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a b s t r a c t 

In this paper, we propose an integration of compressive sensing (CS) and clustering in WSNs utilizing 

block diagonal matrices (BDMs) as the measurement matrices. Such an integration results in a significant 

reduction in the power consumption related to the data collection. The main idea is to partition a WSN 

into clusters, where each cluster head (CH) collects the sensor readings within its cluster only once and 

then generates CS measurements to be forwarded to the base station (BS). We considered two methods to 

forward CS measurements from CHs to the BS: (i) direct and (ii) multi-hop routing through intermediate 

CHs. For the latter case, a distributed tree-based algorithm is utilized to relay CS measurements to the 

BS. The BS then implements a CS recovery process in the collected M CS measurements to reconstruct all 

N sensory data, where M � N . Under this novel framework, we formulated the total power consumption 

and discussed the effect of different sparsifying bases on the CS performance as well as the optimal 

number of clusters for reaching the minimum power consumption. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

Wireless sensor networks (WSNs) have found numerous uses

n both military and civilian applications [1] . Sensors in WSNs are

sually randomly dropped/deployed in a sensing area that needs to

e monitored. They are often deployed in harsh conditions with-

ut maintenance or renewable power supply. Therefore, the con-

ection and operation of these networks rely on these small and

nexpensive devices under a severe energy constraint. Saving en-

rgy in data collection in such networks is always a critical prob-

em that directly impacts network lifetime. 

The spatial correlation of the sensor readings in WSNs results in

n inherent sparsity of data in a proper basis. This sparsity facili-

ates the application of the compressive sensing (CS) [2–4] tech-

ique in data collection in WSNs [5–7] . CS offers a novel frame-

ork to reconstruct all sensor readings based on a small number

f CS measurements, which creates an opportunity to significantly

educe power consumption. 

In recent years, there have been several studies on the inte-

ration of CS and data collection in WSNs, e.g., [8–12] . In these
∗ Corresponding author. 
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ethods, sensor readings are multiplied by a selected set of coeffi-

ients and are sent to the base station (BS) following some routing

ethods such as gossip-based, random walk, tree-based, or cluster-

ased. The CS measurements are collected at the BS as Y = �X ,

here � is called the measurement matrix and vector X represents

ll unknown readings from all the sensors. The resulting measure-

ent matrices can be sparse or dense with Gaussian coefficients

epending on the underlying routing method. 

In this paper we combine the clustering technique, which has

een shown to save and balance energy consumption for WSNs,

nd block diagonal matrices (BDMs) as the CS measurement ma-

rices. We propose an algorithm called Cluster-Based Compressive

ensing Data Collection (CCS) in which the CS measurements are

enerated at each cluster-head (CH) in the clustered networks. We

onsider two methods to send these measurements to the BS: di-

ectly (one-hop), denoted as D-CCS and multi-hop relaying through

he intermediate CHs, denoted as I-CCS . In the BDM, the size of

ach sub-matrix (block) depends on the size of each cluster. We

ormulate the total power consumption and discuss the effect of

ifferent sparsifying bases on the CS performance as well as the

ptimal number of clusters for reaching the minimum power con-

umption. For our formulations, two common positions for the BS

re considered: the BS located at the center and outside the sens-

ng area. Based on that, we can obtain the optimal number of clus-

ers that provides the minimum power consumption for our net-

orks. In our simulation, we consider both random sparse signals

http://dx.doi.org/10.1016/j.comnet.2016.06.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.06.029&domain=pdf
mailto:tuanminh.nguyen@okstate.edu
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http://dx.doi.org/10.1016/j.comnet.2016.06.029
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Table 1 

Comparison between the existing data collection methods and CCS. 

Related papers Network structure Measurement 

matrix 

Number of times sending 

data from each sensor 

Number of packets sending 

data from each cluster-head or 

subnet-head 

CS measurements are 

generated at 

[29–31] Spanning tree Full dense Gaussian Up to M times M Base-station 

Partly [31] Spanning tree BDM m i times m i Subnets 

[32,33] Cluster Full dense Gaussian Only once M Base-station 

CCS Cluster BDM Only once m i ( m i 
M 

= 

n i 
N 

) Cluster-heads 

∗Note: m i and n i represent the number of CS measurements required and the number of sensor nodes from cluster i th , respectively. 
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in canonical basis and real sensor readings. The real sensor read-

ings, although not sparse in canonical domain, are sparse in fre-

quency domains (DCT or Wavelet). We compare different combina-

tions between the measurement matrices and the sparsifying ma-

trices in our theoretical and simulation results. Our work shows

promise not only in WSNs but also in mobile sensor networks

or vehicle networks for data monitoring or similar purposes. The

power saving in communications prolongs the lifetime in such net-

works. 

1.2. Related work 

Clustering is an effective way to enhance the performance and

lifetime of a WSN and many different clustering algorithms have

been studied so far [13–17] . Each cluster has a cluster head (CH)

and CHs can be pre-determined [13] or be selected while do-

ing clustering as in the following algorithms. K -means [18–20] is

a well-known and simple clustering algorithm that chooses CHs

for K clusters at the central point of each cluster. Since power

consumption is dependent on transmission distance, this helps to

minimize the intra-cluster power consumption. In general, CHs

consume power much more than other sensors as they transmit

the entire cluster’s data to the BS. In LEACH [17] , sensor nodes

randomly elect themselves to be CHs. This way, the high power

consumption related to communication with the BS will be dis-

tributed among the nodes in the network. The HEED algorithm

[21] chooses CHs based on the highest residual energy of sensors

to balance network energy. EEUC [22] makes unequal size clusters

and muti-hop links between CHs to reduce and balance the power

consumption. Fault-tolerant clustering is considered in [23] in or-

der to recover sensors in a failed cluster. Load-balancing cluster-

ing [24] makes the whole network consume power equally and

[25] finds the optimal number of clusters to get the lowest power

consumption for WSNs. 

Utilizing CS is also an effective way to reduce the number of

required samples from a sparse signal. Due to the correlation be-

tween the sensor readings in a WSN, the monitored signal can

have a sparse representation in a proper domain such as DCT or

wavelet. Accordingly, CS has found applications in data collection

in WSNs [5–7] . In [9] a tree-based algorithm called CDG is pro-

posed to balance the payload falling on nodes close to the BS. The

measurement matrix is a full Gaussian one that consumes more

power than the sparse binary measurement matrices [26] . To re-

duce power consumption, other methods based on sparse CS ma-

trices have been proposed [27,28] . In [27] the authors proposed

MTT, which is an heuristic algorithm to compute a minimum trans-

mission spanning tree for data collection in WSNs using CS. An-

other tree-based study is TCS [28] that utilizes sensor storage to

reduce the number of transmissions in a routing tree. 

Hybrid data collection schemes where both raw data and com-

bined samples are in traffic are mentioned in [29–31] . In [29] CS

operation requires each node in the WSN to send exactly M pack-

ets. M is denoted as the number of CS measurements required
o reach a given reconstruction quality. A spanning tree is used

o partition the network into sub-nets. [30] and [31] propose

 scheme called hybrid CS aggregation that combines the non-

ggregation and plain CS mentioned in [29] to reduce the traf-

c loads sending from each node. The non-aggregation method is

sed if a node receives less than (M − 1) raw readings from its

ownstream nodes. Otherwise, plain CS is used. In [29–31] , each

ensor needs to send up to M samples to the BS to contribute

 CS measurements for signal recovery. The BDM is mentioned

n [31] to reduce partially the total samples being sent from each

ub-net. In [32,33] , a WSN is partitioned into clusters. Sensor read-

ngs are sent to CHs and the CHs send the received data to the BS.

ince the measurement matrix is full Gaussian, each cluster needs

o generate M samples to contribute to M CS measurements at the

S. 

This paper extends our previous studies [12,34] . In our pro-

osed CCS algorithm, all non-CH sensors send their own readings

o their corresponding CHs only once during M rounds of measure-

ent collection. The CHs generate sub-matrices with Gaussian co-

fficients ( φi ) and generate m i CS measurements using y 
i 
= φi x i ,

here y i is the measurement vector including m i CS measurements

ollected from the i th cluster, and x i represents all readings in the

 

th cluster ( n i sensors in cluster i th provide n i readings). We also

rove ( 
m i 
M 

= 

n i 
N ) in the next sections. The CS measurements are ei-

her sent directly from CHs to the BS or in a multi-hop fashion. We

rovide Table 1 to compare our data collection method with other

elated studies. In the table, we focus on the network structures,

he number of times each sensor sends its reading to its CH or the

ubnet-head to contribute to M CS measurements, and the number

f combined data packets being sent from each CH or subnet-head

o contribute to M CS measurements. As shown in Table 1 , our pro-

osed CCS significantly reduces certain number of packets, non-CH

ensors only transmit once their readings and the CHs transmit m i 

S measurements. 

The main contributions in this work are summarized as follows:

1- Two versions of the CCS algorithm (D-CCS forwards CS mea-

urements directly to the BS and I-CCS forwards CS measurements

hrough intermediate CHs to the BS), which combine clustering

nd BDMs as CS matrices, are proposed. CCS significantly reduces

ransmission power consumption in WSNs. 

2- Expressions for power consumption in both D-CCS and I-CCS

re formulated. 

3- The optimal numbers of clusters are suggested for the net-

orks in different scenarios to consume the least power. 

The remainder of this paper is organized as follows. The Back-

round and Problem Formulation are addressed in Section 2 . The

CS algorithm is stated in Section 3 . In Section 4 and Section 5 ,

he two models to forward the CS measurements to the BS are pre-

ented with corresponding transmission power consumption anal-

sis and simulation results. In Section 6 use of the DCT and send-

ng only k large transformed coefficients is considered for compari-

on purpose since k � M � N . Finally, conclusions and suggestions

or future work are presented. 
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. Background and problem formulation 

.1. System model 

In the network model considered here, we assume that N sen-

ors have been distributed uniformly at random in a sensing area.

 c out of N nodes in the network are selected uniformly at ran-

om as CHs with probability N c 
N and the other nodes connect to

he closest CH, as mentioned in LEACH [17] . This creates N c non-

verlapped clusters with each cluster having one CH and ( N N c 
− 1)

on-CH sensors on average. Each CH is assumed to have enough

apacity to store the data vector collected from its own non-CH

ensors and to generate a number of CS measurements required

ased on the number of sensors in the cluster. 

We assume that each node can adjust its power level based on

ts distance from its CH and this can be done based on the received

ignal strength [35] . The consumed power for reaching a destina-

ion node j with distance d ij from the node i is 1 P i j = d α
i j 

. Param-

ter α is called the path loss exponent, which is usually between

 and 4, depending on the characteristics of the channel [36] . In

his paper, we assume α = 2 . For the reconstruction error related

o CS signal recovery we consider the normalized reconstruction

rror 
‖ x −̂ x ‖ 2 ‖ x ‖ 2 . 

.2. Compressive sensing (CS) overview 

.2.1. Sparse presentation of signals 

Compressive sensing (CS) is a novel technique for recovering

andom or compressible signals from undersampled random pro-

ections, also called measurements. A signal X = [ x 1 x 2 . . . x N ] 
T ∈ R N 

s defined to be k -sparse if it has a sparse representation in a

roper basis � = [ ψ i, j ] ∈ R N×N , where X = �θ and θ has only k

on-zero elements. Based on the CS paradigm, a k -sparse signal

an be under-sampled and be recovered from only M � N random

easurements Y = [ y 1 y 2 . . . y M 

] T ∈ R M . 

.2.2. Signal sampling and the measurement matrix 

The CS measurements are generated by Y = �X , where � =
 φi, j ] ∈ R M×N is called the measurement matrix and is often a

ense Gaussian matrix or a sparse binary matrix [26] . The i th el-

ment in the measurement vector Y is formed by y i = 

∑ N 
j=1 φi, j x j . 

.2.3. Signal recovery 

It has been shown that a k -sparse signal can be reconstructed

ith high probability from only M = O (k log N/k ) CS measure-

ents employing the following l 1 optimization problem [3,37] 

ˆ = arg min ‖ θ ‖ 1 , sub ject to Y = ��θ, (1)

here ‖ θ ‖ 1 = 

∑ n 
i =1 | θi | and 

̂ X = � ˆ θ . The l 1 optimization prob-

em can be solved with linear programming techniques such as

asis Pursuit (BP) [37] . In reality, we also have to consider the

oise while sampling and sending the measurements (in our case

e collect measurements and send them to the base-station): Y =
X + e, with ‖ e ‖ 2 < ε and recover 

ˆ = arg min ‖ θ ‖ 1 , sub ject to ‖ Y − ��θ ‖ 2 < ε. (2)

.3. Block diagonal matrices 

As mentioned before, our goal is to utilize block-wise CS for

ata collection in clustered WSNs. Since CS measurements are
1 In fact, we have P i j ∝ d α
i j 

[35] . However, since we are interested in a compar- 

son of different schemes, and not the exact values of the power, without loss of 

enerality, we can consider the constant factor as one. 

s

p

ormed at each CH, the overall CS measurement matrix formed at

he BS will no longer have the form of the conventional CS matri-

es, such as a dense matrix with all the entries being i.i.d. Gaussian

r Rademacher 2 . Instead, our CCS algorithm results in block diago-

al matrices (BDMs), in which φi , the i th block in φ, corresponds to

he i th cluster and has i.i.d. Gaussian entries. Let x i denote a vec-

or of size N i consisting of the sensor readings of the nodes in the

 

th cluster, and y 
i 
= φi x i denote a vector including M i CS measure-

ents collected from the i th cluster. We have 
 

 

 

 

 

 

y 
1 

y 
2 

. . . 

y 
N c 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

 ︷︷ ︸ 
Y : M×1 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

φ1 

φ2 

. . . 

φN c 

⎤ 

⎥ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
�: M×N 

⎡ 

⎢ ⎢ ⎢ ⎣ 

x 1 

x 2 

. . . 

x N c 

⎤ 

⎥ ⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
X : N×1 

(3) 

he BDM is created due to the new way to collect CS mea-

urements. Fortunately the matrix satisfies the restricted isometry

roperty (RIP) to be able to work with CS. The RIP of BDMs has

een studied in [38,39] and it has been shown that BDMs can sat-

sfy RIP and therefore can be used as efficient measurement ma-

rices. The required number of the measurements though depends

n the basis in which the signal is sparse. According to [38,40] ,

he number of measurements required for a BDM, consisting of N c 

locks with Gaussian entries, to satisfy RIP with high probability is

iven as [38] 

 = O (k ̃  μ2 log 2 (k ) log 
4 
(N)) , (4)

here ˜ μ = min { √ 

N c , μ} and 1 ≤ μ ≤
√ 

N is the coherence be-

ween ψ and canonical basis and defined as μ = 

√ 

N max | ψ i j | .
rom (4) several very interesting points can be concluded. If the

parsifying basis has a small coherence with the canonical basis

such as the Fourier basis or DCT basis), then increasing N c (which

esults in a more sparse matrix) does not increase M . On the other

and, if the sparsifying basis has a large coherence with the canon-

cal basis (such as Wavelet or Canonical bases), then for N c < μ2 ,

 is a linear function of N c . These results will be seen in our sim-

lations later ( Figs. 4 , 5 , 8 ). 

.4. Problem formulation 

Consider a vector X = [ x 1 , x 2 , . . . , x N c ] in which x i represents un-

nown sensor readings from cluster i . We assume the BS needs

 CS measurements collected from the network to recover pre-

isely all raw readings. The i th CH ( i = 1 , 2 , . . . , N c ) generates an

 i × n i block of Gaussian coefficients ( φi ), where n i is the number

f sensors in the i th cluster. The CH then generates m i CS mea-

urements using y 
i 
= φi x i and sends them to the BS. The exact

alue of m i out of M is calculated based on 

n i 
N ) which is shown

n Lemma 1 in the next section. 

The BS receives random seeds to generate the BDM and the

easurement vector Y = [ y 
1 
, y 

2 
, . . . , y 

N c 
] separately from N c CHs.

he greater number of measurements, the better the accuracy of

he reconstruction. In the following sections we will analyze the

se of BDMs in the CS recovery processes with different types of

ignals; sparse in canonical basis or in frequency domain. Trans-

ission power consumptions for data collection in the networks

re formulated, analyzed and finally simulated in arbitrary net-

orks. The optimum number of clusters such that power con-

umption is minimized will be determined for each network. 
2 A Rademacher random variable takes a value of + 1 or −1 with equal 

robability. 
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Fig. 1. Average reconstruction error versus the fraction of the measurements col- 

lected from the first cluster ( T = m 1 /M). The error is minimized when T is equal to 

the fraction of the nodes in the first cluster ( n 1 /N = 0 . 7 ). 
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3. CCS: Cluster-based compressive sensing for data collection in

WSNs 

The proposed CCS algorithm is summarized in Algorithm 1 be-

low. 

Algorithm 1: CCS-Cluster-based compressive sensing algo- 

rithm 

(1)- Clustering phase: 

- N c out of N sensors are randomly chosen as CH i 

( i = 1 , . . . N c ) with probability p = 

N c 
N . 

- Assign each sensor ( S j ) in the entire network to the nearest 

cluster C i as S j ∈ C i if ‖ S j − CH i ‖ < ‖ S j − CH t ‖ 
f or j = 1 , . . . , N, i 	 = t and i = 1 , . . . N c 

(2)- Measurement generating phase 

- Non-CH sensors send their data once to their CHs. Data 

vector x i is stored at CH i 

- CS measurements are generated at each CH as 

for i = 1 to N c do 

- φi = randn (m i , n i ) % sub-matrix is created at each cluster 

- y 
i 
= φi x i % m i measurements are created at CH i 

end 

(3)- Measurement collection and Data recovery phase 

- M = 

∑ N c 
i 

(m i ) CS measurements are forwarded separately 

from CHs to the BS. 

- Given the BDM �, all unknown values ( X ) are 

reconstructed based on ( Y ). 

CCS is divided into two parts. The first is the underlying clus-

tering that can be based on different methods such as K-means

[19] and LEACH [17] which we use for comparison purposes in

our simulations. The second is the generation of CS measurements

based on BDMs and forwarding them to the BS either directly or

in multiple hops to be addressed in Sections 4 and 5 , respectively.

In a real WSN each cluster may have a different number of sensors

and accordingly different numbers of measurements are required

from each CH. The following lemma relates n i and m i . 

Lemma 1. Let M be the number of required measurements to be

taken from all clusters to satisfy the RIP for a block diagonal matrix

with blocks φi of size m i × n i . To get the best CS performance in term

of the reconstruction error, the number of measurements from the ith

cluster (m i ) should be linearly proportional to the number of sensors

in the cluster (n i ). In other words, 
m i 
M 

= O ( 
n i 
N ) . 

Proof. According to [ 41 ], the number of CS measurements required

to reconstruct a k -sparse signal of length N using a dense Gaussian

measurement matrix of size M × N is given as 

M = O 

(
klog 

N 

k 

)
. (5)

Now assume the k non-zero elements are uniformly distributed

in the vector X , and X has been partitioned into sub-vectors of size

n i . Therefore, we have 

n i 

N 

= 

k i 
k 

, (6)

where k i is the average number non-zero elements in the sub-

vector i th. Using (5) , and considering that φi is a dense Gaussian

measurement matrix we have: 

m i = O 

(
k i log 

n i 

k i 

)
. (7)

From (5), (6) and (7) , we obtain 

m i 

M 

= 

O (k i logn i /k i ) 

O (klogN/k ) 
= O 

(
k i 
k 

)
= O 

(
n i 

N 

)
. 
Hence, 

m i 

M 

= O 

(
n i 

N 

)
. (8)

�

Although this lemma has been proved for the case that the sig-

al X is sparse in the canonical domain, our simulation results, be-

ow, show that the lemma holds even when X is sparse in another

omain. Here is an example. Assume a network of size N is di-

ided into two clusters with sizes of n 1 = 0 . 7 N and n 2 = 0 . 3 N. A

raction T and 1 − T of the total measurements are collected from

luster 1 and 2, respectively. Signal x is assumed to be sparse in

CT. Fig. 1 depicts the reconstruction error versus T , when N =
0 0 0 and M = 250 . As we see the minimum error occurs when

 = m 1 /M is exactly equal to n 1 /N = 0 . 7 . This is the same result

tated in Lemma 1 . 

. Directly send CS measurements to the BS (DCCS) 

.1. Network model 

In this model, we assume a WSN with N sensors deployed in

 square sensing area sized L × L distance unit 2 . Non-CH sensors

end their readings directly to the CHs they belong to based on

eal distances ( r ). The CHs generate CS measurements and send

hem directly to the BS. The position of BS is changeable which

an be inside or outside the sensing area. 

.2. Power Consumption Analysis for DCCS 

We refer to the communication cost associated with the com-

unication between the non-CH nodes and their CHs as the intra-

luster power consumption which is denoted as P intra −cluster . The

Hs create the CS measurements as combinations of all received

ata within each cluster ( y 
i 
= φi x i ) and send the measurements di-

ectly to the BS. The corresponding power consumption is referred

o as P to BS . The total power consumption is formed as 

 total = (P intra −cluster + P toBS ) . (9)

.2.1. Analysis of P intra −cluster 

We assume a uniformly distributed WSN divided into N c clus-

ers with the same number of sensors as N / N c , consisting of one

H and ( N N c 
− 1) non-CH nodes. We have 

 intra −cluster = N C 

(
N 

N c 
− 1 

)
E[ r α] , (10)

here r is a random variable representing the distance of a non-

H sensor to its corresponding CH and α is path loss exponent that
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Fig. 2. A clustered WSN with BS outside the sensing area ( L i > L ). 
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e assume to be 2 throughout the paper. We can calculate E [ r 2 ] as

ollowing: 

[ r 2 ] = 

∫ ∫ 
(x 2 + y 2 ) ρ(x, y ) d x d y (11) 

= 

∫ ∫ 
r ′ 2 ρ(r ′ , θ ) r ′ dr ′ dθ, (12) 

n which ρ( x, y ) is the node distribution. To make the analysis

ractable, similar to [25] , we assume each cluster area is a circle

ith radius R = L/ 
√ 

πN c and the density of the nodes is uniform

hroughout the cluster area, i.e. ρ(r ′ , θ ) = 1 / (L 2 /N c ) . We have [25] :

[ r 2 ] = 

1 

(L 2 /N c ) 

∫ 2 π

θ=0 

∫ R 

r ′ =0 

r ′ 3 d r ′ d θ = 

L 2 

2 πN c 
. (13)

nd accordingly 

 intra −cluster = 

(
N 

N c 
− 1 

)
L 2 

2 π
. (14) 

s we see, the total intra-cluster power consumption is a decreas-

ng function of the number of clusters. 

.2.2. Analysis of P to BS 

Next, we need to determine P to BS , which is based on the dis-

ances between CHs and the BS and the total number of measure-

ents M required to be transmitted from each CH to the BS. We

ssume the BS is located at the location (L i , 
L 
2 ) with respect to our

eference point (see Fig. 2 ). The average consumed power by all

Hs is given by 

 toBS = ME[ d 2 ] , (15)

here d is a random variable representing the distance between

he CHs and BS. Assuming that all CHs are randomly distributed in

he sensing area, the expected squared distance between CHs and

he BS is given by 

[ d 2 ] = 

∫ L 

0 

∫ L 

0 

[
(x − L i ) 

2 + 

(
y − L 

2 

)2 
]

f (x, y ) d xd y (16) 

= 

1 

L 

[
(L − L i ) 

3 

3 

+ 

L 3 
i 

3 

]
+ 

L 2 

12 

, (17) 

n which f (x, y ) = 

1 
L 2 

(uniform distribution of CHs). From

qs. (15) and (17) we conclude that P to BS is independent of the

umber of the clusters. Using (9), (14), (15) , and (17) , the total

ower consumption can be formulated as 

 total = 

(
N 

N c 
− 1 

)
L 2 

2 π
+ 

M 

L 

[
(L − L i ) 

3 + L 3 
i 

3 

]
+ 

ML 2 

12 

(18) 
e usually have two common positions for the BS, at the center

f the sensing area ( L i = L/ 2 ) and outside the sensing area ( L i ≥ L ).

or the former case, (18) is simplified as 

 total = 

(
N 

N c 
− 1 

)
L 2 

2 π
+ 

ML 2 

6 

. (19) 

According to (4) [38] , we can see that for canonical and wavelet

ases, the number of required measurements is a linear function

f N c . Based on this, we can state the following lemma to find the

ptimal number of clusters N 

∗
c for minimizing the power consump-

ion. 

emma 2. Assume the number of required measurements is a linear

unction of the number of clusters, i.e., M = aN c + b, where a and b

re appropriate constants. In order to achieve the lowest power con-

umption with CCS, the optimal number of clusters is given by 

 

∗
c = 

√ 

C N = O ( 
√ 

N ) , (20)

here 

 = 

6 L 3 

4 πa [(L − L i ) 3 + L 3 
i 
] + πa L 3 

. (21) 

roof. Adding the linear function of M mentioned in the lemma

nto the general equation of the total power consumption (18) , we

ave 

 total = 

(
N 

N c 
− 1 

)
L 2 

2 π
+ 

aN c + b 

L 

[
(L − L i ) 

3 + L 3 
i 

3 

]
+ 

(aN c + b) L 2 

12 

. 

(22) 

We have 

dP total 

dN c 
= − NL 2 

N 

2 
c 2 π

+ 

a 

L 

[
(L − L i ) 

3 + L 3 
i 

3 

]
+ 

aL 2 

12 

. (23) 

By forcing 
dP total 

dN c 
= 0 , we can obtain the optimal number of clus-

er N 

∗
c calculated as 

 

∗
c = 

√ 

6 L 3 N 

4 πa [(L − L i ) 3 + L 3 
i 
] + πaL 3 

= 

√ 

C × N . (24) 

o, 

 

∗
c = O ( 

√ 

N ) . (25)

�

.3. Simulation results for DCCS 

In this section, we work with both random k -sparse signals

sparse in a canonical basis, i.e, ψ is the identity matrix) and real

ensor readings (which are sparse in DCT or wavelet bases). We

reate a random network with number of sensors N = 20 0 0 and

ize L = 100 according to the network model from Sections 2.1 and

.1 . We use K-means and LEACH clustering algorithms to arrange

ensors into N c clusters. Then, we apply our CS-based data collec-

ion and calculate the total power consumption of the network for

ollecting M CS measurements that is required for reaching a target

rror rate of 0.1. The number of measurements from each cluster is

inearly proportional to the size of the cluster based on Lemma 1 .

imulation results based on K-means and LEACH clustering as well

s the analytical results derived in Section 4.2 are provided below. 

Fig. 3 shows the histogram for the number of sensors in each

luster for both K-means and LEACH when N c = 10 . K-means gener-

tes clusters that are more uniform in size, resulting in a lower ex-

ected intra-cluster power consumption since it aims to minimize

he within-cluster sum of squares [19] . Next we find the number

f measurements required based on CS to satisfy a target error for
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Fig. 3. Histogram of number of sensors in each cluster for K-means and LEACH. 

Fig. 4. Number of measurements required to satisfy target error = 0.1 for a 100- 

sparse signal. 

Fig. 5. Number of measurements required when Wavelet is considered as the spar- 

sifying basis. 
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our network when it is clustered into different number of clus-

ters ( N c = [1 2 . . . 50] ). Each clustering method provides a differ-

ent BDM as the measurement matrix. For deriving our analytical

results, we assumed clusters with equal size, while K-means and

LEACH have different size blocks. For comparison, we also gener-

ated a BDM with all equal size blocks as the measurement ma-

trix and found the number of required measurements to reach the
arget error. This is referred to as CS-based uniform clustering to

ompare with other methods. We choose a fixed target error in all

ur simulations as target error = 0.1. After finding the number of

easurements required, we will find the power consumption for

ifferent choices for the location of the BS as mentioned before.

e present our first simulation with random k -sparse signals, then

eal sensor readings as actual temperatures. 

.3.1. X as a random k-sparse vector 

In this example, we consider X to be sparse in the canonical

asis. We create a 100-sparse vector X with length N = 20 0 0 . The

easurement matrix is an M × N BDM, where M is the number

f measurements required to satisfy the target error of 0.1. We ob-

ain the number of required measurements for three algorithms as

hown in Fig. 4 . 

As shown in Fig. 4 , increasing N c leads to a degradation in

he CS performance and a linear increase in the number of re-

uired measurements (as discussed in Section 2.3 ). This increases

 to BS . On the other hand, P intra −cluster is a decreasing function of N c .

herefore, there is an optimal N 

∗
c , for which the total power con-

umption is minimized. Fig. 6 (a) depicts P total when the BS is at

he center of the sensing area. In this case, we have N 

∗
c = 14 . 

Figs. 6 (b), (c), and (d) depict P total when BS is outside the

ensing area at different locations. In the first case, the minimum

ower consumption occurs for N 

∗
c = 9 . Figs. 6 (c) and (d) show P total 

hen the BS is far from the sensing area. The optimal number of

lusters is N 

∗
c = 4 and N 

∗
c = 2 for L i = 2 L and L i = 3 L, respectively.

n such cases, P to BS will be the dominating factor in P total and ac-

ordingly N 

∗
c becomes smaller. It is worth noting that the results

ith K -means clustering match the analytical results much better

han the case with LEACH clustering. This is due to the nonuniform

luster sizes in LEACH compared to K-means ( Fig. 3 ). 

.3.2. X as real sensor readings 

We use real sensor readings from Sensorscope: Sensor Net-

orks for Environmental Monitoring [42] . X is dense in the canon-

cal domain. In order to apply CS, as mentioned in the background

ection, we need a sparsifying basis. Next, we will consider the uti-

ization of both DCT and wavelet bases for this purpose. 
∗Wavelet as the sparsifying basis : This case is similar to the

ase discussed in Section 4.3.1 in the sense that the wavelet ba-

is also has a large coherence μ. As discussed in Section 2.3 , this

auses a linear increase in the number of required measurements

ersus N c . Our simulation results in Fig. 5 depict this fact. Simi-

arly, there will be an optimal N 

∗
c , for which the total power con-

umption is minimized. Fig. 7 depicts P total when the BS is at the

enter, Li = L, Li = 3 L, and Li = 5 L, respectively. The optimal num-

er of clusters are N 

∗
c = 18 , N 

∗
c = 12 , N 

∗
c = 2 or 3 (depending on the
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Fig. 6. Total power consumption for the network using 100-sparse signals when BS at different positions from the area. 
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lustering scheme), and N 

∗
c = 2 , respectively. As we make the BS

arther from the sensing area, P to BS becomes a more dominating

actor in P total and this leads to a decrease in N 

∗
c . ∗DCT as the sparsifying basis : In this case we employ DCT as

he sparsifying basis. As discussed in Section 2.3 , the DCT is in-

oherent with the canonical basis and the CS performance does

ot degrade with increasing N c . This can be seen in our simula-

ion results shown in Fig. 8 . The number of required measurements

o reach a target reconstruction error is almost constant versus

hanging N c . Given that M does not change with N c , we can see

rom Eq. (18) that P total is a decreasing function of N c . This is also

hown in Fig. 9 and 10 for the BS being at the center and L i = 3 L,

espectively. On the other hand, since we are collecting M mea-

urements from the networks, we have N c ≤ M . Therefore, N 

∗
c = M

nd the smallest size of each cluster on average is N / M sensors. 
∗Remarks on the effect of the sparsifying basis on perfor-

ance : Based on our discussion, we can conclude that under the

iven cluster scenarios and assuming that the signal of interest is

parse in both wavelet and DCT bases, employing the DCT will be

ore energy efficient. This is because when ψ is a DCT matrix, φ
an become very sparse (by increasing N c ) without a considerable

oss in the CS performance. Our analytical and simulation results

howed that in this case the consumed power is a decreasing
unction of N c and more clusters results in more power savings

nd N 

∗
c = M. 

. Inter-cluster multi-hop routing in CCS (ICCS) 

In this section, we propose a method for further energy sav-

ng during data collection where by CHs transmit the CS mea-

urements through intermediate CHs to the BS. We refer to this

ethod as inter-cluster multi-hop routing in CCS (ICCS). For net-

orks with a small number of clusters, ICCS may not help because

he multi-hop routing paths might require more power than trans-

itting directly. But with a large number of CHs, ICCS can signifi-

antly reduce the power needed to transmit the CS measurements.

Since we already have clusters formed by K -means or LEACH,

e develop an iterative greedy distributed algorithm to form a tree

hat connects all CHs with the root at the BS. We assume all the

Hs have the same transmission range ( R ) and that CHs within that

ange can communicate with one another. An appropriate R should

e chosen based on the number of CHs formed so that all CHs can

e connected as an undirected geometry graph G(V,E), where V is

he set of vertices referred to the number of CHs, and E is the set

f edges referred to the number of communications links between

Hs. Based on the graph, we can deploy the GDA to form the rout-
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Fig. 7. Total power consumption for the network using real data and Wavelet sparsifying matrix when BS at different positions. 

Fig. 8. Number of measurements required when DCT is considered as the sparsify- 

ing basis. 

 

 

 

 

Fig. 9. Total power consumption when the BS at the center of the sensing area. 

n  

t  

a  

b

ing paths for the CHs: All CHs broadcast their information about

the number of hops away from the BS to their neighbors. At the

first iteration, only the CHs which are close to the BS (their trans-

mission ranges cover the BS) have the number of hops (NoH). They
ame their NoH as “1” and broadcast their own updated informa-

ion to their neighbors in the next iterations. The algorithm iter-

tes running until there is no change in the communication links

etween all CHs. This algorithm is shown below as Algorithm 2 . 
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Fig. 10. Total power consumption when the BS outside the sensing area at L i = 3 L . 

Algorithm 2: Distributed tree-based routing algorithm 

Initialization phase: 

- N c clusters marked as CH i , i = 1 , . . . N c ; CH’s transmission 

range is R . 

- NoH(BS) = 0 ; Nei = set of CH i ’s neighbors; 

Tree forming phase 

while the routing paths are changing do 

for i = 1 to N c do 

for j = 1 to N c do 

if d (i, j ) < R then 

CH(i) chooses CH(j) i f NoH(j) = min { NoH(Nei) } ; 
NoH(i) = NoH(j) + 1; 

end 

end 

end 

end 
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Fig. 11. All transmissions in the clustered network with inter-cluster multi-hop 

routing when the BS at the center. 
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.1. Network model 

To simplify the problem, in this model, we assume that the

ensing area has a circular shape with radius R 0 in which the BS

s at the center. With intra-cluster transmission, sensors still can

djust their power level to transmit data to the CHs, while all CHs

nly use one transmission range, denoted as R , to connect to other

Hs and the BS. We still have N sensors uniformly distributed in

he area, and the path-loss exponent is assumed to be equal to 2

 α = 2 ). 

As shown in Fig. 11 , all the transmissions show CHs receive

eadings from their cluster members as non-CH sensors and they

ransmit CS measurements through other CHs or directly to the BS

t the center depending on their positions and R . 

.2. ICCS power consumption analysis 

As before, we refer to the communication cost associated with

he communication between the non-CH nodes to CHs as the intra-

luster power consumption and denote it as P intra −cluster . The CHs

reate the CS measurements as the combinations of all reading

ata within each cluster ( y 
i 
= φi x i ) and send the measurements to

he BS in a multi-hop fashion. The corresponding power consump-

ion is referred to as P to BS . The total power consumption is formed

s 
 total = (P intra −cluster + P toBS ) . (26) P  
.2.1. Analysis of P intra −cluster 

Similar to the assumption for Eq. (10) , we have 

 intra −cluster = N C 

(
N 

N c 
− 1 

)
E[ r 2 ] , (27)

nd 

[ r 2 ] = 

∫ ∫ 
r ′ 2 ρ(r ′ , θ ) r ′ dr ′ dθ . (28)

e assume each cluster area is a circle with radius R = R 0 / 
√ 

N c 

nd the density of the nodes ρ(r ′ , θ ) = 1 / (πR 2 
0 
/N c ) . Hence, 

[ r 2 ] = 

1 

(πR 

2 
0 
/N c ) 

∫ 2 π

θ=0 

∫ R 

r ′ =0 

r ′ 3 d r ′ d θ = 

R 

2 
0 

2 N c 
, (29)

nd accordingly 

 intra −cluster = 

(
N 

N c 
− 1 

)
R 

2 
0 

2 

. (30) 

q. (30) shows that P intra −cluster is a decreasing function of N c . 

.2.2. Analysis of P to BS 

P to BS is calculated based on the inter-cluster multi-hop routing

s follows 

 toBS = 

N c ∑ 

i =1 

NoH i × R 

2 × M i , (31)

here M i is the number of measurements required taken from the

 

th cluster, and R 2 is the power consumption based on the CH’s ra-

ius spent on each hop with path-loss exponent α = 2 . For analysis

e assume equal size clusters (equal number of sensor nodes). Ac-

ording to Lemma 1 , the number of measurements required taken

rom each cluster should be linearly proportional to the number of

ensors in each cluster or M i = 

M 

N c 
. So, (31) can be written as 

 toBS = R 

2 × M 

N c 

N c ∑ 

i =1 

NoH i , (32)

here, M is the total number of measurement required from the

etwork to satisfy an error-target. In [43] , Chandler calculated the

verage number of relay hops in randomly located radio networks.

ased on this, (32) is given by 

 toBS = NoH a v g × R 

2 × M, (33)
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Fig. 12. Total number of hops, total power consumption with different transmission ranges of CHs. 
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where NoH avg is the average number of hops equal to E [ NoH ] as

mentioned in [43] . This expectation of the number of hops is cal-

culated as 

E[ NoH] = max (NoH) −
max (NoH) −1 ∑ 

NoH=1 

P NoH (x ) 

P max (NoH) (x ) 
, (34)

where max(NoH) is the maximum number of hops allowed and

P NoH ( x ) is the probability of being able to send data from a CH to

BS at distance x using NoH or less hops. Interested readers are re-

ferred to [43] for the details on the calculation of P NoH ( x ). 

5.2.3. Analysis of CH’s transmission range R 

In each routing path, the number of hops is directly related to

the broadcast radius R . If we increase R , a CH could reach more dis-

tant CHs and choose one of them to forward measurements. This

means that the total number of hops can be reduced or increased

with variable values of R which may affect power consumption.

For example, if we increase R the number of hops in each routing

path might decrease. But we have to deal with longer hop distance

that consumes more power. In Fig. 12 , we have a 20 0 0-node sen-

sor network with 500 clusters formed by K -means and LEACH. We

chose R = { 10 , 12 , 14 , 16 , 18 , 20 } . Fig. 12 (a) shows the total number

of hops reduced corresponding to the increase in the radius. 

Fig. 12 (b) shows that the total consumed power increases as we

increase R . Based on Fig. 12 we should choose the smallest R that

results in the least consumed power for the network. 

5.3. ICCS simulation results 

In this simulation we form a network consisting of 20 0 0 sen-

sors randomly distributed in a circular area with radius R 0 = 50 .

The BS is set at the center of the sensing area. We use real sensory

data collected from [42] and the sparsifying matrix ψ as the DCT.

In this case, as discussed in the previous sections, the total num-

ber of measurements required does not change as we increase the

number of clusters. Hence, for any number of clusters, we chose

M = 500 to satisfy the error-target of 0.1. We only consider the

maximum number of clusters up to N c = 500 since M = 500 . This

means that each cluster should send at least one measurement to

the BS for the data recovery process. 

We apply K -means and LEACH clustering algorithms to form

two different clustered networks. Fig. 13 (a) shows the total intra-

cluster power consumption due to the total consumed power re-

quired to transmit data from all non-CH sensors to their CHs

within all clusters. 
As shown in Fig. 13 (a), the intra-cluster consumed power be-

omes very small if the network is divided into many clusters. In

his case, the total power consumption will be dominated by the

ower corresponding to the inter-cluster routing paths. 

In Fig. 13 (b), the total inter-cluster power consumption is re-

uced as the network is divided into a larger number of clusters.

or a large value of N c , the density of CHs in the sensing area

s large. Therefore, the CH’s transmission range needed to main-

ain inter-cluster connection becomes smaller. These numbers of

lusters of N c = 10 , 10 0 , 20 0 , 30 0 , 40 0 , 50 0 correspond to values

f R = 50 , 30 , 25 , 22 , 18 , 14 , 11 , respectively, which explains the

educed inter-cluster consumed power. 

As shown in Fig. 13 , the total power consumption is reduced

y both intra-cluster and inter-cluster transmissions as we increase

 c . As compared with DCCS in Fig. 14 , ICCS significantly reduces

he power consumption when the network is arranged into a large

umber of clusters ( N c ≥ 100). Note that our calculation for power

onsumption for DCCS was originally based on the assumption

f a square sensing area. These results are extended to the case

f a circular sensing area with BS at the center in our previous

ork [34] . 

. DCT compression transmitting only k large coefficients 

In this section, we consider transmitting only k large DCT co-

fficients as proposed in RIDA [44] . All raw readings from non-CH

ensors are sent to their respective CH and sorted at each CH in

escending or ascending order. Either DCT or wavelet transform is

sed as the sparsifying matrix to achieve a k -sparse data vector.

he mapping process given in [44] is used to match sensors to vir-

ual indices. These sensors will multiply their readings with DCT

oefficients and then only send k significant large coefficients to

he BS. The rest of the coefficients are considered as zeros and not

ent to the BS. At the BS, all k large coefficients are mapped to

ero-coefficients and recovered to return all the raw data. 

In order to reduce transmission cost in RIDA, the idea of trans-

itting measurements in CCS [12,34] is applied. First, all sensor

eadings from non-CH sensors are sent to their own CH. The data

s sorted at the CHs. After being multiplied with a sparsifying DCT

atrix, a large proportion of the signal energy is focused on the

ery k first large coefficients. Instead of sending M CS measure-

ents from the CHs as with in CCS, only these k large coefficients

re sent directly to the BS for the recovery process as mentioned

n RIDA. All calculations in this section are based on the network

odel in the DCCS section, and k is much less than M . 
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Fig. 13. Total intra-cluster, inter-cluster power consumption when BS at the center in a circular sensing area. 

Fig. 14. Total power consumption for ICCS and DCCS in a circular area network with 

R 0 = 50 . 
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.1. Network model 

We assume the WSN is deployed in a square sensing area sized

 × L . This model is similar to the model defined for the analysis of

he DCCS algorithm. The power consumption for each transmission

s calculated as it was with DCCS, except for the number of coeffi-

ients k transmitted from CHs to the BS. We will not compare the

otal power consumption between DCCS and DCT compression be-

ause of k � M . We formulate and also simulate the problem to

how how this compression method works with clusters, noiseless

r noisy signals. 

.2. Communication power consumption 

We assume that all clusters have the same number of sensors.

ence, the number of large coefficients collected from all clusters

hould be equal. Hence, the total number of large coefficients is

alculated as k = 

∑ N c 
i =1 

k i , where k i is number of coefficients col-

ected from the i th cluster. Similar to Eq. (18) in Section 4.2 , the to-

al power consumption for this method can be formulated in gen-

ral as 

 total = 

(
N 

N c 
− 1 

)
L 2 

2 π
+ 

k 

L 

[
(L − L i ) 

3 + L 3 
i 

3 

]
+ 

kL 2 

12 

. (35)
hen the BS at the center of the sensing area ( L i = L/ 2 ), (35) is

implified as 

 total = 

(
N 

N c 
− 1 

)
L 2 

2 π
+ 

kL 2 

6 

. (36) 

.3. Simulation results 

In this section, we consider both sorted and unsorted signals

enerated from 20 0 0 sensors uniformly distributed in a square

ensing area. These types of data provide different values of k that

ffects either the transmitting cost from the CHs to the BS or the

econstruction error at the BS. 

Fig. 15 (a) shows unsorted sensor readings collected from a WSN

42] and their transformations in the DCT domain. All signal en-

rgy is preserved in the transformed vector but is now focused in

 relatively small number of large coefficients. If we transmit only

hese k large valued coefficients to the BS, this results in much less

onsumed power than transmitting all the values as was done ear-

ier with CCS. 

Fig. 15 (b) shows sorted signals in decreasing order and the DCT

oefficients. The large coefficients are concentrated in the lower

umbered coefficients. The transmission cost can be reduced based

n the smaller values of k compared to that in unsorted signals. 

Both Figs. 16 (a)(b) show that increasing the number of clusters

r reducing the total number of coefficients k transmitted to the

S will increase the reconstruction error. Transmitting more of the

arger DCT coefficients to the BS can compensate for the error as

e increase the number of clusters. 

In a noiseless environment, using DCT compression consumes

ess energy than CCS since CCS transmits M measurements to the

S while DCT compression only sends k large transformed coeffi-

ients ( k � M ). As shown in our simulation results, k is generally

nly about 20% as large as M to satisfy the error-target in signal

ecovery processes. In practical networks noise is problematic. CCS

an work with noise contaminated measurements while DCT com-

ression is quickly degraded. As shown in Fig. 17 (a), sensor read-

ngs can be recovered at the BS based on different numbers of

oisy measurements. Increasing the CS measurements can recover

he original signals with less error. 

Fig. 17 (b) shows that with DCT compression in the presence

f noise the reconstruction error increases as the total number

f measurements is increased. It means that the method can not

ork with noise. So, in practical applications of WSNs DCCS and

CCS should be considered. 
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Fig. 15. Real unsorted and sorted data and their DCT transformed coefficients. 

Fig. 16. Normalized reconstruction errors with different number of clusters and large coefficients (measurements). 

 

 

 

 

i  

s  

c  

a  

s  

m  
7. Conclusion 

In this paper we proposed an energy-efficient data collection

method applied in WSNs that is based on an integration of clus-

tering and block-wise CS, called CCS. It is well known that natural

signals have spatial correlation and therefore the sensor readings
n a WSN are sparse in a proper basis such as DCT or wavelet. This

parsity facilitates the utilization of CS for energy-efficient data

ollection in such networks. In contrast to previous work in this

rea, in this paper we introduced CCS in which all non-CH sensors

end their readings only once to the CH they belong to. The CS

easurements required are generated at the CH before being sent
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Fig. 17. Compare CCS and DCT compression in noise and noiseless environments. 
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o the BS for the CS recovery processes in two possible ways: di-

ectly (one hop) or multi-hop, called DCCS and ICCS, respectively.

he algorithm reduced significantly numerous data transmissions

n the networks. 

We formulated the total power consumption and discussed the

ffect of different sparsifying bases on CS performance as well as

he optimal number of clusters for reaching the minimum power

onsumption. We employed K -means, LEACH, and uniform cluster-

ng techniques in our simulations and found the optimal cluster

ize when the signal of interest is sparse in canonical, wavelet, and

CT bases. After choosing DCT as the best sparsifying basis for CCS,

e showed choosing a larger number of clusters can achieve less

ower consumption utilizing DCT with real sensor readings as the

ntra-cluster power consumption is reduced. The optimum num-

er of clusters was determined to be N 

∗
c = M. Furthermore, as we

mploy many clusters, ICCS outperforms DCCS based on multi-hop

outing. 

As a final case to compare with DCCS and ICCS, we considered

ransmitting only k large coefficients in DCT transformed signals.

his method cannot work in noisy environments as mentioned in

imulation Section 6 . 
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