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Abstract—A coordinated multiband spectrum sensing (CMSS)
policy for mobile and geographically dispersed cognitive radio net-
works (CRNs), referred to as cluster-CMSS, is proposed. The goal is
to detect the spectrum holes and to assign each secondary user (SU)
a sensing channel with the maximum probability of being empty.
In geographically dispersed CRNs, channel availability varies over
the space, and this makes the sensing outcomes and sensing assign-
ments location dependent. However, if the SUs are not equipped
with location-finding technologies, fusing the sensing outcomes to
find the optimal spectrum sensing assignments for the next sens-
ing time becomes challenging for the base station (BS). To tackle
this problem, we introduce a metric solely based on the sensing
outcomes of SUs. Using this metric, along with a low-complexity
clustering algorithm, enables the BS to efficiently divide the net-
work into clusters. Further, we present an adaptive learning al-
gorithm, to learn the dynamic behavior of channel occupancy in
the primary network. The proposed learning algorithm considers
SUs mobility model to determine the optimal learning window.
To determine the sensing assignments, the BS performs a graph-
theory-based coordinated multiband spectrum sensing within each
cluster. Specifically, a weighted bipartite matching is employed. We
have shown that cluster-CMSS significantly increases the spectrum
opportunity discovery ratio for SUs at the cost of a slight increase
in the energy consumption associated with spectrum sensing.

Index Terms—Clustering, cognitive radio (CR), mobility, ran-
dom waypoint, spectrum sensing, wideband communication.

I. INTRODUCTION

OGNITIVE radio (CR) is a promising solution to allevi-
C ate today’s spectrum deficiency caused by an increased
demand for wireless technologies [1]. The CR paradigm allows
a new type of users called unlicensed users or secondary users
(SUs) to coexist with the licensed users or primary users (PUs).
The SUs are allowed to access the spectrum provided that they
do not interfere with the PUs. The underutilized spectrum bands
that can be used by the SUs are called spectrum holes [2]. The
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availability of spectrum holes for each SU varies in both time
and space since the PUs’ presence is dispersed both in temporal
and spatial domains. An ideal CR is able to efficiently detect and
utilize all spectrum holes. Due to the dynamic behavior of PUs,
SUs should constantly be aware of the occupancy status of mul-
tiple narrow bands or channels of spectrum (a.k.a., wideband
spectrum sensing). However, implementing wideband spectrum
sensing requires considerable amount of time or complex hard-
ware [3] to obtain a fairly good estimate of the entire spectrum.
This lengthy estimation will significantly reduce SUs opportu-
nity to transmit their own data [4].

In this paper, we propose a spectrum sensing policy for ge-
ographically dispersed networks that do not require location
information of the SUs. Our proposed method is referred to as
cluster-based coordinated multiband spectrum sensing (cluster-
CMSS). We assume SUs are mobile and can communicate with
a central node or base station (BS). This is a complex prob-
lem with several challenges including limited ability of SUs
in sensing the spectrum, geographically dispersed SU distribu-
tion, dynamic PU activity, and inaccurate sensing. To the best of
our knowledge, this is the first attempt that addresses all these
challenges simultaneously.

The main contribution of this paper is addressing coordinated
spectrum sensing problem in the geographically dispersed and
mobile cognitive radio networks (CRNs). The novelty of the
proposed framework is threefold. First, we propose a novel
metric that allows us to group the SUs based on the similarity
of spectrum holes that they can find. Second, we propose a
learning algorithm for estimating the PU’s dynamic based on
the mobility of SUs. Third, we propose a novel energy-efficient
and fast coordinated spectrum sensing policy that maximizes
the channel discovery ratio for SUs.

The rest of this paper is organized as follows. In Section II,
the related work on CMSS, clustering of SUs in geographi-
cally dispersed networks, and mobility in CRNs are discussed.
In Section III, we describe the CMSS problem, the model of
SUs’ operation, and the PUs’ activities model. Section IV de-
scribes our proposed Cluster-CMSS policy for the geographi-
cally dispersed and mobile CRNs. In Section V, we find the
probabilities of misdetection and false alarm and also the en-
ergy cost of our policy. In Section VI, we provide the simulation
results and discuss our findings. Finally, Section VII concludes
this paper.
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II. RELATED WORK

Spectrum sensing in CRNs is a very well-studied topic in
the literature. However, some of its aspects received more at-
tention compared to others. For example many studies have
extensively covered issues such as cooperation among SUs to
reliably detect the spectrum holes [5], [6] or spectrum sensing
employing energy detectors [7], improved energy detectors [8],
and cyclostationary features [3]. On the other hand, the net-
works that include mobility or geographically dispersed SUs
are underinvestigated.

The problem of spectrum opportunity discovery when the BS
is aware of SUs locations is studied in [5]. The authors quantified
the gain that is achieved by simultaneously employing both
spatial and temporal spectrum holes versus employing them
individually. In [6], the problem of joint spatial and temporal
spectrum opportunity discovery for a case of single PU band is
considered.

In [9], the joint problem of spectrum sensing and access in
geographically dispersed CRNs are formulated in the form of a
restless multiarmed bandit problem and the bounds for the regret
of the proposed policies are found. In [10], an iterative Hungar-
ian algorithm is proposed to find the sensing assignment that
minimizes the probability of misdetection. This algorithm as-
signs SUs to sense different channels assuming that the channel
availability is consistent among all the SUs. In [11], a machine-
learning-aided spectrum sensing policy is proposed, in which
each SU is assigned to sense the channel that provides the SU
with the highest throughput.

In all the mentioned studies, it is assumed that SUs are static.
Given that mobility significantly affects the performance of
spectrum sensing [12], it is of great importance to consider the
effect of mobility in learning the PU’s activity and also spectrum
sensing assignment. However, in the context of spectrum sens-
ing for CR this problem has not received much attention. Most of
the previous works on mobile CRNs are dealing with routing or
connectivity issues [13]. The work in [12] is among the first that
shows SU’s mobility increases spatio-temporal diversity in the
received PU’s signal and improves the sensing performance. In
[14], a mobility-aware cluster-based cooperative spectrum sens-
ing approach has been proposed. The authors have shown that
in case of cooperation, the mobility-aware clustering improves
the channel discovery ratio and the throughput.

In [15], we proposed a cluster-based coordinated spectrum
sensing algorithm that employs the Kullback—Leibler (KL) di-
vergence between the previous sensing results of SU to form the
clusters. After the clusters are formed, SUs within each cluster
perform the CMSS algorithm. In [16], a noncentralized clus-
tering approach is employed to cluster the SUs based on their
channel sensing outcomes. In [16], it is assumed that SUs al-
ready have the availability information of all channels either
through sensing or a databases query and forms the clusters
such that the cluster members have maximum idle PU channels
in common. In [17] and [18], the SUs are grouped into clusters
and for each cluster the best channel to sense is determined.
In these papers, all the members of a cluster sense the same
channel, which is in contrast to our approach. Additionally in
[19] and [16], clustering is employed to reduce the network
management traffic.
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Fig. 1. Frame structure of an SU’s operation in a CRN depicting two consecu-
tive time frames. During the sensing time 7, all SUs cease their transmissions.

Although different aspects of spectrum sensing in CRs have
been studied individually, to the best of our knowledge, this
is the first study that addresses the cluster-based coordinated
multiband spectrum sensing for mobile SUs.

III. SYSTEM MODEL

The entire spectrum of interest is divided into M orthogonal
frequency subbands or PU channels each with bandwidth W.
The SU network consists of /N mobile wireless terminals (or
simply SUs) and a stationary BS. Each SU is equipped with a
single antenna and can perform either sensing or transmission
at a time. The RF front end of SUs employs energy detectors
and can reliably sense only one PU channel per sensing. For
now, we consider the ideal sensing case (in which probabilities
of misdetection and false alarm are both zero) while describ-
ing our proposed policy. Later, in Section V, we consider the
nonideal sensing scenarios. In addition, similar to many other
studies (e.g., [17]), we assume a dedicated common control
channel exists between the SUs and the BS and all SUs can
directly communicate with the BS. The SUs move based on a
random waypoint mobility model. According to this model, SUs
movement occurs in epochs. At the beginning of each epoch,
an SU independently chooses a destination in the network (a
waypoint) uniformly at random and starts moving toward that
destination at a constant velocity, which is chosen uniformly at
random from the interval [vy iy, Umax |- When the SU reaches its
destination, it pauses for ¢, seconds until it starts a new epoch
following the same rule. We represent such mobility model
with RWP(vpin, Umax, tp). It is worth nothing that epochs are
not synchronized among different SUs. In this paper, we assume
Umax 18 small enough that we can safely ignore the carrier offset
caused by Doppler effect.

The primary network consists of N, PUs distributed uni-
formly at random. Each PU operates in some of the M chan-
nels or subbands. As in [20], to model each PU’s activity at
each channel, we adopt an independent two-state Markov pro-
cess alternating between the busy (B) and empty (F) states.
Let oy; and (3 ; be the probabilities that channel i of PU [
switches its state from B to ' and from E to B, respectively, for
i=1,2,...,Mand [l =1,2,...,N,. The utilization of chan-

nel i of PU [ is given by A;; = ﬁ;ﬂiim [20].

A. Frame Structure of CRNs

The SUs are assumed to be synchronized and operate in time
on a frame-by-frame structure as in [20]. The frame structure
of a CRN, as shown in Fig. 1, includes a sensing time 7s and
a transmission time 7Ty that adds up to the total frame time
T'. During sensing time (7T's) all SUs cease their transmission,
perform spectrum sensing for T~ seconds, and report the sensing
results on a dedicated common control channel to the BS for
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To seconds. In the IEEE 802.22 standard 7' is set at about a few
hundred milliseconds [20].

B. SU’s Belief Vector

In the geographically dispersed SU network, PU’s transmis-
sion can only be detected within a specific area. Outside that
area, an SU can use the same channel for its transmissions (fre-
quency reuse). This implies that PU channels’ availability infor-
mation is inconsistent in geographically dispersed SUs. Due to
limited sensing capability of the SUs the state of every PU at ev-
ery SU location cannot be observed. However, each SU may in-
fer the state of PUs from the observation history. To this aim, let
us define the beliefvector z;(t) £ [xj1(t), ..., x;m (t)], where
x; ;(t) is the probability that SU j finds channel 7 empty at time
t (whether or not it actually senses it). Let a; (t) denote the chan-
nel that SU j senses at time ¢. Moreover, let S, 1) (t) € {B, E'}
be the status of the observed channel by SU j at time .

The belief vector for SU j at time ¢ + 1 is obtained as follows:

1—3;.(t),
O_lj,i (t)a
2. (1) (1= B.(t)) .
a;(t 7.
+ (1 —a;,(t)a;.(t) "7

aj (t) =1, Su,](t) =F

a;(t) =1,5, (1) =B
{,C]"Z‘(t+ l) = ! Lj(f)

ey
In (1), @;;(t) and B3; ;(t) are the state transition probabilities of
channel i from the perspective of SU j at time ¢. While ¢y ; and
B, are deified for every PU, & ; and sz are defined from SUs’
standpoint. Therefore, due to mobility of SUs, &; ; (¢) and 3, ; (t)
are constantly changing. In addition, finding &; ; (t) and j3; ; (t)
in terms of oy ; and 3, ;, respectively, is not possible due to the
lack of location information. After each SU completes the sens-
ing at time ¢, it transmits the sensing decision to the BS and then
BS calculates the beliefs based on (1) and stores ; (¢ + 1) for all
7 =1,2,..., N. Consequently, the BS determines the sensing
policy a(t + 1) £ [a(t + 1),...,an (t + 1)], where a; (t + 1)
determines the channel that SU j senses at time ¢ + 1.

IV. CLUSTER-COORDINATED MULTIBAND SPECTRUM SENSING

In this section, we explain our proposed policy, referred to
as cluster-CMSS, to find the optimal sensing policy. First, we
consider a scenario where the PU’s dynamic (i.e., ay; and 3 ;
foralli =1,2,...,Mand!=1,2,...,N,)is known. Later in
this section, we consider a scenario where the dynamic of the
PU activity is learned.

A. Cluster-CMSS Policy With Known PU Dynamic

When &;;(t) and j3;;(t) for all i=1,2,...,M and j =
1,2,..., N are known, the BS can update the belief vectors
using (1). The cluster-CMSS algorithm is initialized to «; (1) =
[%, %, ce %]T forallj = 1,2,..., N. Therefore, the BS assigns
a channel to each SU uniformly at random. At the beginning of
the consequent time frames, the BS, after receiving the sensing
results from the SUs, performs the following steps. The BS
updates the belief vectors for all SUs, based on which the SUs

are partitioned into several clusters (details will be discussed in
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Algorithm 1: The proposed cluster-CMSS algorithm at the
beginning of frame ¢.

1: SUs sense the assigned channels.

2: The BS receives the sensing results (B or E) from SUs.

3: The BS determines the belief vectors x; (¢ + 1) for all
i=12,...,N ().

4: The BS partitions SUs into clusters (Section I'V-C).

5: The BS performs bipartite matching (Section IV-D)
within each cluster and assigns each SU a channel to
sense in the next time frame (some SUs will remain
inactive).

6: The BS transmits the channel access permissions and the
ID of the channel that each SU has to sense at frame

t+ 1.
Start of frame t (Start of frame t)
No Was SU Yes
assigned to
Te sense a ch.? Te
Senses assigned
ch. and sends
results to BS v
| Receives sensing results from SUs
| Updates x;(t + 1) for all SUs |
Ty Ty v
Forms clusters and assigns each SU
in a cluster a unique ch.
A 4
Sends ch. sensing assignments for
5 S . the next time frame to SUs
Receive sensing assignment for ¢t + 1
Fig. 2.  Flowcharts of the proposed cluster-CMSS policy. The tasks during T’y

at the BS and SUs are depicted in right and left boxes, respectively.

Section IV-C). For every cluster, the BS determines the unique
channels to be sensed in the next time frame by performing
a one-to-one matching algorithm (details will be discussed in
Section IV-D) between the members of that cluster and the
channels. Algorithm lrepresents the pseudo code of the steps
taken at the beginning of each frame. The flowchart of our
proposed policy is given in Fig. 2. The tasks during T at the
BS and SUs are depicted in right and left boxes, respectively.
To measure the overall performance of the proposed policy, we
define average spectrum opportunity discovery ratio R. This
is the ratio of the average number of unique spectrum holes
discovered per time frame n, to the total number of sensing
attempts per time frame N. This can be evaluated by averaging
the instantaneous ratio of these parameters over time (i.e., 1, =
E[n, (t)]). Attime ¢, the number of unique spectrum holes can be
obtained by subtracting the number of duplicate sensed spectrum
holes n (t) from the total number of successful sensing attempts
ns(t). If two or more SUs are located within transmission range
of each other and they sense the same channel empty in one time
frame, one of these sensing attempts is considered unique and
the rest are duplicate spectrum holes. Therefore, R, is obtained
as follows:
ns — Mg _ Eng(t)] — Elng(t)]
N .

2
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In the rest of this section, we separately describe the building
blocks of our proposed cluster-CMSS policy. It should be noted
that Algorithm 1is proposed under the assumption that spec-
trum sensing is ideal. For nonideal channel sensing scenarios,
developing a spectrum sensing policy would be more challeng-
ing in the mobile-network scenarios. Hence, the estimates of
probabilities of false alarm and detection should be available
and included in the policy.

B. Learning the PU Dynamic

In most real-world scenarios, the dynamic of the PUs arrival
and departure are a priori unknown and are difficult to esti-
mate accurately. Therefore, the BS needs to learn them on the
fly. A simple and practical method of learning PU’s dynamic
is by recording the sample means of &;;(¢) and 3; ,(t) for all
i=1,2,...,Mand j =1,2,..., N [21]. In other words, the
BS determines the number of times that each SU observes a
certain channel has changed its state from empty to busy and
vice versa. Therefore, the estimated values of these parameters
&;j,(t) and Bj_i (t) will be used in (1). To estimate these param-
eters, we define a learning window with length 7} time frames
in which the number of state transitions is counted. When the
SUs are static, increasing the length of the learning window
will add to the accuracy of the parameter estimations. However,
in mobile SUs scenarios having a lengthy learning window re-
duces the accuracy of parameter estimation because of the SUs
movements. In the following, we determine the optimal length
of learning window under random waypoint mobility model
for SUs.

We propose to choose the length of the learning window equal
to the average time it takes a mobile SU to move out of an active
PU’s range. In other words, the previous sensing results of an
SU that are older than this average time are no longer useful in
determining the PU’s dynamic. The following theorem provides
tight upper and lower bounds for the average time it takes for
an SU to move out of an active PU’s range.

Theorem 1. Assume a circle with radius R entirely located at
random inside an area A with a rectangular shape. Given an SU
exists within the boundaries of this circle. The average time it
takes for this SU, which moves based on the random waypoint
model RWP(Vyin, Unmax, tp), that remains inside the circle is
denoted by 7, and is bounded as follows:

2 Pin 128R Pin L <T
Umin T Umax I - Pin 457 I - -Pin p=
2 P, 128R 4 Py
< = t 3
o Umin + Umax (1 - Hn 457T i 3> 1 - Pin P ( )

where P, is the probability that a waypoint falls inside the circle

and is given by P, = ”TRZ.
Proof. See Appendix A. |

Using Theorem 1, we set the length of the learning window
to be the closest multiple of 7" to the midpoint of the upper and
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lower bounds given in (3). That is

Tl—rnd( 128R 7>

2 P 7
(Umin + vmax)T 1-— Pin 457 6

P
+ 5 tp>. )

In (4), the function rnd(.) rounds its argument to the nearest
integer. Clearly, when SUs are static (Uyax = Umin = 0), both
the upper and the lower bounds of 7; reaches co, which means
the length of learning window can grow very large. In other
words, we can use all of previous sensing results to estimate the
channel parameters. Given the length of the learning window
T; the BS can calculate the average number of state transitions
that it has observed per channel for each SU during the learn-
ing window. For instance &; ; () is determined by dividing the
number of times SU j observes channel 7 changed its state from
B to E to the number of times SU j has observed the state of
channel 7 to be in B state during past 7; sensing attempts. The
value of @L (t) is calculated in the same way for all SUs and PU
channels. It is worth noting that in some cases, specially when
the velocity of SUs is high, an SU may not observe one or more
channels during 7;. In those cases, the estimated parameters
from previous time frame is used.

C. The Sensing-Based Clustering

In the geographically dispersed networks, clustering allows
frequency reuse and more efficient spectrum sensing. By group-
ing the nodes that share the same set of spectrum holes, the BS
can coordinate sensing assignment among members of every
cluster. In the lack of SU’s location information, we propose to
use the sensing results of SUs as a clustering metric. We define
the distance between two SUs based on the distance between
their belief vectors. More specifically, we define the distance
D, between any two SUs as the KL divergence between beliefs
of those SUs. In other words, the distance is measured by the
divergence in the beliefs of SUs j; and SU j, and is defined as
follows:

Dy (j1,2) = Dxw(zj, (t) [, (1)) + D (), () 25, (1)) (5)

where Dy (z;, (t)||zj,(t) £ 31 zj,.:(t) log Z;Ei; If two
SUs experience exactly the same set of observations on PUs’
channels, they will have the same beliefs on PU’s channels and
the KL distance between them will be zero. Similarly, SUs with
different PU’s channel sensing experiences will have diverged
beliefs and consequently greater distances.

Various clustering algorithms have been proposed in the liter-
ature for different purposes in CRNSs. In our case, we are inter-
ested in a clustering algorithm that provides hard partitioning,
has low complexity, and operates without the prior knowledge on
PU’s dynamic. To meet these requirements and to cluster SUs,
we integrate our proposed sensing distance metric [defined in
(5)] into the k-means clustering method. Since the number of
clusters is not known a priori, we use the elbow method to deter-
mine the number of clusters. Accordingly, we start with £ = 1
cluster and find point-to-centroid distance variance within the
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Algorithm 2: The intracluster CMSS algorithm at frame ¢.
1: for every cluster do
2:  Calculate the weights according to w; ; (t) =

forall j € {1,...,N,}andi € {1,..., M}.
3:  Run the minimum-weight Hungarian algorithm [23].
4: end for
5: Transmit obtained channel sensing assignment results to
SUs.

1
xji(t)+e

Fig. 3. Example of CMSS within a cluster using bipartite matching.

cluster. By increasing k, point-to-centroid variance decreases
within the cluster. However, there exists a k, kop, beyond which
increasing the number of cluster will only improve the variance
marginally. This point is called the elbow point [22].

D. Coordinated Spectrum Sensing Within Clusters Using
Bipartite Matching

In this section, we describe the mapping of the CMSS problem
onto a bipartite matching problem. After the BS clusters the SUs,
it assigns each SU within each cluster a unique channel to sense.
The goal is to assign each SU to sense the channel it believes to
have the highest probability of being empty. For each cluster, the
BS solves this problem by finding a minimum-weight matching
on a bipartite graph that is constructed as follows.

The vertices of one side of the graph correspond to the SUs
in a cluster (i.e., IV, vertices) and the vertices of the other side
of the graph correspond to the PU channels (i.e., M vertices).
An edge exists between any two vertices from each side of this
bipartite graph with a positive weight (see Fig. 3). We inversely
relate w; ; (t), the weight of the edge connecting SU j to channel
i, to x; ; (t), the belief SU j on channel 7. Therefore, the greater
the x;;(t), the smaller the weight of edge between channel i
and SU j. The weights of each edge is set as w; ; (t) = ﬁ
where € is a very small constant to avoid unbounded weights.
Using this strategy, we find the minimum-weight allocation that
corresponds to maximizing the probability of finding an empty
channel for each cluster member. We employ the well-known
Hungarian algorithm [23] to solve the minimum-weight match-
ing problem. Algorithm 2 represents the proposed intracluster-
ing assignment. Fig. 3 depicts an example of CMSS within a
cluster using bipartite matching. In this example, M = 3 (cir-
cles), for this cluster [N, = 2 (squares), and the weight of each
edge is represented by its corresponding edge. The double-lined
edges represent the minimum weight matching and the dashed
edges represent the unmatched edges. Based on this matching,
SU 1 and SU 2 will sense channels 2 and 3, respectively.
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V. PERFORMANCE EVALUATION OF CLUSTER-COORDINATED
MULTIBAND SPECTRUM SENSING

In this section, we study the performance of our proposed
cluster-CMSS algorithm. Suppose A(t) is the set of SUs that
has been assigned by the BS to perform spectrum sensing at
time frame ¢ and |A(t)| be the cardinality of A(t). We find the
probabilities of misdetection P/, (t) and false alarm P;(t) forall
j € A(t) under the AWGN, Rayleigh, Rician, and Nakagami-
m channel models. The average probabilities of misdetection
Qn (t) and false alarm Q) (¢) are given by

1 .
m = § Pr]n 6
1 .
= E Pl(t). 7
Qs (t) ‘A(t)‘ e f (t) (7

The SUs that are not assigned to sense any channel do not
contribute to the @y, (t) and Q¢ (t). In the following, for the
brevity of expressions we omit variable ¢ from all formulas.

A. Misdetection and False Alarm Probabilities Over AWGN
Channels

Suppose +; is the received SNR at SU j. A closed-form
expression for the probabilities of misdetection PJ and false
alarm P} of SU j over the AWGN channel are as follows [24]:

i T(TeW,3)

i p
"= T ®
Pl =1—Qr.w(\/27;V9) 9

where ¢ is the decision threshold, I'(.) is the gamma function,
['(.,.) is the incomplete gamma function, and Qg(.,.) is the
generalized Marcum Q-function [24]. Without loss of generality,
we choose the value of T such that T W is restricted to be an
integer. The value of T¢> can be determined such that it keeps
Pj; and PJ, below predefined thresholds forall j € {1,..., N}.

m

B. Misdetection and False Alarm Probabilities Over Rayleigh,
Rician, and Nakagami-m Channels

In practical networks, the spectrum sensing quality might be
adversely affected by fading. In this section, we briefly consider
the scenarios in which the SNR of the sensed signal at SUs
follows Rayleigh, Rician, and Nakagami-m distributions. Rician
model represents the scenarios in which SUs receive the PU
signal from several different paths, with one direct path that is
stronger than the others. Rician factor K is the ratio between the
power received from the direct path and the power received from
other scattered paths [25]. Parameter K is an indicator of the
severity of the fading [26]. A smaller K indicates a sever fading.
Rayleigh model is suitable for scenarios where the direct path
does not exist (severe fading). Therefore, the Rayleigh fading
channel is a special case of Rician fading channel with K = 0.
For K = oo, the Rician channel boils down to AWGN channel
(with no fading).

In addition, Nakagami-m distribution has gained substantial
application in modeling fading channels because of the good
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fit to the empirical data [27]. The parameter m determines the
severity of the fading channel. The smaller values of parameter
represent more severe fading condition. For instance m = 1 cor-
responds to Rayleigh fading and m = oo corresponds to AWGN
channel. In addition, Nakagami-m model reduces to Rician with

parameter K for m = <§K++1 22 [26].

Clearly, P; remains the same under the fading scenario be-

cause P; is independent of the received SNR. In the case of
Rician channel, the received SNR +; is a random variable that
follows Rician distribution. The PDF of «; for all v; > 0 is
given by [24]

N
Vj ¥

Vi

(10)

where 77 is the average SNR at SU j and can be estimated as
described in [25], and I(.) is the zeroth-order modified Bessel
function of the first kind.

The probability of misdetection P, p... can be obtained by
averaging (9) over the Rician distribution in (10). A closed-form

expression is given in [24] for special case of Tc W =1

; | 2K7;
Pm]Rice|Tg wW=1— 1 - QTGW:I ( m

5u<+1)>

11
K+1+7; (an

For K = 0, this expression reduces to Rayleigh fading [24].

In the case of Nakagami-m model, the received SNR ; is
a random variable that follows Nakagami-m distribution. The
PDF of v;, for all 7; > 0, is given by [24]

1 m\" m— m
fy) = T(m) <%> ) exp (—%%’) 12)

where 7 is the average received SNR at SU j. The probability
of misdetection P/ y,, can be obtained by averaging (9) over
the Nakagami-m distribution in (12). A closed-form expression

is given in [24]

13)

P 27 _5
rfzrr(2)" 6 = T(m)(755)" exp*/?, and

1Fi(.;.;.) is the confluent hypergeometric function [24]. In

where o =

6383

addition, GG} for all integer values of m is given as follows:

2l m— 1))

G = ()"
=

QD)) e

%) \m+7; "\ 2my;

m—2 n —
m o 7
+ — Ln A ]>
,;J(er%) < 2m+7j

Similar to the AWGN scenario, the average probabilities of
misdetection and false alarm are obtained using (6) and (7).

/-y,, _ 0 m__
J 2m+7;

ex
m—+7; P

(14)

C. Energy Cost of Sensing

One of the important concerns in the design of the CRNs is
the energy cost of the spectrum sensing because it is a major
contributor to the total energy consumption. Suppose the en-
ergy cost of sensing one channel by an SU is Eg and the energy
costs associated with reporting the sensing results are Frx (cor-
responding to transmitter energy consumption at the SU) and
Frx (corresponding to receiver energy consumption at the BS).
The energy costs associated with BS informing an SU of the
channel to sense in the next frame are Etx for the BS and Erx
for the SU. In addition, the energy cost of idling during T is
Fiq.

The energy costs associated to sensing depending on whether
or not an SU is assigned to sense a channel are E| and F,
respectively, and are given by

Ei = Es + 2(Erx + Erx)
B, = Eig + Frx + Frx.

(15a)
(15b)

In (15a), an SU has to report its sensing results to the BS
and consequently the BS sends SU the information about the
sensing assignments for the time frame. Hence, the cost of com-
munication with the BS (Erx + Eryx) is included twice.

In comparison, the energy cost of spectrum sensing in the
greedy noncooperative policy [28] EY is obtained as EY =
FEs + Erx + Erx, noting that all the SUs independently choose
to sense the best possible channel and transmit the outcome of
sensing that channel to the BS. Similarly, the energy cost of
spectrum sensing in the genie-aided spectrum sensing policy
E# is obtained as Ef* = M Eg + Erx + Erx. In this case, all
the SUs sense the entire spectrum band and transmit the results
to the BS. In our numerical simulations, we compare energy
cost of our proposed policy with these two policies assuming
the cost of accessing an empty channel is equal to F,. for all
three policies. The energy cost per successful SU channel access
is the sum of average energy cost to find an empty channel plus
the cost to access a channel (i.e., F,.c).

VI. NUMERICAL RESULTS

For our numerical simulations, we set N = 50, M = 10, and
N, = 20 and assume that SUs are distributed uniformly at ran-
dom in an area with size A = 1000 (distance unit)?. At this
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Fig.4. Average spectrum opportunity discovery ratio versus the PU’s channel
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point, for all PUs, we assume the AWGN channel scenario and
the received signal power is only affected by path loss with path
loss exponent v = 2.7. We suppose SUs can detect each PU’s
transmission within 100 distance unit range with a high prob-
ability. For the brevity of the results, we assume the channels
for all PUs have similar parameters (i.e., aq; = o, 51,; = 3,
and A;; = A foralli=1,....Mand [l =1,...,N,). We set
« = 0.1 and change the value of (3 to obtain the desired chan-
nel utilization A. For cluster-CMSS, the number of clusters is
determined using the elbow method described in Section I'V-C.
The results of this simulation is shown in Fig. 4, which repre-
sents the average spectrum opportunity discovery ratio (R,), as
defined in (2), versus A. In addition, the SUs move according to
the random waypoint model RWP(0, 15,2.5).

In Fig. 4, we compare the spectrum sensing performance of
our proposed cluster-CMSS policy with a genie-aided location
aware policy and the greedy noncooperative spectrum sensing
policy in [28]. In the genie-aided sensing policy, the BS is aware
of the status of the previous channel states at all SUs and the
distance between SUs. Clearly implementing the genie-aided
policy in a geographically dispersed and mobile network is im-
practical. Therefore, the genie-aided policy solely serves as a
performance upper bound. As we can see, when PU channels
are underutilized, all policies have a high opportunity discovery
rate due to abundance of spectrum holes. However, when X is
close to 1 (heavy PU utilization), our proposed policy performs
better than the greedy noncooperative policy by at least 15%.
By increasing the channel utilization, the spectrum holes be-
come more scarce and the effectiveness of the proposed policy
in finding spectrum holes becomes more lucid.

In Fig. 5, we have depicted the average opportunity discov-
ery ratio of cluster-CMSS versus the maximum velocity of
the SU in the random waypoint model. We set the same pa-
rameters as previous simulation (N = 50, M = 10, N, = 20,
A = 0.5, and v = 2.7). The mobility model in this simulation is
RWP(0, vymax, 2.5). As we can see, the average opportunity dis-
covery ratio decreases by increasing v, ,x. According to (4), by
increasing vy, .y, the length of the learning window decreases.
Smaller learning window reduces BS’s capability to learn the
dynamic behavior of the PU network. Hence, cluster-CMSS will
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not be able to effectively employ the information from previous
channel occupancy of PUs.

In the next simulation, we investigate the effectiveness of
the proposed learning window based analysis. Similar to previ-
ous simulations, we consider the following parameters for the
simulation: N = 50, M = 10, N, = 20,1 = 0.5, and v = 2.7.
We consider different mobility scenarios and different value of
Umax- In Fig. 6, we depicted the average spectrum opportunity
discovery ratio versus the length of the learning window. As op-
posed to previous simulations in which we found the length of
learning window from (4) of Theorem 1, in this simulation we
obtained R, versus different lengths of the learning window. As
we can see in Fig. 6, the maximum opportunity discovery ratio
for different v,,,¢ values occurs at the length of the learning
window that is predicted by (4). This figure verifies the results
of Theorem 1. For instance at vy, ,x = 4, we find T} = 8 using
(4). This coincides with the length of the learning window that
maximizes the performance in Fig. 6.

InFig. 7, we represent the numerically-obtained characteristic
graph (the probability of misdetection versus the probability of
false alarm) of cluster-CMSS and the noncooperative policy in
[28], under AWGN, Nakagami—Rician, and Rayleigh channels,
assuming the average received SNR is 15 dB. In this simulation,
we employ the same simulation parameters as in the previ-
ous experiment. We set K = 10 and m = 10 for the cases of



SHAHRASBI et al.: CLUSTER-CMSS: A CLUSTER-BASED COORDINATED SPECTRUM SENSING IN GEOGRAPHICALLY DISPERSED MOBILE

o!

—e—Non-cooperative w/ AWGN charmel (K = m = o0)
—=—Non-cooperative w/ Rayleigh channel (K =0, m = 1)
—6—Non-cooperative w/ Rician channel (K = 10)
—y—Non-cooperative w/ Nakagmi-m (m = 10)
—0-Cluster-CMSS w/ AWGN channel (K =m = oc)

Probability of miss-detection (Q,)

104 == = Cluster-CMSS w/ Rayleigh channel (K =0, m =1) R < 4
—5 - Cluster-CMSS w/ Rician channel (K = 10) % :
- Cluster-CMSS w/ Nakagmi-m (m = 10)

107 10"

Probability of false-alarm (Q)

Fig. 7. Numerically obtained characteristic graph of the proposed cluster-
CMSS policy and the noncooperative greedy policy in [28] at 15 dB average
received SNR.

o

1 (Rs)
S = o
2 2 2
——

o
o
T

O~ Cluster-CMSS policy w/ AWGN Channel (K = m = oc)
~0=Cluster-CMSS policy w/ Rician Channel (K = 10)

=7~ Cluster-CMSS policy w/ Na i Channel (m = 10)

-0 - Cluster-CMSS policy w/ Ray Channel (K = 1,m = 1)
—&—Non-cooperative policy w/ AWGN Channel (K = m = o)
—9—Non-cooperative policy w/ Rician Channel (K = 10)
—g—Non-cooperative policy w/ Nakagami Channel (m = 10)
—&—Non-cooperative policy w/ Rayleigh Channel (K = 0,m = 1)

I
o

o
o

Average Opprtunity Discovery Ration
=

0 2 4 6 8 10 12 14 16 18 20
Average SNR (dB)

@

=0~ Cluster-CMSS policy w/ AWGN Channel
=x7~-Cluster-CMSS policy w/ Nakagami Channel
=@ = Cluster-CMSS policy w/ Rician Channel
—0- Cluster-CMSS policy w/ Rayleigh Channel
—©—Non-cooperative policy w/ AWGN Channel
=x—Non-cooperative policy w/ Nakagami Channel
—&—Non-cooperative policy w/ Rician Channel
—8—Non-cooperative policy w/ Rayleigh Channel

osp \

Total Error (Qn + Qy)
rd

02

2 4 6 8 10 12 14 16 h
Average SNR (dB)

(b

Fig. 8. Performance of the proposed cluster-CMSS versus SNR under differ-
ent channel fading models. (a) Opportunity discovery ratio versus the average
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the average received SNR for different models.

Rician fading and Nakagami fading, respectively. As we can
see, cluster-CMSS has a better performance under all channel
conditions compared to the noncooperative policy [28]. More-
over, cluster-CMSS is the most effective in the AWGN scenario.
As expected Rayleigh channel model has the worst performance
due to the more severe fading condition.

In the next simulation, we compare the performance of our
proposed cluster CMSS algorithm with the noncooperative sce-
nario under different channel fading models. Since the cluster-
CMSS algorithm has been developed under the assumption of
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TABLE I
AVERAGE ENERGY COST PER SUCCESSFUL SU TRANSMISSION

Spectrum sensing policy ~ Energy cost (mJ)

Cluster-CMSS 7.97
Greedy noncooperative 7.725
Genie-aided 39.22

ideal sensing, it is imperative to show that it will work well un-
der nonideal cases as well. In Fig. 8(a), we depicted the average
opportunity discovery ratio versus the received average SNR (in
dB) for AWGN, Rician (with K = 10), Nakagami (m = 10),
and Rayleigh fading models. In Fig. 8(b), for the same chan-
nel fading models, we have depicted the total error (@, + Q)
versus the average received SNR (in decibels). In Fig. 8 the simu-
lation parameters are N = 50, M = 10, N, = 20, A = 0.5, and
RWP(0, 15,2.5). As we can see the proposed cluster-CMSS
performs better than noncooperative scenario for both low-SNR
and high-SNR regimes for all the channel fading models.

Now, let us pair cluster-CMSS with a very simple spectrum
access scheme (described in Section V-C), which basically al-
lows every SU to access the channel it finds empty and transmit
on that channel. The simulation parameters are similar to pre-
vious simulations (i.e., N = 50, M =10, N, =20, » = 0.5,
and v = 2.7). In Table I, we compare the average energy costs
per successful SU transmission in one time frame for different
policies. As reported in [29], the energy cost of an SU to sense
one channel, to transmit/receive a channel sensing result, to ac-
cess a channel, and to idle during sensing time is Fg = 3.5mlJ,
Frx = Erx = 0.1125ml), E,.c = 4mlJ, and Ejq = 0.05mJ, re-
spectively. Therefore, we find the energy cost of different poli-
cies using the simple access scheme (every SU accesses the
channel it finds empty).

As it can be concluded from Table I, the energy cost of cluster-
CMSS is slightly higher, because of coordination overhead, than
noncooperative greedy policy. This slight increase in energy
consumption is the price of larger opportunity discovery ratio
in the spectrum sensing. In addition, we have included the en-
ergy cost that is required to implement the genie-aided policy,
which is considerably larger than our proposed cluster-CMSS
and greedy policies.

VII. CONCLUSION

In this paper, we considered the problem of CMSS in the ge-
ographically disperse and mobile CRNs. We proposed a policy
that detects the spectrum holes without depending on the loca-
tion information of the PUs. According to our proposed policy,
the SUs are clustered based on their spectrum sensing results.
We introduced a novel metric for clustering SU nodes, which
is based on the consensus among the SUs’ channel sensing re-
sults. In our proposed policy, the BS uses this metric to form
the clusters without the need to know the location of the SUs.
Then, the BS performs a graph-theory-based coordinated spec-
trum sensing among members of each cluster. For the mobile
SUs that move according to a random waypoint model, we have
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shown through extensive simulations that the proposed policy
considerably increases the spectrum opportunity discovery ra-
tio for the SUs at the cost of a slight increase in the energy
consumption associated with spectrum sensing.

APPENDIX

To prove Theorem 1, assume an SU is located inside a circle
with radius R; we want to find the average amount of time
that it takes for the SU to leave that circle. The mobility model
is RWP(Umin, Umax, tp ). Hence, the SU will leave the circle if
its new waypoint lies outside the circle with radius R. Let P,
be the probability that a waypoint is chosen inside the circle
with radius R and is denoted by P, = ’TTRZ. The number of
epochs that the SU takes to leave the circle follows a geometric
distribution with success probability 1 — P,,. Accordingly, on
average it will take % epochs before it leaves the circle.
Given that waypoint is located inside the circle. The average
time of an epoch with a waypoint inside the circle R is 7}, and
is obtained as follows:

128R
457

Umin+VUmax

T = . (16)

In (16), the numerator is the average distance between any two
points in a circle with radius R chosen uniformly at random [30]
and the denominator is the average velocity. On the other hand,
given that the waypoint falls outside of the circle, it will take
Teqge seconds on average until it reaches the edge of the circle
and leaves it. Accordingly 7¢4.. is determined by finding the
average distance of random point inside a circle to any point in
its circumference and dividing it to the average speed. Within a
circle with radius R is located at the origin, the average distance
of a point at location (r,0) to any point in its circumference is
obtained as follows:

27
Leqge (r) = % /0 \/(R cos ¢ — 1)2 + R2sin® ¢de

_2 ‘1 - 1‘ o L
T R (1 —r/R)?
where E,(r) is the complete elliptical integral of the second

kind, which is defined as FE,(r) £ fo% \/1 —r2sin®(0)dh. Tt

is easy to verify that for all 0 < 7 <1, we have 1 < %\1 —

%U&(—%) < %. Therefore, 1 < Legge < %_

Accordingly, we obtain T¢q4. as follows:

a7

Ledge _ i“

~[1—5 (_ 4r/R )
Umin + Umax ‘ (1 - T/R)Z .
(18)
Accordingly, the average time an SU takes to move out of the
range of a PU is

Teage (r) =

Umin +VUmax
2

Pin
T, = —2

in Te e
1— R + dg

19)
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The upper bound and the lower bound on (19) is obtained as
follows:

2 Bo 128R + Bn ,
Vmin + Umax 1 - ]Din 457 1 - Rn pen
2 P, 128R 4 P,
< + 3 ty.
(Umin + Umax) 11— -Pin 457 3 1 — -Pin
(20)

REFERENCES
[1] 1. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next gen-
eration/dynamic spectrum access/cognitive radio wireless networks: A
survey,” Comput. Netw., vol. 50, no. 13, pp. 2127-2159, May 2006.
S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE J. Select. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb.
2005.
I. F Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative spec-
trum sensing in cognitive radio networks: A survey,” Phys. Commun.,
vol. 4, no. 1, pp. 40-62, Dec. 2011. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S 187449071000039X
W.-Y. Lee and I. Akyildiz, “Optimal spectrum sensing framework for
cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 7, no. 10,
pp. 3845-3857, Oct. 2008.
T. Do and B. Mark, “Joint spatial-temporal spectrum sensing for cognitive
radio networks,” IEEE Trans. Veh. Technol., vol. 59, no. 7, pp. 3480-3490,
Sep. 2010.
Q. Wu, G. Ding, J. Wang, and Y.-D. Yao, “Spatial-temporal opportunity
detection for spectrum-heterogeneous cognitive radio networks: Two-
dimensional sensing,” IEEE Trans. Wireless Commun., vol. 12, no. 2,
pp. 516-526, Feb. 2013.
Z.Quan, S. Cui, A. Sayed, and H. Poor, “Optimal multiband joint detection
for spectrum sensing in cognitive radio networks,” IEEE Trans. Signal
Process., vol. 57, no. 3, pp. 1128-1140, Mar. 2009.
A. Singh, M. R. Bhatnagar, and R. K. Mallik, “Performance of an improved
energy detector in multihop cognitive radio networks,” IEEE Trans. Veh.
Technol., vol. 65, no. 2, pp. 732-743, Feb. 2016.
H. Liu, K. Liu, and Q. Zhao, “Learning in a changing world: Restless
multiarmed bandit with unknown dynamics,” IEEE Trans. Inf. Theory,
vol. 59, no. 3, pp. 1902-1916, Mar. 2013.
Z. Wang, Z. Feng, and P. Zhang, “An iterative Hungarian algorithm based
coordinated spectrum sensing strategy,” IEEE Commun. Lett., vol. 15,
no. 1, pp. 49-51, Jan. 2011.
J. Oksanen, J. Lundén, and V. Koivunen, “Reinforcement learning based
sensing policy optimization for energy efficient cognitive radio networks,”
Neurocomputing, vol. 80, pp. 102-110, Mar. 2012.
A. W. Min and K. G. Shin, “Impact of mobility on spectrum sens-
ing in cognitive radio networks,” in Proc. ACM Workshop Cogn. Ra-
dio Netw., Beijing, China: ACM, no. 6, pp. 13-18, Sep. 2009, doi:
10.1145/1614235.1614239.
W. Ren, Q. Zhao, and A. Swami, “Temporal traffic dynamics improve
the connectivity of ad hoc cognitive radio networks,” IEEE/ACM Trans.
Netw., vol. 22, no. 1, pp. 124-136, Feb. 2014. [Online]. Available:
http://dx.doi.org/10.1109/TNET.2013.2244612
G. Caso, H. Soleimani, L. De Nardis, A. Tosti, and M. Di Benedetto,
“SENSIC: Mobility-aware cluster-based cooperative spectrum sensing
for cognitive radio networks,” in Proc. IEEE Int. Conf. Ultra-WideBand,
Sep. 2014, pp. 102-107.
B. Shahrasbi and N. Rahnavard, “A clustering-based coordinated spectrum
sensing in wideband large-scale cognitive radio networks,” in Proc. IEEE
Global Commun. Conf., Dec. 2013, pp. 1101-1106.
M. Bradonjic and L. Lazos, “Graph-based criteria for spectrum-aware
clustering in cognitive radio networks,” Ad Hoc Netw., vol. 10, no. 1,
pp. 75-94, Jan. 2012.
Y. Liu, S. Xie, R. Yu, Y. Zhang, and C. Yuen, “An efficient MAC pro-
tocol with selective grouping and cooperative sensing in cognitive radio
networks,” IEEE Trans. Veh. Technol., vol. 62, no. 8, pp. 3928-3941, Oct.
2013.
S. Liu, I. Ahmad, Y. Bai, Z. Feng, Q. Zhang, and Y. Zhang, “A novel
cooperative sensing based on spatial distance and reliability clustering
scheme in cognitive radio system,” in Proc. IEEE 78th Veh. Technol.
Conf., Sep. 2013, pp. 1-5.

[2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]



SHAHRASBI et al.: CLUSTER-CMSS: A CLUSTER-BASED COORDINATED SPECTRUM SENSING IN GEOGRAPHICALLY DISPERSED MOBILE 6387

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Y. Sun, H. Hu, F. Liu, H. Yi, and X. Wang, “Selection of sensing nodes
in cognitive radio system based on correlation of sensing information,” in
Proc. 4th Int. Conf. Wireless Commun., Netw. Mobile Comput., Oct. 2008,
pp. 1-6.

H. Kim and K. Shin, “Efficient discovery of spectrum opportunities with
MAC-layer sensing in cognitive radio networks,” IEEE Trans. Mobile
Comput., vol. 7, no. 5, pp. 533-545, May 2008.

W. Dai, Y. Gai, and B. Krishnamachari, “Online learning for multi-
channel opportunistic access over unknown markovian channels,” in
Proc. 11th Annu. IEEE Int. Conf. Sens., Commun. Netw., Jun. 2014,
pp. 64-71.

R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of
clusters in a data set via the gap statistic,” J. Roy. Statist. Soc., Ser. B
(Statisti. Methodol.), vol. 63, no. 2, pp. 411-423, 2001. [Online]. Avail-
able: http://dx.doi.org/10.1111/1467-9868.00293

R. Diestel, Graph Theory (Graduate Texts in Mathematics). Berlin,
Germany: Springer, 2005, vol. 91, p. 92.

F. Digham, M. Alouini, and M. K. Simon, “On the energy detection of
unknown signals over fading channels,” IEEE Trans. Commun., vol. 55,
no. 1, pp. 21-24, May 2007.

A. Abdi, C. Tepedelenlioglu, M. Kaveh, and G. Giannakis, “On the esti-
mation of the k parameter for the rice fading distribution,” JEEE Commun.
Lett., vol. 5, no. 3, pp. 92-94, Mar. 2001.

A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

N. Beaulieu and C. Cheng, “Efficient Nakagami-m fading channel sim-
ulation,” IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 413-424, Mar.
2005.

C. Tekin, S. Hong, and W. Stark, “Enhancing cognitive radio dynamic
spectrum sensing through adaptive learning,” in Proc. IEEE Mil. Commun.
Conf.,, Oct. 2009, pp. 1-7.

D. Xue, E. Ekici, and M. C. Vuran, “CORN2: Correlation-based coop-
erative spectrum sensing in cognitive radio networks,” in Proc. 10th Int.
Symp. Modeling Optimization Mobile, Ad Hoc Wireless Netw.,, May 2012.
R. Garcia-Pelayo, “Distribution of distance in the spheroid,” J. Phys. A:
Math. General, vol. 38, no. 16, 2005, Art. no. 3475.

Behzad Shahrasbi (S’07-M’16) received the Bach-
elor’s degree from Amirkabir University of Technol-
ogy, Tehran, Iran; the Master’s degree from Okla-
homa State University, Stillwater, OK, USA; and
the Ph.D. degree from the University of Central
Florida, Orlando, FL, USA, in 2006, 2011, and 2015,
respectively.

His research interests include sparse signal rep-
resentations, compressed sensing and recovery algo-
rithms, low rank matrix recovery, and approximation.

Nazanin Rahnavard (S’97-M’10) received the
Ph.D. degree from the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology,
Atlanta, GA, USA, in 2007.

She is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
University of Central Florida, Orlando, FL, USA. Her
research interests include communications, network-
ing, and signal processing.

Dr. Rahnavard received the National Science
Foundation CAREER award in 2011. She serves on
the editorial board of the Elsevier Journal on Computer Networks and the Tech-
nical Program Commitees of several prestigious international conferences.

Azadeh Vosoughi (M’06-SM’ 14) received the B.S.
degree from Sharif University of Technology, Tehran,
Iran; the M.S. degree from Worcester Polytechnic
Institute, Worcester, MA, USA; and the Ph.D. de-
gree from Cornell University, Ithaca, NY, USA, in
1997, 2001, and 2006, respectively, all in electrical
engineering.

She is currently an Associate Professor with the
Department of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL,
USA. Her research interests include wireless com-
munications, statistical signal processing, distributed detection and estimation
theory, and brain signal processing.

Dr. Vosoughi received the National Science Foundation CAREER award in
2011. She is currently an Associate Editor for the IEEE SIGNAL PROCESSING
LETTERS.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


