of our proposed technique is compared to SNAMP, Sparse



3984 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 15, AUGUST 1, 2018

Fig. 9. Signal Length N vs. Average Runtime (in seconds).

TABLE V
ROBUSTNESS TEST MIXTURE DENSITY PARAMETERS

Bayesian Learning (SBL) [45], BCS, EMGMAMP, SOMP,
SRL1, and SPGL1. Fig. 9 shows the average runtime of each
method as the size of the signal N increases.

It can be seen that, as multiple modules are involved in our
proposed technique, the runtime of our scheme is slightly longer
than other approximate message passing relatives, i.e., , EMG-
MAMP, and SNAMP. Yet it should be pointed out that, our
proposed algorithm scales decently with the increment of N .
Specifically, reconstruction of the signal with N = 324 leads
to an average runtime of 1.94 seconds, which is then scaled to
12.08 seconds when N = 5184.

E. Robustness Test

In this experiment, we are interested in analyzing the robust-
ness of our scheme by feeding signals with density components
of different levels of skewness. This is done by generating the
signal coefficients from Table V, and varying shape parameters
from −40 to 40, at steps of 10.

The size of the signals is 54-by-54, with N = 2916, and
M = 1449. Besides,Gs = 12 significant clusters are generated,
with each significant density contributing 6 disk clusters of size
69. Our proposed scheme is tested under noisy environments,
where SNRs vary from 10 dB to 25 dB.

The results are summarized in Fig. 10, where each data point
is averaged over 200 independent trials. It should be noted that,
in Fig. 10, αr = +40 (αr = −40) represents approximately
the positive (negative) half-normal density. On the other hand,
αr = 0 resembles the normal density. As can be seen, in general,
our proposed technique can adapt to different skewness, and
provides robust and consistent reconstruction when the signal is
generated from varying shape parameters αr .

Fig. 10. NMSE vs. shape parameter αr .

Fig. 11. Reconstruction of Satellite image. (a) the proposed algorithm at
iteration i = 1 (NMSE = 0.5978), (b) the proposed algorithm at itera-
tion i = 4 (NMSE = 0.0149), (c) PCSBL (NMSE = 0.7842), (d) CluSS
(NMSE = 0.4113), (e) EMGMAMP (NMSE = 0.5755), and (f) SOMP
(NMSE = 0.0324).

F. Satellite Image Recovery

In this test, our proposed technique is applied to the real-world
Satellite image shown in Fig. 1(a), where the size of image is
N = 93 ∗ 93 = 8694, and the number of measurement is set
to M = 2000. Our technique is compared with SOMP [16],
EMGMAMP [42], SPGL1 [43], BCS [44], PCSBL [48], and
SNAMP [7].

Fig. 11 shows the reconstructions of different methods under
a noisy environment with SNR = 25 dB. It can be seen that, our
proposed technique gives a competitive reconstruction under
this test. It is also noteworthy that although the reconstruction
at iteration i = 1 (Fig. 11(a)) is highly corruptive (NMSE =
0.5978), our proposed technique manages to recover most of
significant clusters at iteration i = 4 (Fig. 11(b)), and ends up
with NMSE = 0.0149.

VIII. CONCLUSION

The present work studied the compressive sensing task of
clustered sparse signals, where the magnitudes of each signifi-
cant cluster are distributed asymmetrically w.r.t the cluster mean.
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To capture the skewness feature, a finite skew normal density
mixture is utilized to model the prior distribution of the signal.
The clustered property is modelled by the Potts model. An effec-
tive algorithm, CL-SNM-BP, is developed to estimate the signal
by alternating among exploiting the measurement, drawing in-
ference of the finite skew normal mixture, and taking advantage
of the clustered property. Experiments under a variety of set-
tings show that our technique is effective in exploring both the
skewness, and the clustered features of the signals.

It should be noted that, despite the numerical studies, rig-
orous theoretical analysis of the convergence behavior of our
technique is worth further investigation in future research. Be-
sides, as many of hyper-parameters are chosen empirically in
the current work, it is therefore a meaningful extension to study
the optimality of those parameters.

APPENDIX

Proof: Similar to the Lemma 2 of [7], the moment generating
function of X is derived as,

MX (t) = Z

∫

exp(tx)N (x; a, b2)SN (x; ξ, ω, α)dx (61)

=
exp(tμ+ t2 σ

2

2 )√
2πσ2Φ(η)

∫

exp

((
x− (μ+ tσ2)

)2

−2σ2

)

Φ
(

α
x− ξ

ω

)

dx

(62)

=
exp(tμ+ t2 σ

2

2 )
Φ(η)

Φ
(
κ+ h(μ+ tσ2)√

1 + h2σ2

)

(63)

where (62) holds by combining the exponential terms, and (63)
holds due to Lemma 1 of [7]. Subsequently, taking the derivative
to the MX (t), and setting t = 0, the mean of X is found to be,

E(X) = M ′
x(0) = μ+

hσ2
√

1 + h2σ2

φ(η)
Φ(η)

. (64)

Similarly, the variance of X is derived as,

Var(X) = M ′′
x (0) − (M ′

x(0))2

= μ2 + σ2 + ρζ
φ(η)
Φ(η)

− E2(X), (65)

where ζ = hσ 2√
1+h2 σ 2 , and ρ = 2μ+μh2 σ 2 −κhσ 2

1+h2 σ 2 . �
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