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E-optimal Sensor Selection for Compressive
Sensing-based Purposes

Mohsen Joneidi, Alireza Zaeemzadeh, Behzad Shahrasbi, Guo-Jun Qi, and Nazanin Rahnavard

Abstract—Collaborative estimation of a sparse vector x by M potential measurements is considered. Each measurement is the
projection of x obtained by a regressor, i.e., ym = aTmx. The problem of selecting K sensor measurements from a set of M potential
sensors is studied where K �M and K is less than the dimension of x. In other words, we aim to reduce the problem to an
under-determined system of equations in which a sparse solution is desired. This paper suggests selecting sensors in a way that the
reduced matrix construct a well conditioned measurement matrix. Our criterion is based on E-optimality, which is highly related to the
restricted isometry property that provides some guarantees for sparse solution obtained by `1 minimization. The proposed basic
E-optimal selection is vulnerable to outlier and noisy data. The robust version of the algorithm is presented for distributed selection for
big data sets. Moreover, an online implementation is proposed that involves partially observed measurements in a sequential manner.
Our simulation results show the proposed method outperforms the other criteria for collaborative spectrum sensing in cognitive radio
networks (CRNs).
Our suggested selection method is evaluated in machine learning applications. It is used to pick up the most informative features/data.
Specifically, the proposed method is exploited for face recognition with partial training data.

Index Terms—Sensor Selection, E-optimality, Restricted Isometry Property (RIP), and Sparse Recovery
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1 INTRODUCTION

COMPLEX systems containing very large numbers of
data-gathering devices, were developed in the last

decade. However, dealing with large number of sources of
data is challenging. The emerging research area, big data,
aims to address challenges of such complex systems. Repre-
senting the underlying structure of data by a succinct format
is a crucial issue in the big data literature. For instance,
dimension reduction techniques and different clustering-
based approaches aim to extract a concise format of data.
Representatives obtained by such methods are often not
easy to interpret. Furthermore, obtaining each representa-
tive implies processing of all data or a large portion of
data. In order to have a straightforward interpretation, it
is desired to find the representatives by selection from
data. There are some clustering approaches that select the
representatives from data such as k-medoids clustering [1].
However these clustering methods assign each data to only
one prototype which is the cluster representer, while in
the case of highly structured data only one prototype from
data does not contain sufficient information to capture the
underlying structure of the whole cluster.

An example of big data system is wireless sensor net-
works, where the processing unit has to deal with an
excessively large number of observations acquired by the
various sensors. Often there exist some redundancies within
the sensed data and they should be pruned. Sensor selection
and sensor scheduling aim to address this problem. In many
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applications the sensor selection task is non-trivial and
possibly consists of addressing an NP-hard problem (i.e.,
there are

(M
K

)
possibilities of choosing K distinct sensors

out of M available ones). This essentially implies that an
optimal solution cannot be efficiently computed, in particu-
lar when the number of sensors becomes excessively large.
A convex relaxation of the original NP-hard problem has
been suggested in [2]. The most prominent advantage of
this approach over other methods is its practicality, thanks
to many well-established computationally-efficient convex
optimization techniques. In addition to convex relaxation, a
sub-modular cost function as the criterion of sensor selection
allows us to take advantage of greedy optimization methods
for selecting sensors [3]. The existing studies on sensor se-
lection mostly consider heuristic approaches. For example,
in [2] the volume of the reduced bases is considered. This
method is called D-optimality. In addition, A-optimality [4]
and E-optimality [4] are suggested as some other alternative
heuristics already introduced in convex optimization. These
heuristics are presented without any specific justification for
sensor selection application. In this paper we are going to
exploit a criteria more judiciously in favor of compressed
sensing (CS) theoretical guarantees.

Roadmap: This paper reviews existing work on sensor
selection and matrix subset selection. Relation of these two
topics is elaborated. Then, a new method for matrix subset
selection is proposed which is equivalent to our proposed
sensor selection algorithm. The distributed and robust im-
plementation is also presented. The performance bound
of the proposed scheme is derived and its applicability is
studied for two practical cases.

Table 1 presents the employed notations throughout this
paper. The rest of paper is organized as follows. Section
2 illustrates the motivation of sensor selection inspired by
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TABLE 1: Employed notations in this paper.

Variable Type Notation
Constant Scalar X
Vector x
Matrix X
Set X
Selected Rows of A by set X AX
Number of non-zero entries of x ‖x‖0
Number of non-zero rows of X ‖X‖2,0
Trace of Matrix X Tr(X)
Expectation of X E{X}
Singularvalue of X σ(X)

compressed sensing theory. Section 3 states the problem
of sensor selection and reviews some existing methods. E-
optimal sampling is introduced in Section 4 and a new
sensor selection method is proposed. The extension of E-
optimal sensor selection to RIP-based sensor selection is
presented in Section 5. Section 6 proposes the distributed
implementation. Section 7 presents the simulation results
and Section 8 concludes the paper.

2 MOTIVATION

Compressed sensing is a technique by which sparse signals
can be measured at a rate less than conventional Nyquist
sampling theorem [5, 6]. There exist vast applications of
CS in signal and image processing [7], channel estimation
[8], cognitive radio [9] and spectrum sensing [10]. CS aims
to recover a sparse vector, x, using a small number of
measurements y. The CS problem can be formulated as,

x̂ = argmin
x
‖x‖0 s.t. y = Φx, (1)

where, ‖.‖0 represents the number of non-zero elements of
a vector. Φ ∈ RK×N is called measurement matrix that
provides us K measurements collected in y. These mea-
surements sense from an unknown N dimensional vector.
Exact solution of the above optimization problem is through
the combinational search among all possible subsets. Due to
its high computational burden, this algorithm is impractical
for high dimension scenarios. Many sub-optimal algorithms
have been proposed such as OMP [11], smoothed `0 [12]
and basis pursuit [13]. Basis pursuit is based on relaxing
`0 to `1 norm and is popular due to theoretical guarantees
and reasonable computational burden [14]. The theoretical
guarantees for `1 minimization arise from several sufficient
conditions based on some suggested metrics. These include
the mutual coherence [15], null space property [16], spark
[17] and restricted isometery property (RIP) [18]. Except
for the mutual coherence, none of these measures can be
efficiently calculated for an arbitrary given measurement
matrix Φ. For example, the RIP requires enumerating over
an exponential number of index sets. RIP is defined as
follows.
Definition 1. [18] A measurement matrix is said to satisfy

symmetric form RIP of order S with constant δS if δS is
the smallest number that

(1− δS)‖x‖22≤ ‖Φx‖22≤ (1 + δS)‖x‖22, (2)

holds for every S-sparse x (i.e. x contains at most S nonzero
entries).

Based on this definition several guarantees are proposed in
terms of δ2S , δ3S and δ4S in [19] and [20] in order to guar-
antee recovering S-sparse vectors. By S-sparse we mean a
vector that has S non-zero entries. In [21] an asymmetric
form of definition 1 is introduced in order to more precisely
quantify the RIP.
Definition 2. [21] For a measurement matrix the asymmetric

RIP constants δLS and δUS are defined as,

δLS (Φ) = argmin
c≥0

(1− c)‖x‖22≤ ‖Φx‖22, ∀x ∈ XNS ,

δUS (Φ) = argmin
c≥0

(1 + c)‖x‖22≥ ‖Φx‖22, ∀x ∈ XNS ,
(3)

where, XNS refers to the set of S-sparse vectors in RN .
Remark 1. [21] Although both the smallest and largest sin-

gular values of ΦS
TΦS

1 affect the stability of the recon-
struction algorithms, the smaller eigenvalue is dominant
for compressed sensing in that it allows distinguishing
between sparse vectors, XNS , given their measurements
by Φ.

This paper suggests to design a sensor selection method
inspired by the RIP of a matrix. The goal is to reduce a
measurement matrix to only a small fraction of its rows,
while optimizing the proposed RIP-based criterion. In other
words we aim to reduce number of equations such that the
reduced system of equations would be a well-conditioned
inverse problem.

For many scenarios, the big data are modeled by matri-
ces and tensors. While conventional numerical algebra has
been of interest for decades in many fields of sciences, it has
been revisited for analysis of large datasets. For example
algebraic tools such as singular value decomposition and
subspace clustering are well-known methods for data min-
ing, however their essential considerations for big data anal-
ysis are studied recently under the context of big data [22–
24]. To this aim, parallel, distributed, scalable, and random-
ized algorithms are developed based on novel optimization
strategies such as ADMM (alternating direction method of
multipliers) [25–27]. Selection strategies are helpful for big
data analysis and there is a strong connection between
matrix subset selection and other analysis methods based
on low-rank data expression [28]. A modified matrix subset
selection is proposed in Chapter III of [29] in which big data
considerations are addressed by a randomized approach.
In this paper, a successive and a parallel algorithm are
proposed to tackle big data scenarios. The parallel algorithm
is designed based on distribution of data on machines.
Moreover, theoretical bounds are studied.

The main contributions of the paper are summarized as,

• The link between matrix subset selection, especially
volume sampling and sensor selection, is investi-
gated,

• A new criterion for matrix subset selection is pro-
posed, which results in a new sensor selection
method,

• The suitability of the E-optimal criterion is discussed,
which is equivalent to optimization of an upper

1. S represents a set with cardinality of S and ΦS represents any
combination of columns of Φ.
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bound for RIP coefficients in compressive sensing
literature,

• An approximation for RIP coefficients is proposed
and utilized to extend E-optimality to an RIP-based
criteria, and

• Successive and parallel algorithms are proposed as
practical algorithms for selection from large data sets.
Their performances are compared with the central-
ized algorithm.

3 PROBLEM STATEMENT AND RELATED WORK

Solving the sensor selection problem by evaluating the
performance for each of the possible choices of

(M
K

)
is

impractical unless the sizes are sufficiently small.
Suppose we want to estimate a vector x ∈ RN from M

linear measurements, corrupted by additive noise, given by

y = Ax + ν, (4)

where, y ∈ RM and A ∈ RM×N and ν is normally
distributed with zero mean and σ2 variance. In other words,
we want to only select just K rows ofA to have K measure-
ments out of maximum M measurements. The maximum
likelihood (ML) estimator is given by [2],

x̂ML = (ATA)−1ATy. (5)

The estimation error x−x̂ has zero mean and the covariance
matrix is equal to

ΣML = σ2(ATA)−1. (6)

To involve selection operator in the equations let us first
write the ML solution as follows,

x̂ML = (
M∑
m=1

amaTm)

−1 M∑
m=1

ymam, (7)

where, aTm is the mth row of A. The estimation error is
distributed in a high dimensional ellipsoid that its center is
located at origin and its shape is according to the covariance
matrix of error [2]. Minimization of volume of this ellipsoid
(D-optimality) is the heuristic used in [2] that results in the
following problem:

ŵ = argmin
w

log det(
M∑
m=1

wmamaTm)

−1

,

subject to ‖w‖0= K and w ∈ BM ,

(8)

where w determines whether or not each column is in-
volved and B = {0, 1}.

The computationally tractable algorithms are divided
into two main categories, convex relaxation and greedy
selection. The first approach approximates the search space
to the nearest convex set and exploits convex optimization
methods to solve the problem, while greedy methods grad-
ually select suitable sensors or prune inefficient ones.

3.1 Convex Relaxation
A convex relaxation for (8) is proposed in [2] as given by

ŵ = argmin
w

log det(
M∑
m=1

wmamaTm)

−1

,

subject to ‖w‖1= K and w ∈ CM ,

(9)

for which `0 norm is replaced by `1 norm and C, the
continuous set [0, 1], is used instead of B. Another heuristic
(A-optimality) is proposed in [30] based on minimization of
MSE= E[‖x− x̂‖22] = σ2tr(

∑M
m=1 amaTm)

−1
given by,

ŵ = argmin
w
‖w‖1 ,

subject to tr(
M∑
m=1

wmamaTm)

−1

≤ η and w ∈ CM ,
(10)

where, η is a regularization parameter. As η increases,
the number of selected sensors would be decreased. There
is a performance gap between the best subset and the
heuristic solution of the convex relaxation for maximizing
the volume. Although simulations show the gap is small in
many cases, there is no guarantee that the gap between the
performance of the chosen subset and the best performance
is always small [2].

3.2 Greedy Algorithms
The greedy algorithms are faster than convex relaxation
methods in addition to providing some guarantees for the
optimality of the solution in the case of a sub modular
condition [31]. For example, it is possible to rewrite (8) as
the following sub-modular problem [3],

ŵ = argmax
w

log det(
M∑
m=1

wmamaTm),

subject to ‖w‖0= K and w ∈ BM .

(11)

To solve this problem, we can select sensors sequentially.
At the step t, a sensor will be selected that maximizes
log det{(

∑t−1
m=1 aSm

aTSm
) + aza

T
z } with respect to az in

which Sm stacks the indices of the selected sensors in
previous iterations and the obtained z is the index of the
new selected sensor. Solving the maximization results in
aSt

. This procedure will continue till t = K .

3.3 Matrix subset selection
The sensor selection problem is highly related to col-
umn/row sub-matrix selection, a fundamental problem in
applied mathematics. There exists many efforts in this area
[32–35]. Generally, they aim at devising a computation-
ally efficient algorithm in which the span of the selected
columns/rows cover the columns/rows space as close as
possible. Mathematically, a general guarantee can be stated
as one of the following forms [33, 36],

E{‖A− πT(A)‖2F } ≤ (K + 1)‖A−AK‖2F ,
‖A− πT(A)‖2F≤ p(K,M,N)‖A−AK‖2F ,

in which, πT(A) represents projection of rows of A on
to the span of selected rows indexed by T set. E indicates
expectation operator with respect to T, i.e., all the com-
binatorial selection of K rows of A out of M . Moreover,
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p(K,M,N) is a polynomial function of the number of
selected elements, the number of columns and the number
of rows.AK is the best rank-K approximation ofA that can
be obtained by singular value decomposition. The first form
suggests the distribution of potential sets for selection and
it expresses an upper bound for expected value of error.
The second form guarantees existence of a deterministic
subset that bounds the error by a polynomial function of
the parameters.

Volume sampling is the most well-known approach to
achieve the desired selection that satisfies one of the afore-
mentioned bounds. The following theorem expresses the
probabilistic form volume sampling.
Theorem 3.1 ([33]). Let T be a random K−subset of rows of

a given matrix A chosen with probability

Pr(T) =
det(ATA

T
T )∑

|U|=K det(AUA
T
U )

Then,

E{‖A− πT(A)‖2F } ≤ (K + 1)‖A−AK‖2F .

Volume sampling considers more probability of selection
for those rows whose volume is greater. The volume of a
subset of a matrix, AT, is proportional to the determinant
of ATA

T
T . Thus, (8) aims to find the most probable subset

according to volume sampling.
Volume sampling and D-optimality pursue the same

heuristic objective. This heuristic does not promote a well-
shaped matrix for compressive sensing purposes based on
RIP. However, the analysis of optimization w.r.t the RIP coef-
ficient is not an easy task due to the columns combinatorial
behavior in addition to row selection for the basic sensor se-
lection problem. To eliminate the column combinations, we
consider all of the columns and consequently we come up
with an optimization problem w.r.t the minimum eigenvalue
that is known as E-optimality in the optimization literature
[4]. Assume a simple selection from rows of A ∈ R100×3.
Each row of A, associated with a sensor, corresponds to a
point in R3. We are to select 2 sensors out of 100 based on
D-optimality and E-optimality. Both solutions are initialized
by the same sensor (sensor 1) and the criteria for the next
selection varies. The D-optimal solution aims to maximize
the surrounded area (gray area in Fig. 1) which is vulnerable
to be an ill-shaped area while, E-optimal solution comes up
with a well-shaped area due to maximizing the minimum
eigenvalue (shaded area in Fig. 1).2

The following simple example illustrates the effect of E-
optimality. Consider two matrices,

[
2 0
0 0.5

]
and

[
1 0
0 1

]
. The

determinant of both matrices are equal, thus D-optimality
does not favor one over the other, however, the second
matrix is optimum based on E-optimality.

2. The presented intuition about D-optimality and E-optimality re-
lates to the condition number of a matrix in linear algebra [37].
Diverged eigenvalues results in a large condition number and an ill-
conditioned system of equations; accordingly, we refer to the polygon of
an ill-conditioned system of equations as ill-shaped where the vertexes
of shape are the rows of the matrix. On the other hand, close eigen-
values correspond to a small condition number and a well-conditioned
system of equations. The corresponding polygon is referred as well-
shaped in Fig 1. Having well-conditioned matrices, is a central concern
in CS as evidenced by the role played by the RIP [38].

Fig. 1: Comparison of D-optimality and E-optimality for select-
ing 2 sensors in the 3D space. The gray area is the maximum
achievable area by selecting the second sensor based on D-
optimality. The shaded area is a well-shaped polygon obtained
by E-optimality.

As we will see in the next section, for selection of K
rows of A ∈ RM×N , the E-optimal criterion is equivalent
to optimizing the RIP coefficient of order N , which is an
upper bound for any arbitrary order of RIP coefficients. In
the next section E-optimality will be exploited to develop a
new sampling method for which its performance guarantee
is analyzed. E-optimal criterion suggests optimization of an
upper bound for any order of RIP. Moreover, in this paper
we suggest a method to approximate a specific order of RIP.
Based on it, a new RIP-based sensor selection algorithm is
proposed.

4 E-OPTIMAL SAMPLING

Remark 1 promotes us to develop a new matrix subset
selection method that reduces the matrix to have a well-
conditioned sub-matrix in the CS sense. The dominant factor
of RIP constant comes from the minimum eigenvalue of
the reduced matrix. It suggests to exploit the following
optimization problem for sensor selection,

ŵ = argmin
w

‖(
M∑
m=1

wmamaTm)

−1

‖,

subject to ‖w‖0= K and w ∈ BM .

(12)

In which, ‖.‖ denotes the spectral norm of a matrix that is
defined as its maximum eigenvalue. The following lemma
shows that the minimum eigenvalue is an upper bound for
δLS .
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Lemma 4.1. For any A ∈ RM×N , the following inequality
holds.

1− σ2
min(A) = δLN (A) ≥ δLN−1(A) ≥ · · · ≥ δL2 (A).

Proof: According to the definition of RIP constant δS and
considering that the set of at most S-1 non-zero vectors
is subset of the set of at most S non-zero vectors, it easily
concluded that δS(A) ≥ δS−1(A) for any S = 2, · · · , N .

Lemma 4.1 suggests that E-optimality, i.e., minimization
of δLN , actually is equivalent an upper bound for an arbitrary
order of RIP coefficient.

Similar to volume sampling, we design a probability of
sampling according to their minimum eigenvalue.
Definition 3. Given a matrix A ∈ RM×N , E-optimal sampling

is defined as picking a subset of T with the following
probability,

Pr(T) =
σ2

min(AT)∑
|U|=K σ

2
min(AU)

.

Definition 4. Given a matrix A ∈ RM×N , δ̄LK is defined
as one minus the average of minimum of squared-
singularvalues of all sub-matrices of A with K columns.
Mathematically, it can be expressed as follows,

δ̄LK(A) = 1− σ̄2
min(A) = 1− 1(M

K

) ∑
|U|=K

σ2
min(AU),

in which U ⊂ [1, · · · , N ] indicates a subset of K columns
of A.

Definition 5. [17] Given a matrix A ∈ RM×N , the spark of
A is defined as the smallest number of columns that are
linearly dependent. It can be stated as follows,

Spark(A) = min ‖x‖0 s.t. Ax = 0 and x 6= 0.

The upper bound for spark is the rank of matrix plus 1.
However any linear dependencies among some columns
of the matrix may decrease the spark. Based on the above
definitions we present the following theorem that expresses
an upper bound for projection error of E-optimal sampling.
Theorem 4.2. Assume spark of AT is greater than K + 1.

E-optimal selection of K rows implies

E{‖A− πT(A)‖2F } ≤
M −K

γ
×

1− δ̄LK+1(AT )

1− δ̄LK(AT )
,

where γ is a positive number a function of the depen-
dencies of rows.

Proof: See appendix.
E-optimal sampling implies an upper bound for the

expectation of projection error in a probabilistic manner.
However, we need to select some sensors deterministically.
To this aim, we propose the following iterative algorithm.
Actually, this algorithm is an approximation for the max-
imum likelihood estimator in which the likelihood comes
from the suggested probability in Definition 3.

Table 2 compares computational burden of three well-
known selection methods with the proposed method. Con-
vex relaxation is not able to work effectively for big data
sets since the complexity of the algorithm grows with M3

[2]. Complexity of volume sampling also depends on M2.

TABLE 2: Complexity of different selection strategies.

Algorithm Complexity
Convex Optimization [2] O(M3)
Volume sampling [32] O(KNM2logM)
Greedy Submodular Selection [3] O(MK3)
Greedy E-optimal selection (proposed) O(MNK2)

Likewise, complexity of greedy algorithms which process
data one-by-one increase linearly w.r.t size of data. However,
in some big data scenarios we still need to decrease compu-
tational complexity w.r.t data size. To this aim in Section 6,
two remedies are studied based on data partitioning.

Algorithm 1 Greedy E-Optimal Sensor Selection

Require: A and K
1: Initialization: S with a random sensor
2: for k = 1, · · · ,K
3: for m = 1, · · · ,M
4: T = S

⋃
{m}

5: p(m) = σmin(AT)
6: end
7: sk = argmax

m
p(m)

8: S = S
⋃
sk

9: end

5 RIP-BASED SENSOR SELECTION

The structure of the reduced measurement matrix plays a
critical role in sparse recovery. Several criteria have been
suggested to evaluate suitability of a measurement matrix
including the mutual coherency and the RIP coefficient. In
order to guarantee a well-conditioned matrix to recover a S-
sparse vector, the criteria based on RIP depend on the RIP
constant of order PS. Different guarantees suggest some
bounds in terms of δ2S , δ3S and δ4S , i.e., δPS for P = 2, 3, 4
[19] [20]. As Remark 1 suggests, the lower RIP constant de-
fined in (3) is the dominant factor for compressive sensing.
Thus, we employ the lower constant of order PS in (2)
denoted by δLPS (3) to propose the following problem for
sensor selection,

Ŵ = argmin
wkm∈{0,1}

δLPS(WA),

subject to ‖wk‖0= 1 ∀k = 1, · · · ,K.
(13)

In which W ∈ RK×M reduces the matrix A ∈ RM×N by
some selected rows. I other words, matrix W is the selector
operator and the goal of sensor selection is to estimate this
matrix. P is a constant between 2 and 4 and wk is the kth

row of W . In each row of W there is only one entry 1 and
all the other entries are zero, i.e., ‖wk‖0= 1. According to
the definition of RIP, the above problem can be cast to the
following form,

Ŵ = argmax
wkm∈{0,1}

min
x
‖WAx‖22,

subject to ‖wk‖0= 1, ‖x‖2= 1 and ‖x‖0≤ PS.
(14)

This problem is a jointly combinatorial search with respect
to both W and x. It is shown that finding the solution with
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respect to x is NP-hard with a fixed W [39]. On the other
hand, with a fixed x, it is easy to show that the problem
is sub-modular with respect to W . The reduction matrix
selects the most significant entries of the error y−Ax. In
the next section we will propose an optimization algorithm
that first approximates the solution w.r.t x and then pursues
a greedy method to update W . Please note that by ignoring
the last constraint, the problem turns into the E-optimal
sensor selection.

Although matrix subset selection and sensor selection
formulation are highly related to each other, they have their
own approaches to the problem. Sensor selection aims to
reduce a system of equations which is not specified for
a fixed unknown vector. For instance, in Problem (14) we
minimize w.r.t x and Problem (8) is derived by minimizing
expectation of estimation error of x. However, a specific x
generates the corresponding values of potential sensors. So
far we have assumed that we do not optimize the problem
for a specific observed y. If we have access to the measure-
ments in a fusion center, we can exploit this information in
the selection decision. To consider more valuable measure-
ments, their values are involved in the following problem in
which we call it data-aware RIP based sensor selection.

Ŵ = argmax
wkm∈{0,1}

min
x
‖WAx‖22+λ‖W (y−Ax(O))‖22,

s.t. ‖wk‖0= 1, ‖w(m)‖0≤ 1, ‖x‖2= 1 and ‖x‖0≤ PS.
(15)

This problem promotes the sensor selection to select
sensors from areas with high vulnerability to error. In a same
time, their corresponding bases construct a well-conditioned
matrix based on RIP coefficient. w(m) denotes the mth

column ofW . The constraint, ‖w(m)‖0≤ 1 avoids repetitive
selection of the same sensor. Note that repetitive selection
may occur for large values of λ and there is no need for
this constraint in (14) because a repetitive column results
in a zero eigenvalue while the cost function maximizes the
minimum eigenvalue. By considering the model’s error, we
aim to compensate the error of model by an intelligent
sensor selection. Aggregating all sensors’ measurements in a
fusion center is in contrast with the goal of sensor selection.
However, we devise a dynamic framework that needs a par-
tial set of sensors for adapting the sensor selection algorithm
with the dynamic of the sensors. These measurements might
be derived by a low-frequency sampling from all sensors
or set of recent measured sensors. O denotes the set of
observed measurements and x(O) refers to the estimation
based on the partial observed data. Ax(O) indicates the
approximation of the measurements y. x(O) is obtained by
solving the following regression problem.

x(O) = argmin
x

‖yO −AOx‖22+λLASSO‖x‖1. (16)

Where λLASSO regularizes sparsity. In order to obtain the
error of model, we need to observe all the sensors, while we
aim to keep the number of observed sensors limited. The
following interpolation in terms of the observed sensors is
exploited to derive the error of model for all sensors.

ym =

∑
j∈O γmjyj∑
j∈O γmj

, (17)

where γmj is a similarity function between mth and jth

sensor. The estimated observation of unobserved sensors
help us to evaluate their fidelity to the model. E.g., if
the interpolated measurement of the mth sensor, ym, also
satisfies ym ≈ aTmx(O), it implies that this sensor can
be predicted by some other sensors based on the model.
Thus, this sensor is reliable and it does not maximize the
cost function (15) significantly. This data-driven approach is
inspired by dynamic sensor selection introduced in [40, 41].
For a given modelM on the data, dynamic sensor selection
determines set S such that the estimation error of the rest of
sensors, Sc, is minimized. The estimation is obtained based
on the model,M, and observed sensors, S [40]. The assumed
model in our proposed approach is indicated in (4).

The parameter λ in (15) regularizes the weight of the
energy of error and the RIP coefficient of selected bases.
In other words, W reduces the rows of A in an optimal
sense and simultaneously, it selects some vulnerable sensors
to model’s error. In the experimental results we will show
the effect of the regularization parameter. According to our
simulations, the importance of the main term of objective
function is more than the energy of the model’s error. Even
by λ = 0 we have a well-spread set of selected sensors
corresponding to a well-conditioned system of equations
while, by λ → ∞ a set of concentrated sensors would
be concluded which corresponds to an ill-posed system of
equations. Simulations show a relatively wide range of λ
could be a good choice.

Finding RIP of a matrix requires solving an NP-hard
problem [39]. Thus, for a large-scale problem, it is not
feasible to search among all the subsets. A greedy algorithm
is proposed to approximate the RIP of a matrix. To this end,
let us consider the following problem.

δPS(A) =

1−min‖Ax‖22 st: ‖x‖2= 1 and ‖x‖0≤ PS.
(18)

The solution is approximated in (19). The suggested
problem neglects the last constraint in (18) and obtains a
solution, then projects the obtained solution to the feasible
set spanned by the neglected constraint.

δ̃PS(A) =

1− ‖AΩ`2(TPS{argmin
x

‖Ax‖22 st: ‖x‖2= 1 })‖22. (19)

In which, TPS : RN → RN is the truncate function that
keeps only PS most significant entries and makes the rest
zero. As the truncated vector no longer satisfies the unit
norm constraint, Ω`2 : RN → RN normalizes the truncated
vector to the unit `2 ball. The solution of the alternative
problem denoted by δ̃PS(A) can be solved efficiently using
singular value decomposition.

δ̃PS(A) = 1− ‖Ax∗‖22, x∗ = Ω`2(TPS{U(:, k)}),
A = V TΛU, (20)



7

in which,U(:, k) is the kth column3 ofU . In other words,
x∗ is obtained by setting it to the normalized and truncated
Eigenvector corresponding the minimum Eigenvalue. By
exploiting the approximation of δPS the sensor selection
problem can be cast as the following form,

Ŵ = argmin
wkm∈{0,1}

δ̃PS(WA) st: ‖wk‖0= 1, ∀k = 1, · · · ,K .

(21)
By using the obtained approximation in (20), we conclude

Ŵ = argmax
wkm∈{0,1}

‖WAx∗‖22 st: ‖wk‖0= 1, ∀k = 1, · · · ,K ,

(22)
in which,

x∗ = Ω`2(TPS{U(:,K)})
WA = V TΛU . (23)

Algorithm 2 shows the steps of our proposed greedy
algorithm to solve the obtained optimization problem. To
evaluate each sensor we need to compute the most domi-
nant k eigen components which implies performing singu-
lar value decomposition (SVD). However, truncated SVD up
to the kth component will be sufficient. A similar algorithm
can be used to solve Problem (15). To this aim, Step 6 in
Algorithm 2 should be modified to consider the error of mth

sensor, i.e., p(m) = ‖x∗‖22+λ|ym − aTmx(O)|. However, it is
not practical to have all the measurements at the fusion cen-
ter. An online algorithm is proposed that observes one new
measurement sequentially. In each sequence, the observed
set of sensors is updated and this set is initialized by the
output of Algorithm 2. In other words, the selected sensors
in Algorithm 2 are sensed. Our data-aware algorithm needs
an approximation of the observed data in terms of the
corresponding reduced A using (16).

As mentioned in the last section, the online data-aware
framework, Algorithm 3, uses an interpolation as the pre-
diction of unobserved measurements. It will be an enabling
step for estimation of model’s error in order to adapt the
sensor selection to the measurements. The interpolation is
based on weighted averaging of observed measurements
where the weight is a similarity metric that depends on the
underlying application. For example, we consider a simple
channel gain between two sensors in CRNs simulations
which is an inverse function of distance as the similarity
criterion in 17.

The bottleneck of complexity order of Algorithm 2 at the kth

iteration is performing a truncated singular value decomposi-
tion to obtain the first k eigen components. Thus, the complex-
ity of the algorithm in the kth iteration will be O(kMN2}) [42].
Therefore, selection of K sensors implies complexity order of
O(K2N2M).

Algorithm 2 and Algorithm 3 can be implemented in a
distributed manner similar to the proposed idea in Section 6.
The selection procedure is as same as before in each machine
but the number of data are decreased by factor C which is the
number of machines. This makes complexity to O(K2N2M ′)
where, M ′ = M/C.

3. The kth column is represented by U(:, k) and the kth row is repre-
sented by U(k, :) in Algorithms 1 and 2. Moreover, U(S, :) represents
the reduced matrix by some selected rows indicated by S set.

6 DISTRIBUTED IMPLEMENTATION

Data summarizing is an enabling step for more complicated
processing procedures. For example, computational burden
for training a recognition system increases tremendously by
the size of the training data. However, in some cases even
data summarizing is not tractable due to the size of data. A
naive approach for data summarizing is randomly sampling
from data to make it sufficiently small.

There exist some attempts to design randomized algo-
rithms for matrix subset selection [36]. The idea is based on
combining deterministic and randomized methods, using
a two-phase algorithm. The first phase selects O(klog(k))
rows of the matrix. Then, deterministic subset selection finds
exactly the k most informative rows of the matrix. This
randomized algorithm achieves the following bound [36],

‖A− πT(A)‖2F≤ O(klog
1
2 (k))‖A−AK‖2F ,

This bound suggests us that a judiciously or even randomly
set of rows of A can provide us a submatrix with a close
subspace to the original matrix. The submatrix might be
more convenient to deal with, specially when the data size
is big. In this section, data partitioning is studied as an
enabling step for successive and parallel processing.

6.1 Successive Processing

In order to make the problem tractable, we can employ a
method based on successive processing of partitioned data.
Suppose data matrix A is partitioned into C blocks that
each block, Ac, contains Mc rows of A. At the first stage
K rows are selected out of M1 rows of the first partition.
The selected rows are forwarded to the next stage in order
to perform selection among M2 data of the second part, as
well as the already K selected rows. It means at the second
stage there are M2 + K data and the goal is to select only
K rows to feed to the next stage. Alg. 4 shows the steps
of successive E-optimal sensor selection algorithm. In the
experimental results section the performance of this method
will be presented.

In addition to the successive method, there is another
solution for scenarios that data can be independently pro-
cessed over distributed machines in a parallel manner. The
successive approach performs a series of selection proce-
dures and all of these procedures can be implemented in a
same machine. However, in some scenarios we have access
to multiple processing nodes in a network. In this case it is
desired to implement a distributed algorithm, which is able

Algorithm 2 The blind RIP-based Sensor Selection

Require: A, S and K
1: Initialization: W = 0 ∈ RK×M and S = ∅
2: for k = 1, · · · ,K (Optimization of the kth row of W )
3: for m = 1, · · · ,M
4: SVD on A(S

⋃
m, :) to obtain U in (23)

5: x∗ = Ω`2(TPS{U(:, k)})
6: p(m) = ‖Ax∗‖22
7: end
8: sk = argmax

m
p(m)

9: S = S
⋃
sk and W k,sk = 1
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Algorithm 3 The data-aware RIP-based Sensor Selection

Require: A, S, K , λ and λLASSO
Initialization:O = Output of Algorithm 1

2: while O 6= {1, · · · ,M}
W = 0 ∈ RK×M , S = ∅

4: Observe 1 new measurement and update O
Interpolate yO using yO using (17)

6: for k = 1, · · · ,K
for ∀m ∈ Sc

8: SVD on A(S
⋃
m, :) to obtain U in (23)

x∗ = Ω`2(TPS{U(:, k)})
10: x(O) = LASSO(A,yO, λLASSO) using (16)

p(m) = ‖Ax∗‖22+λ|ym − aTmx(O)|
12: end

sk = argmax
m

p(m)

14: S = S
⋃
sk and W k,sk = 1

end
16: O = O

⋃
S and return to 2.

to process different part of data simultaneously. We study
two methods for distributing data, random partitioning and
designed partitioning.

Algorithm 4 Successive E-optimal row selection

Require: A, C , and K
1: Initialization: S by ∅.
2: Partition A to C parts (Ac indicates the indices of Ac).
3: for c = 1, · · · , C
4: Z = S

⋃
Ac

5: S← select K rows of AZ using Alg. 1.
6: end

6.2 Random Partitioning
In this section, the given matrix, A, is randomly broken into
{Ac}Cc=1, in which each submatrix contains Mc rows of the
original matrix. In order to ensure that row space of each
submatrix is close enough to the row space of the original
matrix, we need to derive a lower bound on the number of
members of each submatrix.

Assumption 1: The matrix A can be expressed as a union of
subspaces, i.e., A = [U1Q1, · · · ,ULQL]T . Assume rank of A
is R and rank of each subspace is R

L
, where, {U l ∈ RN×

R
L }Ll=1

and {Ql ∈ R
R
L ×M ′}Ll=1, and M ′ = M/L� R

L
.

Assumption 1 implies that the original matrix,A, is a union
of L subspaces in which intrinsic dimension of each subspace is
at most R/L. This assumption is reasonable for many scenarios
in signal processing and data mining [43, 44]. The following
lemma suggests an upper bound for the number of parallel
machines in order to ensure that the row space of each portion
of data is equal to the original data with a high probability.
Lemma 6.1. Assume A follows Assumption 1. If the rows of

A are equally partitioned among C parts and samples of
each part are drawn uniformly at random and C satisfies
the following inequality,

C ≤ M

Lξ(2 + (3/ξ)log 2L
δ

)
, (24)

where,

ξ = 10γmax(R/L, logM/L)log
2R

δ
,

then the row space of each part spans row space of A with
probability at least 1− 2δ − 2 L4

M3 .

proof: See Appendix.
Proposition 1. The order of minimum number of samples for

each parallel machine is O(R) in order to make sure that the
span of selected rows is equal to that of the original matrix
in each machine with a high probability.

This proposition is clearly derived by the steps of proof of
Lemma 6.1 in the appendix. It suggests that each each machine
needs a portion of data such that the required size of each
portion is linearly dependent to the rank of the original matrix.

Assume K samples are drawn from each partition and KC
samples are selected in the first phase. The second phase aims
to select only the K most informative samples among the initial
selection. Volume sampling and the proposed sampling method
select the corners of data such that the selected points constructs
a polygonal in which their vertexes are far from each other.
However, the selected point could be outlier data, i.e., data
is not concentrated about some selected samples. We need to
ensure that each selected point represents a relatively large
number of non-selected data. Selection algorithms that work
based on relative structure of samples are complicated and they
can not be used for the big data regime. To tackle this problem a
concentration-based selection is performed in the second phase
of selection on the KC selected data. K-medoids clustering is a
generalization of K-means in which the data centers are selected
from the sample points of data. In the first phase we ensure that
all the vertexes of the hull of data are selected and in the second
phase K-mediods algorithm shrinks the selected data to only K
samples. This two-phase algorithm is the practical application
of this paper which can be exploited for big data sets. As we
will see in the simulation results, the overall two-phase process
is faster than performing selection on the whole data using Alg.
1 and it is much faster than performing k-mediods algorithm
for whole data. Alg. 5 shows steps of the proposed two-phase
algorithm for selecting from big data. This algorithm is the
robust and practical version of Alg. 1 for real scenarios which a
huge number of noisy data are given.

Algorithm 5 two-phase selection algorithm

Require: A, K , C .
1: Assign A(c) ∀c = 1, · · · , C.
2: for c = 1, · · · , C
3: U (c) ←Algorithm 1 (A(c),K).
4: End for
5: U = [U (1), · · · ,U (C)].
6: K-medoids to select K data from U .
7: END

7 EXPERIMENTAL RESULTS

Our proposed schemes are evaluated in three cases includ-
ing sensor selection in cognitive radio networks (CRNs),
and data selection for supervised learning. The underlying
model is y = Ax. Matrix A in CRNs is an array of channel
gains from different locations of the network to locations
of sensors. In the case of supervised learning, A is the
collection of training data. x and y are specified for a test
data. However, it is desired that the trained system works
for any test data. In the first case, we are estimating a specific
x which corresponds to a specific y. While for supervised
learning it is desired that the selected data constructs a well-
conditioned inverse problem that is averagely appropriate
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Fig. 2: An example setup with 25 candidate points as transmit-
ters.

for any test data. Thus, we exploit Algorithm 3 only for
the first application where we access to the actual measure-
ments of sensors in an online manner.

7.1 Sensor Selection in CRNs

The simulations are performed for collaborative spectrum
sensing. Our goal is to estimate vector x that indicates
transmitted spectrum power at some candidate points. We
assume a network setup the same as that of [45]. Consider
Ns transmitters and M receivers in an area. The receivers
receive a superposition of the transmitter signals. Figure 2
shows a setup consist of Ns = 25 potential transmitters and
2 active points. The received signals are contaminated by
channel gain and additive noise, represented by,

ym = Amx + σ2
m1, ∀m = 1 . . .M, (25)

where, 1 ∈ Rn, ym ∈ Rn in which n is the number of
frequency samples in each time slot. Moreover,AT

m contains
the corresponding channel gains and σ2

m represents noise
power at the mth receiver. The following problem aims to
estimate x

x̂ = argmin
x,σ

‖y −Ax− σ ⊗ 1‖22+γ‖x‖1, (26)

in which σ ∈ RM indicates the noise level of each sensor.
y and A are concatenation of ym and Am respectively
and ⊗ denotes kronecker multiplication. Each entry of x
determines the contribution of the sth source on the sensed
data. Due to scarce presence of active transmitters and
their narrow band communication, ‖x‖1 is exploited which
encourages sparsity.

Suppose we have potentially 300 sensors and they are
estimating an x ∈ R36 that has only 5 active transmitters.
Figure 3 shows the performance of different algorithms
versus the number of selected sensors. Successful recovery
is defined as true estimation of the support of sparse vector
using the measurements.

For the first experiment, Problem (26) is solved 200 times
by different selected sensor sets for each algorithm. Additive
noise is not considered and the iterative re-weighted least
square algorithm is employed to obtain the sparse solution
[46]. As it can be seen in Figure 3, among the blind meth-
ods, sensor selection using RIP coefficient δ2S has the best
performance. In the case of known data in a fusion center,
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Fig. 3: Performance of different sensor selection algorithms in
terms of number of selected sensors
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Fig. 4: Performance of the selection algorithm in presence of
0dB AWGN.

the information of sensed data has a great effect on the
centralized estimation. The data-aware algorithm observes
some sensors in an online manner. 4

Fig. 4 shows performance of the proposed selection
algorithm in a dynamic system where status of the network
is changed at time slot 25 and 60. Switching of any propa-
gation point causes a status change. This simulation is per-
formed in presence of 0dB AWGN in addition to 6 tab multi-
path fading. As it can be seen the blind algorithm performs
better than random selection, however, the selected sensors
are fixed and independent of the dynamic of system.

Fig. 5 exhibits the effect of involving sensors measure-
ments in the data-aware sensor selection algorithm. Random
sensing of only 3% of data (9 sensors within 300 sensors)
prior to sensor selection makes an improvement in nor-
malized estimation error; similarly, usage of 15% of data
significantly improves the performance to be close to the
centralized sensor selection which access to 100% of the
data. The normalized error is defined as follows as the
criterion for performance,

normalized error =
‖x∗ − x(O)‖2
‖x∗‖2

.

In which, x∗ is the ground truth solution.
Another simulation is performed to select 20 sensors

out of 200 ones to determine the power spectrum in 36

4. The initial sensors can be determined by our blind RIP-based
sensor selection and then in each time slot a new sensor will be
observed.
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Fig. 6: Performance of our Data-aware algorithm.

candidate points while 10 of them are active. Figure 6(a)
shows the performance of our proposed data-aware method
in terms of MSE of the sparse vector estimation while λ
is assumed 0.7. The performance improves as the number
of observed sensors increases. The performance obtained
by observation of 50% of data (100 sensors) is about that
of all the sensors because of the redundancy among the
sensors. It can be seen in Figure 6(b) that the error of
estimation is significantly decreased by setting λ = 0.7.
However, an efficient value of γ depends on the problem
setup and should be tuned. Setting γ = 0 is equivalent
to the static E-optimal sensor selection. Simulation shows
the proposed reliable sensor selection performs better than
the static sensor selection for a relatively wide range of γ,
i.e., the problem is not very sensitive to well-tuning of this
parameter.

Fig. 7 shows the power spectrum of a network in an area.
We have potentially 200 sensors, however we are allowed to
use only 8 sensors for collaborative spectrum estimation.

 

 

RIP Based (Algorithm 1)

Online RIP Based
(Algorithm 2, 10% observed)

Centralized RIP Based
(Algorithm 2, 100% observed)

Fig. 7: The true spectrum in the area of interest along the
selected sensors obtained by 3 methods in spatial domain

Fig. 8: The error of estimated spectrum in the area of interest
corresponding to Fig. 7. (Left) RIP based, Algorithm 1. (Middle)
Online RIP based, Algorithm 2 while only 5% of sensors are
sensed. (Right) Centralized RIP based, Algorithm 2 while all
the sensors are sensed. λ is assumed 0.7

The selected sensors using the blind and data-aware RIP
based are marked in this figure. As it can be seen, the
selected sensors of the blind RIP based are spread in the
area while the selected sensors by the data-aware algorithm
have a tendency to move toward the more eventful areas of
the network. Figure 8 shows the error of estimated spectrum
using different selected sensors in the setup of Fig. 7. To this
end, first, the spectrum is estimated in all of sensors and
the error is obtained by Euclidean distance of the estimated
spectrum and the actual measurements, then a weighted
averaging is performed to interpolate the spectrum error in
every point.

7.2 Data Selection for Supervised Learning
In this section, the applicability of the proposed selection
technique in feature and data selection is studied. This is
a challenging problem in computer vision and machine
learning [47].

We evaluate the performance of our method as well as
other algorithms for finding appropriate representatives for
classification. The training data set is reduced to only some
selected data for each class. The classifier is then trained
solely by the reduced set. We assume that if the representa-
tive data are informative enough about the initial data set,
the classification performance should be close to the com-
prehensive classifier. We compare our proposed algorithm
with some standard methods for finding representatives.
These methods are Kmedoids [48], volume sampling [36],
and a simple random selection. Some basic classifiers are
utilized for learning and evaluating the test data including
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Fig. 9: The projection error of the training data into the sub-
space spanned by the selected rows.

nearest neighbor (NN), nearest subspace (NS) [49], sparse
representation based classifier (SRC) [50], and linear support
vector machine (SVM) [51].

Extended Yale-B face images dataset [52] is used to
perform the simulations. The dataset consists of 38 subjects
in which there exist 56 images for each subject. Data is split
into two groups: train set and test set that contain 51 and
5 images, respectively. The selection algorithms aim to pick
up a few training images among all 51 ones to train a general
classifier which is able to identify the test images.

Fig. 9 shows the normalized error of the projection of
training data on the subspace spanned by the representa-
tives. In this figure matrix T is the collection of the training
data which representatives are selected from them. It is ob-
vious that PCA indicates the best normalized error 5. I.e., it
can be interpreted as a lower bound for the projection error
on any low-dimensional space. However, we aim to indicate
the subspace only using few images of the training data
set. The performance of random selection, K-medoids, D-
optimal, and our suggested E-optimal selections are shown
in this figure.

The projection error of test data is depicted in Fig. 10. In
this figure matrix T is the collection of the test data which
are not seen for selection procedure. Although the error of
PCA representatives for training data is much less than the
other methods due to over-learning of the bases, in the case
of test data the performance of our suggested selection is
approximately the same as that of PCA representatives. This
means, we could span a generalized subspace by only using
few selected images that are able to cover the desired signal
space as well as PCA method that uses all of the training
data.

Fig. 11 shows 40 images from the third subject of Ex-
tended Yale-B data set. As an example we are to select 6
images using K-medoids and our suggested algorithm. The
results are shown in Fig. 12. The selected set of images using
K-medoids do not contain the shadowing effect from the

5. According to the definition of PCA, it spans the best low-rank
subspace that minimizes the normalized error defined in Fig. 9 for a set
of training data.

TABLE 3: Accuracy of different classifiers using partial data for
learning of Extended Yale-B dataset with 5 representatives.

NN NS SRC SVM
Random 26.8% 45.3% 72.0% 55.7%
Kmedoids 39.0% 61.1% 82.6% 68.2%
Volume sampling 76.3% 71.6% 88.9% 85.3%
E-optimal 77.9% 82.6% 94.2% 90.0%
All Data 81.4% 95.8% 97.1% 98.7%
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Fig. 10: The projection error of the test data into the subspace
spanned by the selected rows.

front side while our selection capture from different point
of views.

The effect of data partitioning using the successive E-
optimal selection on the performance of selection is stud-
ied for a larger data set. MISNT data set is used which
contains 60, 000 sample images of handwritten digits [53].
Two criteria are considered, the first one is recognition
rate using the learned classifier by reduced data and the
second criterion is running time for data selection and data
classification. Reducing the number of training data may
decrease the performance of a classifier. A proper selection
aims to preserve the recognition rate about the one using full
data. On the other hand, reduced data make the training
algorithm fast. Exploiting full data needs no process for
selection but the training process needs a high amount of
computations.

The basic E-optimal criterion is vulnerable to outlier
data. It aims to select the most distinguished samples.
However, unusual samples are probably different from each
other and they satisfy the E-optimal criterion. The proposed
two-phase algorithm first selects some candidates for final
selection using E-optimal criterion and in the second phase
the final selection reduces candidate samples to exact K
selection. Fig. 13 shows the effect of two-phase algorithm
on selection from 5842 samples of digit 4. The selected
samples by E-optimal criterion are exceptional hand-written
characters for digit 4. While, the two-phase algorithm selects
visually proper representative for this class. Quantitative
measures also will be demonstrated.

Sparse subspace classifier is learned by only few selected
data. Four criteria are investigated for selection. D-optimal,
the proposed E-optimal, K-medoids and the proposed two-
phase algorithm are utilized for selection. D-optimal and
E-optimal are vulnerable to outlier data as depicted in
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Fig. 11: Training data corresponding to the third subject of Extended Yale-B data set. This data set contains different angles of
shadowing for each subject.

(a) Selected faces by K-Medoids selection.

(b) Selected faces by E-optimal selection.

Fig. 12: Comparison of the proposed E-pptimal representatives
versus K-mediods selection.

(a) E-optimal criterion on the whole data.

(b) Two phase distributed selection based on E-
optimality.

Fig. 13: 12 selected images of digit 4 from 5842 images.
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Fig. 14: Performance of nearest subspace classifier learned by
few data from each class.

Fig. 13 (a). The k-medoids algorithm performs better than
greedy algorithms for selection as it finds some points that
data are concentrated around them. However, k-medoids
algorithm is not tractable for real-time processing of big
data. Our suggested two-phase algorithm outperforms K-
medoids in terms successful classification rate. In addition
to better representatives, our two-phase selection performs
much faster than K-medoids algorithm. The running time
of algorithms are shown in Fig. 15. Reducing the number of
training signals saves a huge computation burden for train-
ing the classifier. In this figure algorithms are performed
using an Intel Xeon CPU 3.7 Ghz and 8 GB RAM. A simple
one nearest neighbor classifier needs 784 seconds to classify
5000 test images. While by selecting data it decreases to 2.83
seconds.

Deep learning achieves the best results for classification
of MNIST data set. In order to compare the the effect of
data selection on the state of the art method of classification,
a deep neural network is learned with the selected data.
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Fig. 15: Running time of selecting few data from each class.
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MLP network and Capsules network [54] are employed to
perform classification. Table 4 summarizes the accuracy of
learned classifiers. The MLP network has three layers and
the hidden layer contains 1000 neurons. As it can be seen
selected training set improves the classification rate. For
example, the learned network using 2,000 random images
is working worse than the network which is learned by
1,000 selected images as the training set. However, Capsule
net which exhibits one of the best performances for MNIST
data set is less sensitive to the input training data and the
improvement is less than that of MLP. Table 5 shows pro-
cessing time for selection from 60,000 images for K-medoids
algorithm and our proposed two-phase algorithm. Please
note that the proposed algorithm can be implemented par-
allel which reduces the running time significantly. How-
ever, the centralized algorithm is simulated. The effect of
data reduction on the speed of learning a deep network
is presented in Table 6. The running time for one epoch is
reported. MLP needs 20 epochs for convergence and it takes
500 epochs for CapsNet to reach the best performance. Thus,
running time of MLP for whole data is about 30 seconds
and for CapsNet is about 266 minutes. While, using only
1000 samples the running time for MLP decreases to only 1
second and for CapsNet it takes less than 3 minutes. Deep
learning simulations are performed on Chainer framework
[55] using 1 GPU of Nvidia TitanX and 12 GB RAM.

8 CONCLUSION

The problem of sensor selection is considered and its re-
lation to existing work on matrix subset selection is elab-
orated. We developed a new subset selection method as an
extension for the well-known volume sampling. Our criteria
is based on E-optimality which is in favor of compressive
sensing theory. Moreover the E-optimal criterion is extended
to RIP-based sensor selection. Selection is an enabling step
for efficient processing of a large amount of data, however
for many cases selection from large data also is challenging.
To this aim, successive and distributed implementation of
the proposed algorithm are developed. Experimental results
indicate the performance of our suggested sensor selection
algorithm in cognitive radio networks’ spectrum sensing as
well as supervised learning with partial selected data.
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