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Abstract—In this paper, a novel model-based compressive sam-
pling (CS) technique for natural images is proposed. Our algo-
rithm integrates a universal hidden Markov tree (uHMT) model,
which captures the relation among the sparse wavelet coefficients
of images, into both sampling and recovery steps of CS. At the sam-
pling step, we employ the uHMT model to devise a nonuniformly
sparse measurement matrix ΦuHMT. In contrast to the conventional
CS sampling matrices, such as dense Gaussian, Bernoulli or uni-
formly sparse matrices that are oblivious to the signal model and
the correlation among the signal coefficients, the proposed ΦuHMT is
designed based on the signal model and samples the coarser wavelet
coefficients with higher probabilities and more sparse wavelet
coefficients with lower probabilities. At the recovery step, we
integrate the uHMT model into two state-of-the-art Bayesian CS
recovery schemes. Our simulation results confirm the superiority of
our proposed HMT model-based nonuniform compressive sampling
and recovery, referred to as uHMT-NCS, over other model-based
CS techniques that solely consider the signal model at the recov-
ery step. This paper is distinguished from other model-based CS
schemes in that we take a novel approach to simultaneously inte-
grating the signal model into both CS sampling and recovery steps.
We show that such integration greatly increases the performance
of the CS recovery, which is equivalent to reducing the required
number of samples for a given reconstruction quality.

Index Terms—Compressed sensing, wavelet coefficients, image
sampling.

I. INTRODUCTION

TODAY’S multimedia-rich applications have dramatically
increased the traffic flow in the communication networks.

To deal with this overwhelmingly large amount of data and
reduce the computational complexity, new compression tech-
niques are in demand. In this regard, the emerging field of
compressive sampling (CS) [1], [2] that has revolutionized the
traditional concept of sensing and sampling established by the
Nyquist sampling theorem has attracted a lot of attention. Ac-
cording to the CS theory, the signals that have a sparse repre-
sentation over a proper basis can be recovered from a small set
of linear measurements.
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The compression efficiency of CS cannot compete with con-
ventional codec such as JPEG2000 or MPEG4 when dealing
with already acquired image or video signals with high resolu-
tion and quality [3]. However, CS is still desirable in applica-
tions in which sensing is expensive (such as MRI or infra-red
imaging). The conventional CS algorithms merely exploit sig-
nal sparsity in their designs. Nevertheless, it has recently been
shown that in addition to the sparsity, we can utilize the extra
knowledge about the signal structure as a priori information in
the CS recovery step to enhance the overall CS recovery per-
formance compared to the conventional CS recovery algorithms
[4]–[7]. In a very recent work [8], Indyk and Razenshteyn proved
that for the signals with tree-structured sparsity (such as natural
images), the recovery is achievable with fewer measurements
compared to the recovery of general sparse signals. In [4], the
tree structure of wavelet coefficients is used to design a CS
recovery algorithm based on weighted �1 minimization, called
HMT-based IRWL1, for one dimensional piecewise smooth sig-
nals. In [6], the tree structure of wavelet coefficients is exploited
to create a statistical model for the sparse coefficients that re-
sults in more accurate recovery. In [7], the authors have modified
the novel approximate message passing algorithm [9] such that
the tree structure of the wavelet coefficients is utilized in the
recovery process.

In this paper, we take one step further and show that by
exploiting the signal model in the sampling step of the CS in
addition to the recovery step, we can achieve greater gains. Our
paper mainly focuses on natural images. It is well known that
the signal coefficients of natural images in the wavelet domain
are not only sparse but also are correlated by a tree structure as
described in [10], [11]. Romberg et al. developed a universal
hidden Markov model (uHMT) for normalized natural images in
[11]. The uHMT model provides relatively accurate predictions
about the wavelet coefficients. We will demonstrate how uHMT
model can be integrated into the design of novel sampling and
recovery schemes.

There have been some recent studies on unconventional
measurement matrices, such as structured measurement ma-
trices [12] or Toeplitz matrices [13]) to mimic the real-world
applications in which the acquisition of samples by a random
Gaussian or Bernoulli sampling matrices are infeasible [12]
(e.g., multipath channel estimation [13]). However, only a few
contributions deliberately modify the sampling matrix struc-
ture with the goal of improving the overall CS performance
[14]–[17]. In [14], the authors have shown that separately mea-
suring each scale of signals’ wavelet coefficients improves the
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Fig. 1. The block diagram of the proposed uHMT-NCS scheme. The vectors
x, y, and x̂ correspond to the image signal, the CS measurements, and the
recovered image, respectively. The uHMT model parameters (Λ) are utilized at
both CS Sampling and CS recovery steps.

recovery performance. In [15], the authors have exploited the
visual importance of different areas of an image in the sam-
pling step and have modified the block-CS algorithm (proposed
in [18]) to generate CS measurements with different compres-
sion levels. In [16], the authors have proposed a structurally
random structure for the measurement matrix which provides
fast computation and low complexity compared to random mea-
surement matrices. In [19], the authors proposed a model-based
dictionary learning considering the tree structure of the wavelet
coefficients. In [17], the measurement matrix is designed such
that it is matched to the dictionary that is learned through train-
ing images. Such a match reduces the coherence between the
measurement matrix and the dictionary and enhances the CS
recovery performance.

To the best of our knowledge [14], [15] are the only studies
that modify the sampling step based on the sparse signal model
(in the wavelet domain) to improve the performance. In our
work, we take a novel and more effective approach to generate
the CS measurement matrix to be applied to natural images
utilizing the properties of multi-scale wavelet transform as side
information.

A. Contribution of this Paper

In this paper, we exploit the uHMT model of wavelet co-
efficients of natural images to modify both CS sampling and
recovery steps and significantly enhance the performance. The
contribution of this paper is two-fold. First, using the uHMT
model, we propose a nonuniform CS measurement matrix that
generates CS measurements such that they include the signif-
icant coefficients with a higher probability compared to the
non-significant coefficients. Second, we propose two model-
based recovery algorithms that employ the uHMT model to
improve the CS recovery performance even further. The nov-
elty of this work is in proposing a uHMT-model-based nonuni-
form CS sampling, and in simultaneously employing the tree
structure of wavelet coefficients at both CS sampling and CS
recovery steps. Fig. 1 depicts the block diagram of the sam-
pling and the recovery steps in our proposed scheme, referred
to as uHMT-NCS. Although this work mainly focuses on nat-
ural images, the ideas from this work can be extended for the
design of new CS matrices when dealing with different signal
models.

The structure of this paper is as follows: Section II provides
a brief background on CS and the uHMT model of images’
2D wavelet coefficients. In Section III, the details on forming

a novel CS measurement matrix ΦuH M T based on the uHMT
model is discussed. In Section IV, we modify two message-
passing-based CS recovery algorithms to adapt to our proposed
model-based CS measurements. In Section V, we compare the
performance of our proposed algorithm with state-of-the-art and
other existing model-based CS schemes. Finally, Section VI
concludes the paper.

II. BACKGROUND

In this section, we provide a brief introduction to the com-
pressive sensing and uHMT model for wavelet coefficients of
natural images that we will use later to develop our proposed
schemes.

A. Overview of Compressive Sensing

Let us define a discrete-time signal of length n as x =
[x1 , x2 , . . . , xn ]. The signal x is said to be k-sparse in some
orthonormal basis Ψ = [ψ1 ,ψ2 , . . . ,ψn ] if θ = ΨT x has at
most k � n non-zero coefficients. The sparsity rate of a k-
sparse signal is defined as s = k/n. In this paper, x corresponds
to the vectorized pixel values of an image, Ψ is the wavelet
basis, and θ = ΨT x corresponds to the sparse wavelet coef-
ficients of the image.1 The CS paradigm suggests that instead
of sampling all the n coefficients of x, we can recover x from
only m = O(k log (n/k)) � n random measurements [1]. The
random measurements are generated by y = Ξx = ΦΨT x,
where Φ = ΞΨ = [ϕi,j ]. Φ is an m × n matrix with m � n
and is called the measurement matrix. Signal recovery solves
x̂ = arg min ‖ΨT x‖1 such that y = Ξx.

Numerous sparse recovery algorithms are proposed in the
literature. Among them, Bayesian-based methods [20], [21]
gained a considerable interest in recent years due to develop-
ment of message passing algorithms that can efficiently ap-
proximate the Bayesian solution [9], [20], [22]–[24]. Bayesian
compressive sensing via belief propagation (CSBP) [20] and
approximate message passing (AMP) [9] are two of the most
efficient CS recovery algorithms that employ message passing.
We modify these two algorithms and use them to solve our re-
covery problem. CSBP requires a sparse measurement matrix
to perform efficiently, and AMP can work with the sparse mea-
surement matrices without imposing any penalty on the number
of measurements [7]. This is an important property because as
we will see in Section III, in our proposed algorithm the mea-
surement matrix itself needs to be sparse.

B. The Universal Hidden Markov Tree (uHMT) Model

The multi-resolution wavelet decomposition of images has
many applications in image processing (e.g., JPEG2000 stan-
dard). The wavelet-domain coefficients of an image exhibit
both sparsity and a tree structure [10], [11]. Fig. 2 shows a

1Given x and θ are vectorized versions of image X and its 2D wavelet
coefficients Θ (i.e., x = vec(X) and θ = vec(Θ)), respectively, we have
θ = vec(Θ) = vec(Ψ2 XΨT

2 ) = Ψ2 ⊗ Ψ2 vec(X) = ΨT x, where Θ =
Ψ2 XΨT

2 represents the 2D wavelet decomposition of image X, ΨT =
Ψ2 ⊗ Ψ2 , and ⊗ represents Kronecker product.
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Fig. 2. The two-dimensional wavelet transform representing an image in terms
of approximate coefficients (A), and wavelet coefficients in horizontal (H ),
vertical (V ), and diagonal (D) directions. The wavelet coefficients form quad
trees with each parent coefficient having four children in the finer scale.

two-dimensional wavelet transform of an image with two
scales. The top-left block represents the approximate co-
efficients (A). The next two top blocks (H1 and H2),
the two blocks along the left side of the image (V1 and
V2), and the two diagonal blocks (D1 and D2) represent
the tree structures along the horizontal, the vertical, and
the diagonal directions, respectively. As it can be seen in
Fig. 2, quad trees form in horizontal, vertical, and diagonal
directions.

Let θ|J = [θb
j,k ] represent the coefficients of the two-

dimensional discrete wavelet transform up to scale J of an im-
age represented by x. For a coefficient θb

j,k , b ∈ {A,H, V,D},
where A, H , V , D stand for the approximate coefficients, hori-
zontal, vertical, and diagonal subband coefficients, respectively,
j = 0, . . . , J represents the scale of the coefficient with j = 0
indicating that the coefficient is an approximate coefficient,
and k = 1, . . . , n4−J−1+max(1,j ) represents the index of the
coefficient at direction b and scale j. Generally, the first α0n
wavelet coefficients in θ|J correspond to the approximate coef-
ficients. The remaining α1n, α2n, . . . , αJ n coefficients, where∑J

j=0 αj = 1, correspond to the coefficients in wavelet scales
1, 2, . . . , J , respectively. For example, given the image in Fig. 2,
α0n is equal to the number of coefficients in A, α1n is equal
to the number of coefficients in H1 , V1 , and D1 combined,
and finally, α2n is equal to the number of coefficients in H2 ,
V2 , and D2 combined. For a two-dimensional wavelet trans-
form with J scales, we have α0 = 4−J and αj = 3α04j−1 for
j = 1, . . . , J . The coefficients at scale 1 are called the coars-
est coefficients because they only represent a rough estimate
of the image.

In [10], [11] a complete analysis of the properties of wavelet
coefficients is provided, and for them a hidden Markov tree
(HMT) model has been developed. According to this model,
every wavelet coefficient θb

j,k corresponds to a hidden state
variable, which can be in either state small (S) or large (L).
The HMT model suggests that a tree structure exists among
state variables and each coefficient θb

j,k for j = 1, . . . , J has a
two-state mixture Gaussian probability density function (pdf)
given by

f(θb
j,k ) = πb

j,kN
(
0, σb

S,{j,k}
2
)

+ (1 − πb
j,k )N

(
0, σb

L,{j,k}
2
)

,

(1)

where N (0, σ2) represents a zero-mean Gaussian distribution
with variance σ2 , and πb

j,k is the probability that the state of

θb
j,k is small (in the statistical sense) and we have σb

S,{j,k}
2 �

σb
L,{j,k}

2
.

The state dependency between θb
j,k and its parent θb

j−1,�k/4�
is modeled by a state transition probability matrix Ab

j,k

given by

Ab
j,k =

[
pS→S

j,k ,b pS→L
j,k ,b

pL→S
j,k ,b pL→L

j,k ,b

]

, (2)

with pS→L
j,k ,b = 1 − pS→S

j,k ,b and pL→S
j,k ,b = 1 − pL→L

j,k ,b , where pS→S
j,k ,b is

the probability that θb
j,k is in state S given its parent is in state

S and pL→L
j,k ,b is the probability that θb

j,k is in state L given its

parent is in state L. Using Ab
j,k , we can formulate πb

j,k based on
the state of its parent as follows,

πb
j,k = πb

j−1,�k/4�p
S→S
j,k ,b +

(
1 − πb

j−1,�k/4�

)
pL→S

j,k ,b , (3)

given the probability of being small at root coefficients (πb
1,k )

is known for all values of b, k. Later in this section, we will
determine πb

1,k according to the image size and the number of
wavelet scales.

Although the HMT model is very powerful in capturing the
properties of wavelet coefficients, it requires at least 4n param-
eters to be specified. However, in [10], the authors proposed to
reduce the number of parameters to 4J by assuming all coeffi-
cients within one wavelet scale have similar statistical parame-
ters. Therefore, the parameters reduce to

πb
j,k =πj , σb

S,{j,k}
2
=σ2

S,j , σb
L,{j,k}

2
=σ2

L,j , and Ab
j,k =Aj ,

(4)
for all b, j, k. These parameters can be estimated using a set of
training images and exploiting the Expectation-Maximization
(EM) algorithm as done in [10]. However, it has been shown in
[11] that leveraging additional wavelet-domain image structure
(such as exponential decay across scale), a reduced-parameter
HMT model can be developed that is represented with only
9 meta parameters independent of the size of the image and
the number of wavelet scales. Further, it has been shown in
[11] that these 9 parameters take similar values for real-world
images, allowing to fix a set of universal set of parameters,
resulting in a universal HMT (uHMT). Employing uHMT, the
image-specific training is avoided.2

Let the uHMT model be represented by a hyper-parameter
Λ = [αS , αL , CσS , CσL , γS , γL, CSS , CLL, π′

1 ] [11]. These
9 parameters are used to determine a priori pdfs (as given by
(14)) for all the wavelet coefficients. The variances of large and
small coefficients vary over the scales [11]:

σ2
L,j = CσL2

−(Jd +j )αL , (5a)

σ2
S,j = CσS2

−(Jd +j )αS , (5b)

where CσL 
 CσS and Jd = log4 n − J . Four parameters
CσL , αL , CσS , and αS characterize the variances in the marginal

2The uHMT parameters are accurate when J ≤ log4 n − 3 [11], which
complies with our proposed sensing scheme.
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densities of the wavelet coefficients [11]. Using the uHMT
model, Aj is given by [11],

Aj =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
1 0
0 1

]

j ≤ 3 − Jd,

[
1 − CSS2−(Jd +j )γS CSS2−(Jd +j )γS

1
2 − CLL2−(Jd +j )γL 1

2 + CLL2−(Jd +j )γL

]

j > 3 − Jd.

(6)

Unlike [11], we perform the wavelet decomposition up to an
arbitrary scale J and not necessarily up to scale log4 n (which
is the full wavelet decomposition). Therefore, we add the deficit
term Jd = log4 n − J in Equations (5)–(6) to compensate for
this incomplete decomposition.

The parameter π′
1 in Λ is the probability that the root coeffi-

cients are small when the wavelet decomposition is carried out
up to the coarsest scale (i.e., J = log4 n). In this case, we find
the probability that a coefficient at scale j is in the small state,
π′

j , using the following recursive formula

π′
j = π′

j−1p
′S→S
j + (1 − π′

j−1)p
′L→S
j , (7)

where p
′S→S
j and p

′L→S
j are entries of transition matrix Aj given

J = log4 n. In our problem, since we perform partial wavelet
decomposition (i.e., J < log4 n), we set π1 = π′

log4 n−J +1 to
compensate for the scale deficit. From π1 , we can determine
πj ’s using (3) and (6) for j = 2, . . . , J .

From (3) and (6), we note that πj is an increasing function of
j. Therefore, the sparsity rate of wavelet coefficients at scale j,
given by sj = 1 − πj , is a decreasing function of j. In the next
section, we will exploit this nonuniform sparsity property of
wavelet coefficients to design a novel CS measurement matrix.

As an example, for a 128 × 128 image with J = 4 and using
the parameters of uHMT model from [11] (γS = γL = 1, CSS =
0.2, CLL = 0.4, αS = αL = 2.5 and π′

1 = 0.5), we find π1 =
0.731, π2 = 0.858, π3 = 0.925 and π4 = 0.961. Therefore, the
sparsity rates of different scales are found as s1 = 0.269, s2 =
0.142, s3 = 0.075, s4 = 0.039. The overall sparsity rate of the
wavelet coefficients excluding the approximate coefficients is
found as

∑J
j=1 αjsj = 0.055 and we see the sparsity rate of

lower scales are much higher than the overall sparsity rate of
the image.

III. MODEL-BASED NONUNIFORM COMPRESSIVE SAMPLING

In this section, we introduce our proposed nonuniform mea-
surement matrix ΦuH M T for natural images. Our approach is
based on the integration of the uHMT model of natural images’
wavelet coefficients into the design of the measurement matrix.

A. Nonuniform Sampling

We propose a nonuniform CS sampling matrix that can be
implemented in the design of CS-based image sensors. Among
many proposed techniques in the literature, on-chip realizations
of CS-based image sensors with single shot image capture is
highly desirable [25]. Employing CS-based image sensors with

these realizations can reduce the energy consumption of the
image acquisition compared to current designs that are not based
on compressive sensing [25].

The compressive sampling process in the pixel-domain is per-
formed using the sampling matrix Ξ. It is worth noting that the
wavelet coefficients of the image are not available for sampling
and the goal is to obtain compressive samples from the analog
readings of the image sensor in pixel-domain. The relationship
between Ξ and ΦuH M T is given in the following.

y = Ξx = ΦuH M T ΨT x, (8)

where Ψ is the 2D wavelet transform matrix. In other words,
the compressive sensing measurement matrix that is applied
to image x is Ξ = ΦuH M T ΨT . Therefore, applying the mea-
surement matrix ΦuH M T to wavelet-domain coefficients is
equivalent to applying the compressive sampling matrix Ξ in
pixel-domain given the incoherency condition holds between
ΦuH M T and wavelet sparsifying basis (this condition will be
addressed Section III-B).

It is known that the wavelet coefficients of an image show
an exponential decay along the scales of the wavelet tree [10],
[11]. This means that most of images’ energy is carried by
the approximate coefficients and the wavelet coefficients of the
coarser scales. In addition, the sparsity rate of wavelet coeffi-
cients at scale j, given by sj = 1 − πj , is a decreasing function
of j. Therefore, it seems rational to sample the coefficients at
coarser scales, which are the initial coefficients in θ|J , with a
higher probability and decrease the probability that a coefficient
is sampled by a CS measurement as we increase j. For these
purposes, we propose a novel measurement matrix ΦuH M T

that integrates the uHMT model of wavelet coefficients into its
design.

The proposed measurement matrix directly samples the
α0n = 4−J n approximate coefficients and nonuniformly sam-
ples the remaining wavelet coefficients using a nonuniformly
sparse matrix ΦN U = [Φ1 ,Φ2 , . . . ,ΦJ ], where sub-matrix Φj

corresponds to the αjn = 3 × 4−(J−j+1)n wavelet coefficients
at scale j, for j = 1, 2, . . . , J . Here J ≤ log4 n represents the
depth of the wavelet trees (i.e., the level up to which the wavelet
decomposition has been done). It is worth noting that there is
no need to perform wavelet transform and obtain approximate
coefficients in the sampling process.

In addition, we set every row of ΦN U to have L non-zero
coefficient, chosen from a Gaussian distribution with zero mean
and variance 1

L . The structure of the proposed measurement
matrix ΦuH M T is shown in Fig. 3, in which Iα0 n is an identity
matrix of size α0n × α0n.

If we take m CS measurements, m − α0n of them will be gen-
erated nonuniformly from the wavelet coefficients other than the
approximate coefficients. To impose the nonuniform sampling
through ΦN U , we set each row of Φj to have exactly Lj non-
zero entries, whose locations are selected uniformly at random
out of αjn columns (similar to [20]) such that

∑J
j=1 Lj = L.

Let y = ΦuH M T θ|J denote the compressive samples of
wavelet coefficients of an image. For a measurement yi (α0n +
1 ≤ i ≤ m), the number of contributing coefficients from scale
j is Lj . Since the significance of wavelet coefficients decreases
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Fig. 3. The proposed nonuniform measurement matrix for compressive sens-
ing of wavelet coefficients of an image. A darker color corresponds to a denser
matrix.

as j increases, we set

L1

α1
>

L2

α2
> . . . >

LJ

αJ
. (9)

This will ensure that the coefficients at lower scales contribute
to more measurements and correspondingly they have more
contribution in each measurement.

In our proposed scheme, we relate Lj to the sparsity of
wavelet coefficients as follows:

Lj =

⎧
⎪⎨

⎪⎩

⌈
αjsj

∑J
l=1 αlsl

L

⌉

j = 1, . . . , J − 1

L −
∑J−1

l=1 Lj j = J.

, (10)

where sj = 1 − πj is the sparsity rate of the wavelet coefficients
at scale j and πj is found using the uHMT model discussed in
Section II-B. In (10), LJ will be greater than zero if we have L ≥
∑ J

j = 1 αj sj

αJ sJ
(J − 1). Since J = O(log n) represents the levels of

the wavelet transform, choosing L to be at leastO(log n) suffices
to have LJ ≥ 0. As we mentioned in the proposed nonuniform
sampling, we set L = n

c . Therefore for sufficiently large n, Lj

will be greater than or equal to zero.
It should be noted that proposed sensing matrix is universal

given the size of the image size (determined by the image ac-
quisition hardware) and the number of wavelet scales. This is
rooted in the properties of uHMT model, which is independent
of the image size and number of wavelet scales [11].

B. Mutual Coherence of ΦuH M T and Ψ

In order to have an efficient sampling and recovery process,
the measurement matrix and the sparsifying basis must be mu-
tually incoherent. The mutual coherence μ of the measurement
matrix and the sparsifying matrix is defined as μ(Φ,Ψ) =√

n maxk,j |〈φk ,ψj 〉| [26], where φk is the kth row Φ and
ψj is the jth column of Ψ and ‖φk‖2 = 1 for all k = 1, . . . ,m
and ‖ψj‖2 = 1 for all j = 1, 2, . . . , n.

As shown in Fig. 3, our proposed measurement matrix can

be written as ΦuHMT =
[
[Iα0 n | 0 ]α0 n×n

[ 0 | ΦN U ](m−α0 n)×n

]

. There-

fore, the mutual coherence of ΦuH M T and Ψ is

μ(ΦuH M T ,Ψ) = max{μ([Iα0 n |0],Ψ), μ([0|ΦN U ],Ψ)}.
(11)

Given Ψ is an orthonormal basis with |ψij | = O( log n√
n

) for all
i, j = 1, . . . , n, we have μ([Iα0 n |0],Ψ) = O(log n). In addi-
tion using the following lemma, we find the mutual coherence
of [0|ΦN U ] and any orthonormal bases.

Lemma 1: Let Φ be an m-by-n sparse random matrix. As-
sume every row of Φ has L = n

c non-zero entries (not necessar-
ily uniformly distributed) where each non-zero entry is chosen
from N (0, 1

L ) and c is a large constant. For any arbitrary or-
thonormal basis Ψn×n , we have Ξ = ΦΨ is an iid zero-mean
Gaussian matrix with variance less than or equal to 1

L .
Proof: Assume φk is the kth row Φ and ψj is the jth col-

umn of Ψ and the L indices of non-zero elements in φk are
denoted by set Rk (Rk ⊂ {1, . . . , n}). The matrix Ξ = ΦΨ
with entries Ξkj =

∑n
i=1 φkiψij =

∑
i∈Rk

φkiψij is defined.
Therefore, it can be easily seen that for all j = 1, . . . , n and
k = 1, . . . ,m, Ξkj is a linear combination of L Gaussian ran-
dom variables. Accordingly, Ξkj itself is a Gaussian random
variable with mean E{Ξkj} =

∑
i∈Rk

E{φki}ψij and variance
Var(Ξkj ) =

∑
i∈Rk

ψ2
ij Var(φki). Hence, we have the following,

E{Ξkj} = 0,

Var(Ξkj ) =
1
L

∑

i∈Rk

ψ2
ij ≤ 1

L

�
Lemma 1 implies that [0|ΦN U ] × Ψ is a Gaussian random
matrix with iid zero-mean entries and variance less than or
equal to 1/L. Using the union bound for the maximum absolute
magnitude of a Gaussian matrix, |Ξkj | for all j = 1, . . . , n and
k = 1, . . . ,m can be bounded as follows [16],

P

(

max
1≤k≤m,1≤j≤n

|Ξkj | ≥ t

)

� 2 nm exp
(

− t2

2σ2

)

≤ 2n2 exp
(

− t2

2σ2

)

, (12)

where σ2 ≤ 1
L = c

n and � represents asymptotically smaller

than or equal. Choosing t =

√
2c log

(
2 n 2

δ

)

n , the inequality in
(12) becomes,

P

⎛

⎜
⎜
⎝ max

1≤k≤m,1≤j≤n
|Ξkj | ≤

√
√
√
√2c log

(
2n2

δ

)

n

⎞

⎟
⎟
⎠ � 1 − δ. (13)

Inequality (13) shows that μ([0|ΦN U ],Ψ) = O(
√

log ( n√
δ
)),

with probability at least 1 − δ. Consequently, μ(ΦuH M T ,Ψ) =
max{μ([Iα0 n |0],Ψ), μ([0|ΦN U ],Ψ)}=O(

√
log ( n√

δ
)), whi

ch is close to optimal bound except for the log n factor. It is worth
mentioning that the Haar wavelet satisfies the condition |ψij | =
O( log n√

n
) for all i, j = 1, . . . , n [27]. Therefore, the Haar wavelet

basis, ΨH aar , satisfies μ(ΦuH M T ,ΨH aar ) = O(
√

log ( n√
δ
)).

Algorithm 1 summarizes our proposed algorithm for nonuni-
form compressive sampling of 2D wavelet coefficients of an
image.
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Algorithm 1: Nonuniform compressive sampling of wavelet
coefficients of an image.

1: Initialize α0 = 4−J , αj = 3 × 4−(J−j+1) , sj = 1 − πj

for j = 1, . . . , J . The values of πj ’s are found from the
uHMT model discussed in Section II-B.

2: Generate ΦN U = [Φ1 Φ2 . . . ΦJ ] based on the
structure in Fig. 3. Each row of Φj has Lj non-zero
entries, which are chosen as iid zero-mean and unit
variance Gaussian random variables.

3: Directly sample α0n initial coefficients of θ.
4: Sample the remaining (1 − α0)n coefficients of θ using

the updated ΦN U .

IV. MODEL-BASED NONUNIFORM CS RECOVERY

In Section III, we integrated the uHMT signal model into
the design of a novel nonuniform measurement matrix. In this
section, we utilize the same model at the recovery step. We
consider two Bayesian recovery algorithms (i.e., the CSBP al-
gorithm [20] and the AMP algorithm [9]) and modify them to
exploit the uHMT model.

A. CSBP-uHMT: Integrating the uHMT Model into CSBP

One of the advantages of the CSBP recovery algorithm [20] is
its ability to accommodate a priori knowledge about the signal
model in the CS recovery process. In the conventional CSBP,
all the variable nodes are assigned the same a priori pdf that
considers the sparsity rate s = k/n as the probability that each
coefficient is at the large state.

In contrast, in our proposed CSBP-uHMT, we assign a dif-
ferent prior to each variable node based on the uHMT model.
Specifically, each wavelet coefficient θb

j,k receives an a priori
mixture Gaussian pdf

f(θb
j,k ) = πjN (0, σ2

S,j ) + (1 − πj )N (0, σ2
L,j ). (14)

The hyper-parameter Λ = [αS , αL , CσS , CσL , γS , γL, CSS ,
CLL, π′

1 ] is used to determine πj , σ2
S,j , and σ2

L,j as discussed in
Section II-B.

B. AMP-uHMT: Integrating the uHMT into AMP

The AMP algorithm [9] and its model-based version (Turbo
AMP) [7] are proven to have very competitive recovery perfor-
mances and very low computational complexity. Unlike Turbo
AMP that employs a learning-based approach to obtain the
statistical parameters of HMT model, we directly apply the
uHMT parameters to the AMP algorithm. In Turbo AMP,
the variances σb

S,{j,k}
2

and σb
L,{j,k}

2
and the probabilities πb

j,k

are assumed to be random variables with known distributions
[7, Eq. (3)–(8)]. In our proposed work we treat them as fixed
and known parameters found by uHMT model using Equations
(3) and (5).

Clearly the uHMT model may not be as accurate as the
training-based approaches. However, it has been shown in [11]
that using uHMT has a negligible degrading effect on the accu-
racy of images.

TABLE I
PROPERTIES OF DIFFERENT CS SAMPLING AND RECOVERY SCHEMES

V. SIMULATION RESULTS AND DISCUSSION

In this section, we compare the recovery performance of our
proposed model-based uHMT-NCS algorithms (which is based
on the integration of the HMT model into both sampling and
recovery steps) with other state-of-the-art model-based CS re-
covery schemes that only integrate the model at the recovery
step and use conventional CS at the sampling step. The algo-
rithms from the literature that we have chosen are Turbo AMP
[7], model-based CS [5], and TSWCS-MCMC [6]. To imple-
ment these algorithms, we use the full Gaussian measurement
matrices with iid entries with these algorithms (See Table I).
We consider a 128 × 128 image (n = 16, 384) for our simula-
tions (given in Figs. 7(a) and 8(a)). The sparsifying basis, Ψ, is
considered to be the two-dimensional Haar wavelet basis. The
parameters of uHMT model are set as described in [11] (we
verified these parameters for a set of 128 × 128 test natural im-
ages and Haar wavelet): αS = αL = 2.5, CσS = 27 , CσL = 213 ,
γS = γL = 1, CSS = 0.2, CLL = 0.4, and π′

1 = 0.5. We set
L = 40 and J = 3. Therefore, we find π1 = 0.858, π2 = 0.925,
and π3 = 0.961. For uHMT-NCS simulations, the matrix Φ is
generated using Algorithm 1.

In Fig. 4, we have shown the normalized recovery error

(NRE = ‖θ̂−θ‖2
‖θ‖2

) versus the number of measurements. We
depicted the performance of our proposed uHMT-NCS (with
CSBP-uHMT and AMP-uHMT) and Turbo AMP, model-based
CS, and TSWCS-MCMC schemes. For these algorithms, the
tunable parameters such as wavelet levels are set for the best
performance. As we see in Fig. 4, Bayesian recovery-based
algorithms such as TSWCS-MCMC [6] and our proposed
uHMT-NCS have very good performances even with small
number of measurements. Among all schemes uHMT-NCS with
AMP-uHMT recovery performs the best.

A similar simulation is performed over sample images the
Microsoft object class recognition database,3 which includes
thousands of weakly labeled images in 18 categories. From
every category either one or two images are randomly chosen,

3All images are cropped to be rectangular, and resized to 128 ×
128. The database is available for download at “http://research.microsoft.
com/en-us/projects/objectclassrecognition/”
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Fig. 4. Comparison between the recovery performances of our proposed
schemes (uHMT-NCS w/ CSBP-uHMT and uHMT-NCS w/ AMP-uHMT) and
different CS recovery algorithms (Turbo AMP [7], Model-based CS [5], and
TSWCS-MCMC [6]).

Fig. 5. A set of 27 sample images randomly chosen from different categories
of Microsoft object class recognition database. The numbers in each image are
solely for referencing and are not part of the image.

Fig. 6. NRE performance for the sample images in Fig. 5.

resulting in a total of 27 images (see Fig. 5). We applied our
proposed uHMT-NCS (with CSBP-uHMT and AMP-uHMT) as
well as Turbo AMP, model-based CS, and TSWCS-MCMC to
these images. The NRE performance of each image using each
algorithm is shown in Fig. 6. For this simulation we set m =
4000 and J = 3 and 2D Haar wavelet in our own algorithms.
However, the model-based CS algorithm is tuned for its best
performance which is achieved with J = 6.

As we see in Fig. 6, in 25 out of 27 images our pro-
posed uHMT-NCS performs better than other algorithms in
comparison.

Fig. 7. Comparing the visual performance of different CS schemes at m =
4000 measurements.

Figs. 7 and 8 provide the visual comparison of the
recovery performance of uHMT-NCS with state-of-the-art
algorithms. The number of measurements in Figs. 7 and 8 are
m = 4000 and m = 6000, respectively. Figs. 7(a) and 8(a) show
the original image, Figs. 7(b)–8(b), 7(c)–8(c), Figs. 7(d)–8(d),
and Figs. 7(e)–8(e) show the visual performance of model-
based CS [5], visually weighted CS [15], TSWCS-MCMC
Bayesian algorithm [6], and Turbo AMP [7], respectively. Fi-
nally, Figs. 7(f)–8(f), and 7(g)–8(g) represent our proposed
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Fig. 8. Comparing the visual performance of different CS schemes at m =
6000 measurements.

uHMT-NCS algorithm with CSBP-uHMT and AMP-uHMT re-
covery algorithms, respectively. As we see, uHMT-NCS with
both CSBP-uHMT and AMP-uHMT recovery algorithms has a
significantly smaller visual distortion compared to the others.

In the next simulation, we investigate the effect of employing
our proposed nonuniform ΦuH M T in the overall performance of
the proposed uHMT-NCS algorithm. In other words, we would
like to see how much of the improved performance is due to
the integration of the model at the sampling step through our

Fig. 9. Improvement over the conventional AMP technique by exploiting the
uHMT signal model at the sampling step (uHMT-NCS w/ AMP), the recovery
step (sparse random sampling w/ AMP-uHMT), and both (uHMT-NCS w/ AMP-
uHMT).

Fig. 10. NRE versus L1 and L2 . Choosing L1 and L2 using (10) results in
almost 6% performance improvement.

proposed nonuniform ΦuH M T . In Fig. 9, we compare the NRE
performance of AMP [9] with the cases when the uHMT model
is added to only sampling step (uHMT-NCS w/ AMP), only
recovery step (sparse random sampling w/ AMP-uHMT), and
both steps (uHMT-NCS w/ AMP-uHMT) (See Table I). When
uHMT is only applied to the recovery step the measurement
matrix is sparse random matrix with L = 40 non-zero entries per
row. As we see in Fig. 9, including the uHMT model only at the
sampling step (uHMT-NCS w/ AMP) improves the performance
compared to the case when it is solely added to the recovery
step. Therefore, integrating the model at the sampling phase is
even more effective than such integration at the recovery phase.
Clearly, when uHMT model is included in both sampling and
recovery steps (denoted by uHMT-NCS w/ AMP-uHMT) the
most performance improvements is achieved.

In the next simulation, we consider the effect of changing the
row weights of Φj s on the performance of the uHMT-NCS. We
set m = 4000, L = 40 and J = 3 and change the row weights of
Φj s. Accordingly, we find the NRE of uHMT-NCS with CSBP-
uHMT changing L1 and L2 parameters. As shown in Fig. 10,
employing the values of L1 and L2 given in (10) (i.e. L1 = 6
and L2 = 12) results in a smaller NRE which is about 6% better
than the uniform sampling case (i.e. L1 = 2, L2 = 8). However,
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Fig. 11. Recovery performance of uHMT-NCS with CSBP-uHMT versus
different depths of the wavelet tree J .

Fig. 12. Recovery performance of uHMT-NCS with CSBP-uHMT and AMP-
uHMT versus signal to measurement noise ratio.

for this particular example for 4 ≤ L1 ≤ 6 and 10 ≤ L2 ≤ 18
the results are within the 2% of its minimum value.

In the next simulation, we study the effect of the parameter J
(the depth of wavelet trees) in the performance. In Fig. 11, we
have depicted the NRE of our proposed uHMT-NCS algorithm
with the CSBP-uHMT recovery scheme versus J for the sample
image of Fig. 7(a) for different values of m.

As shown, by increasing tree depth, NRE initially decreases
and then increases. The optimal performance is obtained at
J = 2. This observation can be explained using the exponen-
tial decay property of wavelet coefficients. This property sug-
gests that most of images energy are located in the initial signal
coefficients. When J = 1, direct sampling dominates the mea-
surements. Therefore, many coefficients will not be included
in any measurement and that results in poor performance. As
J increases, fewer coefficients are measured directly and more
nonuniform CS samples are generated. However, by increasing
J the sparsity rate of higher scales decreases exponentially and
it is inefficient to allocate too many measurements to sample
these coefficients. We used optimal value J = 2 for our previ-
ous simulations.

Finally, we consider the performance of the proposed algo-
rithms in case of noisy measurements. Similar to the previous
simulations, we set m = 4000, L = 40 and J = 3. In this sim-
ulation we assumed the measurements are corrupted by an ad-
ditive white Gaussian noise process. As shown in Fig. 12, the

normalized recovery error of uHMT-NCS with CSBP recovery
and AMP recovery are depicted versus different values of the
SNR. SNR is calculated as the ratio of the average signal value
to the standard deviation of the Gaussian noise. The results of
this simulation show that for SNR levels higher than 6 dB the
performance of both proposed uHMT-NCS CSBP and AMP al-
gorithms are very similar to each other. However, in low SNR
scenarios the performance of the uHMT-NCS AMP is consid-
erably better than uHMT-NCS CSBP. This observation roots in
the more accurate noise model of AMP algorithm in the case
of AWGN compared to the CSBP [9]. Therefore for low SNR
scenarios, the uHMT-NCS with AMP-uHMT recovery should
be employed due to more robustness to noise.

VI. CONCLUSION

In this paper, we have developed a model-based CS nonuni-
form sampling and recovery scheme (uHMT-NCS) for natural
images that exploits the universal hidden Markov tree (uHMT)
model of wavelet coefficients in both CS sampling and CS re-
covery steps. As we have shown, not only the signal model
can be utilized to optimize the initial priors for Bayesian CS
recovery algorithms, but it can also be employed in the design
of new CS measurement matrices. The results of our numerical
experiments suggest a significant performance gain compared
to the state-of-the-art model-based CS algorithms. To the best
of our knowledge, our work is one of the first Bayesian-based
algorithms to consider the signal model in the design of the CS
measurement matrix as well as the recovery scheme. Although
we considered the natural images as our underlying signal, our
approach is not limited to the image processing applications
and the wavelet sparsifying bases. After the model extraction,
similar procedure can be adopted for compressive sampling and
recovery of other real-world signals.
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