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Abstract: The problem of signal detection using a flexible and general model is considered. Owing to applicability and
flexibility of sparse signal representation and approximation, it has attracted a lot of attention in many signal
processing areas. In this study, the authors propose a new detection method based on sparse decomposition in a
union of subspaces model. Their proposed detector uses a dictionary that can be interpreted as a bank of matched
subspaces. This improves the performance of signal detection, as it is a generalisation for detectors. Low-rank
assumption for the desired signals implies that the representations of these signals in terms of some proper bases
would be sparse. Their proposed detector exploits sparsity in its decision rule. They demonstrate the high efficiency of
their method in the cases of voice activity detection in speech processing.
1 Introduction

Sparse approximation techniques have found wide use due to their
benefits and high flexibility in many applications in image and
signal processing [1, 2]. Sparse representation can efficiently
extract most important features of a signal, so it provides very
promising results in data compression [3], de-noising [4], blind
source separation [5], signal classification [6] and so on. The
methods based on exploiting the signal sparsity have two main
steps. First, an over-complete dictionary [1] is selected/learned
according to the structural characteristics of the set of signals, and
then the target signal is decomposed over the dictionary to obtain
a compact representation. Representation in terms of a few
designed/learned bases can accurately capture the signal structure
characteristics, which in turn leads to an improvement in the
distinction between noise/interference and structured signals.

In some signal processing applications, the task is to detect the
presence of a signal from its noisy measurements. For example, in
speech processing, voice activity detection (VAD) is performed to
distinguish speech segments from non-speech segments in an
audio stream. VAD plays a critical role on increasing the capacity
of transmission and speech storage by reducing the average bit
rate [7].

Signal detection is an old problem in signal processing and there
are some traditional signal detectors including energy detector,
matched filter and matched subspace detector [8]. Matched signal
detector is the most basic framework for signal detection which
needs a bank of matched signals to design a detector system.
However, in many applications it is preferred to replace rank-1
signals by a multirank matched subspace [8]. Matched subspace
detector assumes the span of a subspace as the desired signals and
rejects that part of signal which lies on the null-space of the
assumed subspace. Generalised likelihood ratio test (GLRT) for
matched subspace detector is the uniformly most powerful
invariant (UMP-invariant) statistic for detection [8]. The subspace
model for detection needs some bases as the span of desired
signals which can be a set of fixed bases such as discrete Fourier
transform or data-dependent bases such as principal component
analysis (PCA). Although subspace model is more adaptive for
signal analysis, it needs several parameters that must be either
known or estimated. For example, the set of bases spanning the
desired signals, the coefficients of the bases, noise covariance and
signal-to-noise ratio (SNR). Depending on the knowledge about
different parameters, the optimum statistic is suggested in [9] for
four situations. In the case of unknown coefficients, orthogonal
projection of the observation is used to determine the coefficients
of the contribution of each basis. The present paper assumes a
more general model for signals in which considers a union of
subspaces (UoSs).

Sparsity has been exploited widely in detection purposes, for
example, abnormal event detection [10], VAD [11] and face
detection [12]. A multi-criteria detection based on intelligent
switching between traditional detection and sparse detection is
proposed in [13]. In these works, sparsity has been used to extract
features or define a heuristic criterion for detection. Compressive
detector is another application of sparsity for signal detection. It is
able to detect signals only by using some measurements from the
original samples while the performance is not degraded
dramatically [14, 15]. The goal of compressive detector is to
preserve the performance of detector the same as the original
detector. In this paper, we use sparsity from a different point of
view. The traditional detectors are generalised to consider sparsity
on the optimum decision rule and a new trade-off is suggested
between sparsity (rank of a subspace) and error of projection
(distance to a low-rank subspace).

In this paper, we propose a new signal detection method based on
the union of low-rank subspaces (ULRS) model [16, 17]. This model
is able to reveal intrinsic structure of a set of signals. The proposed
detector is a generalised version of traditional detectors. In other
words, imposing a union of rank-1 subspaces model for desired
signals yields nothing other than the traditional matched filter
banks. We investigate our detector from different points of views
in order to show relation between our method and other classical
detectors. We also derive a robust version of the proposed detector
in order to provide robustness against outliers and gross errors. We
provide theoretical investigations as well as experimental results
on VAD.

The rest of this paper is organised as follows. Section 2 provides a
brief background on sparse representation theory and basic concepts
of detection theory. In Section 3 we describe our new signal
detection method, study its performance and provide its robust
version. Section 4 experimentally demonstrates the effectiveness of
our proposed signal detection method. Finally, Section 5
concludes this paper with a summary of the proposed paper.
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2 Theoretical background and review: basic
theory of sparse decomposition

Sparse decomposition of signals based on some basis functions has
attracted a lot of attention during the last decade [1]. In this approach,
one wants to approximate a given signal as a linear combination of as
few basis functions as possible. Each basis function is called an atom
and their collection is called a dictionary [18]. The dictionary is
usually over-complete, that is, the number of atoms is much more
than the dimension of atoms. Specifically, let y∈RN be the signal
which is sparsely represented over the dictionary D∈RN×K with
K > N. This amounts to the following problem:

x̂ = argmin
x

‖x‖0 s.t. y = Dx (1)

where ‖.‖0 stands for the so-called ℓ0 pseudo-norm which counts the
number of non-zero elements. Many algorithms have been
introduced to solve the problem of finding the sparsest
approximation of a signal in a given over-complete dictionary (for
a good review see [19]). For a specified class of signals, for
example, class of natural images, the dictionary should have the
capability of sparsely representing the signals. In some
applications, there is a predefined and fixed dictionary which is
well-matched to the contents of the specific class of signals.
Over-complete discrete cosine transform (DCT) dictionary for the
class of natural images is an example. These non-adaptive
dictionaries are favourable because of their simplicity. On the
other hand, learning-based dictionary results in better matching the
contents of the signals [1]. Most dictionary learning algorithms are
indeed a generalisation of the clustering algorithms. While in
clustering each training signal is forced to assign only one atom
(cluster centre), in the dictionary learning problem each signal is
allowed to use more than one atom provided that it uses as fewest
as few atoms as possible. The general dictionary learning problem
can be stated as follows:

(D̂, X̂ ) = argmin
D,X

‖Y − DX‖2F s.t.‖xi‖0 ≤ T , ∀i. (2)

where the columns of Y contain the observed data and xi, the
columns of X, are sparse representations of the observed data.
Most dictionary learning algorithms solve the above problem by
alternatively minimising it over D and X. Dictionary learning
algorithms differ mainly in performing the minimisation over the
dictionary. Dictionary learning has an important role in the sparse
decomposition-based methods. A section in the proposed method
section is allocated for discussion on dictionary learning.
Fig. 1 Block diagram of the matched subspace detector
3 Basic theory of detection

In this section, we review signal detection theory and study some
related detectors to our proposed one. First, consider the following
model for detection:

H0:y = n, signal absence
H1:y = s+ n, signal presence

(3)

where y∈RN is the observation vector, s∈RN is the signal of
interest and n∈RN is the observation noise of the model. First, we
assume that the probability density functions of p(y|H0) and
p(y|H1) are known. In this case, the likelihood ratio test (LRT) gives

p(y|H1)

p(y|H0)
+
H1

H0

g (4)

where g is a threshold that satisfies the desired amount of probability
of false alarm. By Gaussian assumption on the noise with covariance
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matrix R, LRT simplifies to

sHR−1y + g (5)

where R is the covariance matrix. If it is not known in advance, it
must be determined by obtaining the sample covariance matrix in
the above test. Probability of detection is then equal to [20]

PD(a) = Q(Q−1(a)−
������
SNR

√
) (6)

in which α is the probability of false alarm and
Q(a) = �1

a
exp(− t2)dt. Another well-known detector is GLRT

[21] which is derived by maximising conditional densities
constituting the LRT with respect to the unknown parameters. The
following detection criterion is obtained by assuming the
covariance matrix to be unknown:

|sHR̂−1
y|

sHR̂
−1
s 1+ 1

K
yHR̂

−1
y

( ) + g (7)

where L is the number of snapshots available for R̂ estimation. In
[21], no optimality has been claimed for GLRT. However, Scharf
and Friedlander [8] have shown that GLRT is UMP invariant. This
is the strongest statement of optimality derived for a detector.
GLRT detector may be interpreted as a projection on the
null-space of the interference followed by a matched subspace
detector [8]. Consider the following model for hypothesis test:

H0:y = Cu+ n, signal absence
H1:y = Dx+ Cu+ n, signal presence

(8)

where C∈RN×p spans the background or interference subspace, p <
N and θ determine contribution of each column of C. D∈RN×m

spans signal subspace which is to be detected, m < N and x
determine the contribution of each column of D. It is obvious that
if p≥N or m≥N, then C or D spans all the space of the signals.
In other words, in this case C or D may be over-fitted for
background detection and signal detection, respectively. On the
other hand, restrictions of p and m may result in unreliable
subspaces which are unable to fit suitable matched subspace. The
role of matched subspaces detector is as follows:

yHP⊥
CPDC⊥P⊥

C y + g (9)

where P⊥
C is the orthogonal projection matrix on the null-space of C

and PDC⊥ is the part of orthogonal projection of PD which does not
account for subspace spanned by C. Fig. 1 shows the block diagram
of this detector.

At the conclusion of paper, Scharf and Friedlander [8] mentioned
that basis can be extracted from discrete cosine transform, wavelet
transform or learned by data-dependent analysis such as PCA.
Using such basis provides a matched subspace for the whole
desired signals which are going to be detected. For more
illustration see Fig. 2. This figure shows composites of some
three-dimensional (3D) data by signal and non-signal (interference
and noise) parts. Two low-rank subspaces are shown
corresponding to rank-1 and rank-2 subspaces (the low-rank
matched subspace) which are obtained by PCA.

The main contribution of [8] may be answering ‘no’ to the
question, ‘Can the GLRT be improved upon?’ while they did not
assume any prior information on the structure of the low-rank
IET Signal Process., 2016, Vol. 10, Iss. 1, pp. 55–62
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Fig. 2 Two low-rank subspaces learned by PCA for some 3D signals
matched filter. The structural assumption can be applied by assuming
a sparse prior on the coefficients of θ and x. The proposed method of
this paper suggests using the model of ULRS for signals due to its
suitable fitness which has been proven in many signal processing
applications. Instead of traditional analysis such as PCA, modern
analysis such as the methods proposed in [22–24] can be exploited
in order to recover suitable bases spanning these low-rank
subspaces. Fig. 3 shows a union of matched low-rank subspaces
corresponding to the data of Fig. 2.

Compressive detection is another application of the sparse theory
exploited in signal detection and studied in [25, 15]. Instead of
dealing with all the samples of the signal, the compressed detector
works with few measurements. This detector distinguishes
between two hypotheses

H0:z = Fn, signal absence
H1:z = F(s+ n), signal presence

(10)
Fig. 3 Union of rank-1 subspaces provides suitable matched subspaces

IET Signal Process., 2016, Vol. 10, Iss. 1, pp. 55–62
& The Institution of Engineering and Technology 2016
where Φ∈RM×N is the measurement matrix and z is the
measurement. If no further prior is known about s, no optimal Φ
can be designed and random measurements yield a detector with
the following performance [25]:

PD(a) � Q Q−1(a)−
���������
M

N
SNR

√( )
(11)

in which the performance of the detector is degraded by factor������
M/N

√
compared with the traditional matched filter. Having

knowledge of s =Dθ results in a compressed detector as shown in
[25]

PD(a) � Q Q−1(a)−
���������
M

K
SNR

√( )
(12)

in which the performance of the detector is improved by a factor of������
M/N

√
compared with the random measurement detector. Reference

[15] studied two cases about the knowledge of D. The first case
assumes that D is known and the second case assumes that D
consists of a set of parametric basis, where the active basis of D
can be recovered by a sparse coding algorithm. Recently, Eldar
and Mishali [26] investigated the problem of detection of an
ULRSs via compressed measurements. The compressed detector
still performs worst than the matched filter by factor

������
M/N

√
.

In this paper, we are going to exploit the low-rank structure
characteristic of the signals to design a new detector. Our detector
is not compressed and the goal is to design a generalised detector
using sparsity (that is, assuming a structure) which implicitly
exists in the signals. In Section 3, the proposed detector will be
presented. Our detector first assumes a model according to sparse
signals and then derives an optimum rule of detection.
4 Proposed approach

In this section, we introduce our model for signal detection. We want
to distinguish between two hypotheses H0 and H1

H0:y = n, signal absence
H1:y = Dx+ e+ n, signal presence

(13)
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Fig. 4 Sparse representation of some structural data whose distribution is
where D is the dictionary which can be interpreted as a bank of
matched filters, e is the error vector of the model which denotes
the mismatch between the exact matched filter and the UoSs
spanned by the columns of D. Assume that e is a zero-mean white
Gaussian noise with variance s2

e , that is, eN (0, s2
eI). In our

method, the signal (Dx) matched to the observed signal (y) is
unknown; so it must be determined. This section is divided into
four sections. In the first section, we analyse the role of the
coefficients of the linear combination (x) and then describe our
approach for coefficients estimation. In the second section, the
performance of our proposed detection method will be analysed.
Since dictionary learning is a critical issue in the model, third
section is allocated for discussing on the dictionary learning. In
the last section, we will explain how our method may become
robust to detect signals that are contaminated by gross errors.
in agreement with the one defined by (21)
5 Discussion on the coefficients (x)

Linear combination of the dictionary atoms generates the matched
signal for detection. Three cases are considered for x estimation.
First, no constraint solution, second matched filter bank and third
applying Gaussian distribution. First, assume that there is no
constraint on x, that is, orthogonal projection of the signal onto the
span of the desired subspace. This method is used in matched
subspace method to identify the part of signal that amounts for the
desired signals [8]. The solution for it will be

x̂ = argmin
x

‖y− Dx‖22 = (DTD)−1DTy (14)

This answer suffers from over-fitting as some signals that do not
contain the target signal may be decomposed in terms of the
atoms. More restricted constraints may alleviate this problem. Now
let us assume that just one element of x is allowed to be non-zero.
This constraint helps reducing over-fitting. By this assumption the
problem becomes

x̂ = argmin
x

‖y− Dx‖22 s.t. ‖x‖0 = 1 (15)

The solution will be zero except in the position corresponding to the
atom with maximum correlation. This solution is nothing but the
traditional matched filter bank. Each matched filter which has
more correlation is considered as the matched signal. All
correlations are sufficient statistics for the decision. If all the
correlations are less than a threshold, no detection is performed.

The third scenario we study is assuming Gaussian prior on x. The
motivation of considering this assumption for x is to avoid
over-learning and moreover having less sensitive coefficients.
Estimation of x by the assumption of Gaussian distribution on n
and x can be obtained as follows:

x̂ = argmin
x

‖y− Dx‖22 + l‖x‖22 = (DTD+ lI)−1DTy (16)

This solution for the coefficients of linear combination is the Ridge
regression [27]. Solution (15) is the least over-learned and solution
(14) is the most over-learned one. It is interesting to see how each
of the solutions covers the signal space for learning. Solution (15)
provides high learning for few 1D subspaces corresponding to
each atom, whereas solutions (14) and (16) provide high learning for
many subspaces corresponding to arbitrary selections of the atoms.
Involvement of all the atoms to form the matched signal results in
detection of undesired signals as the target signal due to the
expansion of the matched subspaces. To keep the number of
involved atoms limited, we suggest modifying problem (16) as follows:

x̂ = argmin
x

‖y− Dx‖22 + l‖x‖0 (17)

There is a large enough value for l such that the solution of the
above problem is the same as (15). Now we show that this
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problem is the maximum a posteriori (MAP) estimation of x under
multivariate independent Gaussian prior

p(x, W )/ �����
|W |

√
exp(− xTWx) (18)

where W is a diagonal matrix. By this assumption, two unknowns
must be estimated. First, we obtain the maximum likelihood (ML)
estimation of W

WML = argmax
W

log p(y|x, W ) = argmax
W

xTWx− log(|W |) (19)

By setting the derivative with respect toW equal to zero, the solution
of (19) is W−1 = xxT which has no solution; however, we need only
the diagonal elements of W due to the independent assumption on
the entries of x. Therefore, calculating the derivative with respect
to only diagonal elements of W (wii) results in

wii =
1

x2i
= lim

d�0

1

d+ x2i
(20)

where δ is a small positive for avoiding division by zero. Then we
insert the obtained W in (18)

p(x)/ exp −
∑
d�0

lim
x2i

d+ x2i

( )
= exp(− ‖x‖0) (21)

Actually, W is an auxiliary parameter which is used just for more
adaptation of the coefficients distribution. The obtained W results
in a distribution with more probability of having orthogonal
low-rank subspaces (in the space to which x belongs; for more
illustration see Fig. 4). Corresponding to these orthogonal
low-rank subspaces, there are non-orthogonal low-rank subspaces
in the observation domain which y or Dx belongs to this space.
The MAP estimation of x by prior of (21) results in the suggested
problem (17) which is a generalised version of (15) from the
aspect of sparsity level of the coefficients, and a generalised
version of (16) from the aspect of prior distribution on the
coefficients for estimation. In [4], it is proved that in a certain
condition, problem (17) leads to the same solution with the
following ℓ1 regularised problem:

x̂ = argmin
x

‖y− Dx‖22 + l‖x‖1 (22)
6 Performance analysis

First, we define the false alarm rate and the detection alarm rate

PF = Pr(H1 is chosen while H0 is true)
PD = Pr(H1 is chosen while H1 is true)
PF = �

p(y|H1).gp(y|H0)
p(y|H0)dy = a.

(23)
IET Signal Process., 2016, Vol. 10, Iss. 1, pp. 55–62
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Fig. 5 Trade-off between sparsity and error to signal ration (ESR) and its effect on the detector performance
Parameter g satisfies the desired amount of false alarm probability, α

p(y|H0) =
1

(2ps2
n)

N/2 exp − ‖y‖22
2s2

n

( )

p(y|H1) =
1

(2p(s2
n + s2

e ))
N/2 exp − ‖y− Dx‖22

2(s2
n + s2

e )

( ) (24)

By solving p(y|H1) = gp(y|H0), the threshold for decision rule can
be achieved

t =, y, Dx . +
H1

H0

C + ‖Dx‖22 − ‖y‖22
s2
e

s2
n

( )
, (25)

where C is a constant value depending on s2
n and s2

e and the desired
α. The sufficient statistic for decision making is t = < y, Dx > =
yTDx. It is easy to show that

PD(a) = Q Q−1(a)−
����������
SNR

1+ ESR

√( )
(26)

where SNR = E ‖Dx‖22/s2
n and ESR = s2

e/E ‖Dx‖22. As can be
seen, the performance of the detector is degraded by a factor of
1 + ESR. However, our detector has learned a suitable space for
signals to be detected. In other words, we accept a small
deterioration of the performance due to the generalisation of the
detector. Flexibility of the sparse representation-based detector is
the most distinguished advantage. Dictionary learning [23] is the
most important issue for the methods based on sparse
representation. In the sparse detector, the dictionary should be
learned such that ESR≪1 to avoid performance deterioration and
at the same time ESR≫ e to avoid over-learning. In the next
section, we will explain how to learn an appropriate dictionary. In
(25), sparsity has no effect on the performance. Now we introduce
a decision rule for detection that exploits the sparsity of the
coefficients. To this end, we solve equation p(y|x, H1)p(x) =
gp(y|H0) by the obtained p(x) in (21). The new decision rule can
IET Signal Process., 2016, Vol. 10, Iss. 1, pp. 55–62
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be achieved as follows:

t =, y, Dx . +
H1

H0

C + ‖Dx‖22 − ‖y‖22
s2
e

s2
n

( )
+ g‖x‖0 (27)

where c is a positive constant value. As ‖x‖0 increases, H0 may be
more probable, because the signals representation in terms of the
dictionary would be sparse only for the learned signals. Similar to
(26), it is easy to show that

PD(a) = Q f (‖x‖0)Q−1(a)−
����������
SNR

1+ ESR

√( )
(28)

where f is an increasing homogenous function. As can be seen, the
probability of detection increases (decreases) when sparsity
increases (decreases) for false alarm rates smaller than 0.5
[because when α < 0.5 then Q−1(α) > 0]. As the desired false
alarm rates are often small, the probability of detection would
increase in this region (it is favourable for a detector that the
top-left region of its receiver operating characteristic (ROC) be
close to the ideal ROC). If the representation of a signal is sparse,
this signal lies in the desired low-rank subspace (that is, it meets
our assumed model for the target signals). Thus the probability of
detection would increase for these signals that have sparse
representation in terms of the dictionary atoms, which is actually
what we expect from sparsity. Fig. 5 shows the ROC of (22) with
SNR = +20 dB for different sparsity levels.

Traditional matched filter banks have the most sparsity level, but it
is not practical. For instance, in VAD, it is not feasible to collect all
possible voices in a bank. A small number of filters result in high
ESR and low performance. Our proposed detector makes a
trade-off between ESR and sparsity in order to have a good
detector performance. Dictionary learning has a critical role in the
trade-off which is studied as follows.
7 Learning the dictionary

In this section, we explain the role of dictionary learning in the
proposed detection method. In many detection problems, the
number of training signals may not be as large as the number of
59



possible matched filters that cover all the target signals space. By the
proposed approach, we search for a dictionary learned by a set of
finite number of signals that efficiently represents those signals.
The dictionary should be general to be able to deal with a signal
that has not been seen before. Assume that we have a set of
signals (Y∈RN×L). Dictionary learning is a function that maps Y
to D where D∈RN×K. An appropriate dictionary should have
ESR≪1 to be a suitable representation for the training data and
also ESR should not be too small to have a general dictionary that
is not over-learned for only the training data. Two algorithms for
dictionary learning are presented.

7.1 K-means algorithm

K-means method uses K centroids of clusters to characterise the
training data [28]. They are determined by minimising the sum of
squared errors

D = argmin
D

∑K
k=1

∑
i[Ck

‖yi − dk‖22 (29)

where the columns ofD are dk, k = 1, …, K. The provided dictionary
assigns to each training data a centroid. K should be large enough to
satisfy the desired amount of ESR. Problem (14) has to be solved to
determine the coefficients so that only one of them is non-zero. This
dictionary learns some points in the signal space. As the distance
from these points increases, the level of learning would decrease.
In other words, this dictionary is obtained by the union of spheres
model. This model may not be a suitable choice for ordinary
signals. The next algorithm agrees with a more appropriate model
for the data. The K-singular value decomposition (SVD) learns the
signal space with an ULRSs.

7.2 K-SVD algorithm

By extending the union of spheres to a union of low-dimensional
subspaces, K-means algorithm is generalised to K-SVD algorithm
[23]. This flexible model agrees with many signals such as images
and audio signals. For example, natural images have sparse
representation in terms of DCT dictionary. In other words, by
combination of only a few DCT bases, it is possible to
approximate the blocks of an image. The following problem
provides the dictionary learned by K-SVD:

D = argmin
D, xi

∑
i

‖yi − Dxi‖22 s.t. ‖xi‖0 ≤ T . (30)
Fig. 6 Block diagram of our proposed detector based on dictionary
learning
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This algorithm is based on atom-by-atom updating over the columns
of D. Recently, more efficient algorithms for atom-by-atom updating
are suggested in [29]. Each arbitrary selection of few D columns
characterises a cluster corresponding to a subspace. The dictionary
learned by K-SVD is in agreement with the proposed problem
(22). After learning, test signals that lie on the learned
low-dimensional subspaces can be reconstructed and detected. In
addition to dictionary learning using training signals, it is possible
to design a dictionary using parametric functions [30]. Kernels of
fast fourier transform (FFT) and DCT are two examples from this
class of dictionaries where bases sweep the parameter of
frequency. Fig. 6 shows the block diagram of the proposed
detection method.
8 Robustness

Assume that a dictionary has learnt to detect face images without sun
glasses. If a face image with sun glasses is given to it for detection,
gross error in the region of eyes may result in a wrong detection. To
solve this problem, a distribution has to be supposed that has longer
tail than Gaussian. Laplace distribution is our suggestion for the error
distribution. Thus H1 implies that the observed signal is the
combination of few atoms of D, a Laplace distributed error and a
Gaussian distributed noise

H1:y = Dx+ e+ n (31)

The problem of coefficients estimation for (22) by new prior
assumption has been already presented in robust statistics [31]

x̂ = argmin
x

‖y− Dx‖H + l‖x‖1 (32)

where

‖s‖H = ∑
h(si)

h(s) = s2, if |s| ≤ r
rs, if |s| . r

{
(33)

In other words, small errors and large errors are penalised by ℓ2 norm
and ℓ1 norm, respectively. l is the parameter of the mixture
distribution of Gaussian and Laplace. Let re-write (32) as follows:

x̂ = argmin
x

‖y− Dx− e‖22 + l‖x‖1 + r‖e‖1 (34)

x̂ = argmin
x

y− [D I]
x
e

[ ]∥∥∥∥
∥∥∥∥2
2

+l ‖x‖1 + ‖ r
l
e‖1

( )

Let us define ẽ as ρ /le

x̂ = argmin
x

y− D
l

r
I

[ ]
x
ẽ

[ ]∥∥∥∥
∥∥∥∥2
2

+l(‖x‖1 + ‖ẽ‖1) (35)

By substitution of B = [Dl /ρI] and z = [xTẽT]T, we have

ẑ = argmin
z

‖y− Bz‖22 + l‖z‖1 (36)

This problem is similar to (22) except that its dictionary is extended
by scaled identity matrix. Identity matrix projects inappropriate parts
of the signals onto corresponding coefficients. Inappropriate parts of
the signals may be large errors or out of the desired subspace
interferences or outlier data. Wright et al. [32] also intuitively
have used the same dictionary to obtain a robust framework for
face recognition. A same procedure can be pursued to learn robust
dictionary by a set of unreliable data [33].
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Fig. 7 Block diagram of our proposed detector based on dictionary learning
9 Experimental results

We evaluated the performance of our proposed method in the case
study of VAD. To construct the learned dictionary, clean speech
signals of noisy speech corpus (NOIZEUS) database were used [34].
In NOIZEUS database, 30 sentences were selected which include all
phonemes in the American English language. The sentences were
produced by three male and three female speakers and originally
sampled at 25 kHz and down-sampled to 8 kHz. We divided the
clean speech signals into 25 ms frames with 10 ms frame shift. After
removing the silent frames, we extracted standard Mel-frequency
Fig. 8 Comparing the performance of our proposed method with sparse non-nega
are found by PCA and detection using the compressed measurements [20]
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cepstral coefficients (MFCCs) using ten Mel triangular filters, energy
values computed at each of the ten Mel triangular filters, total energy
(the first cepstral coefficient) and entropy from each speech frame.
MFCC features capture the most relevant information of speech
signal, and they are widely used in speech and speaker recognition
making the VAD method easy to integrate with existing applications.
Therefore, our features vector was 24D, and the total number of
vectors was about 6300. By using the K-SVD algorithm, we
obtained a learned dictionary with 100 atoms, which was used in the
following experiments for obtaining the sparse representation based
on orthogonal matching pursuit (OMP) method.
tive coding-based VAD [11], matched subspace detector [8] where the bases
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To evaluate the performance of the proposed method, the speech
detection probability (PD) and false alarm probability (PF) were
investigated based on a reference decision. A clean test speech
(sp10.wav), taken from the NOIZEUS database, was
down-sampled at 8000 Hz and was used for the reference
decisions. To simulate noisy environments, several noise signals as
the subset of the NOIZEUS database were used. Noise signals
included recordings from different places (Babble (crowd of
people), Car, …) at SNRs of 0, 5, 10 and 15 dB. The ROC curves
for VAD using our proposed method are illustrated in Fig. 7 which
shows PD versus PF.

Sparsity in VAD has been exploited already. For example, a
feature extraction is performed to suggest a decision rule for
detection in [11]. We compared the result of our method with the
sparsity-based VAD method proposed in [11]. As can be seen in
Fig. 8, our method shows better performance in low SNR conditions.
10 Conclusion

This paper presented a new sparsity-based detector. The
performance of the method was evaluated in a realistic application:
VAD in speech signal processing. Our detector proposed a new
trade-off for designing detectors by assuming the ULRSs model.
The trade-off is between the sparsity and the error of ULRSs
model denoted by ESR. In our detector the number of filter banks
is proportional to the size of the dictionary. Appropriate dictionary
is able to regularise the sparsity and the introduced parameter
ESR. Simulation results showed that the proposed method is
effective and has a high anti-noise ability due to optimum
projection of signals to reliable learned low-rank subspaces.
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