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a b s t r a c t

In this paper, we employ compressive sensing (CS) to design a distributed compressive data stor-

age (CStorage) algorithm for wireless sensor networks (WSNs). First, we assume that no neigh-

bor information or routing table is available at nodes and employ the well-known probabilistic

broadcasting (PB) to disseminate sensors reading throughout the network to form compressed

samples (measurements) of the network readings at each node. After the dissemination phase,

a data collector may query any arbitrary set of M � N nodes for their measurement and recon-

struct all N readings using CS. We refer to the first implementation of CStorage by CStorage-P.

Next, we assume that nodes collect two-hop neighbor information and design a novel pa-

rameterless and scalable data dissemination algorithm referred to by alternating branches (ABs),

and design CStorage-B. We discuss the advantages of CStorage-P and CStorage-B and show

that they considerably decrease the total number of required transmissions for data storage in

WSNs compared to existing work.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

To increase the data persistence in wireless sensor net-

works (WSNs) with N nodes, distributed data storage algo-

rithms have been proposed to disseminate sensors reading

throughout the network so that a data collector can query an

arbitrary small subset of nodes to obtain all N readings [1,2].

Recently, compressive sensing (CS) techniques [3,4] have

shown that a compressible signal with length N can be re-

constructed from only M � N random projections of the sig-

nal (also called as measurements or compressed samples).

Since natural signals are known to be compressible due to

strong spatial correlation of sensor readings [5–7], CS may be

exploited to design efficient data storage algorithms. Conse-

quently, we design a decentralized compressive data storage
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algorithm (CStorage) that exploits the spatial correlation of

the nodes reading along with CS to considerably reduce the

total number of transmissions for data storage.

In CStorage, we propose to form a CS measurement at each

node by disseminating enough number of readings through-

out the network. First, we employ the well-known proba-

bilistic broadcasting (PB) for data dissemination and propose

CStorage-P. In PB, no neighbor information or routing table is

required for data dissemination. Nevertheless, PB has a pa-

rameter called forwarding probability that needs to be tuned

at all nodes when the network changes, which is not always

possible.

Therefore, we assume that nodes can obtain two-hop

neighbor information and design a parameterless and effi-

cient data dissemination algorithm referred to by alternating

branches (ABs), and design CStorage-B. Since AB has no pa-

rameter to tune, CStorage-B is scalable and can automatically

adapt to drastic network topology changes. We will show

both CStorage-P and CStorage-B reduce the total number

of transmissions compared to existing algorithms for data
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storage in WSNs without routing tables, while CStorage-B sur-

passes CStorage-P in the number of transmissions. The initial

results of this paper on CStorage-P have appeared in [8]. In

this paper, we design AB and introduce CStorage-B. Further,

we employ real readings from a WSN to evaluate the perfor-

mance of our proposed schemes.

The paper is organized as follows. Section 2 pro-

vides the required background. In Section 3, we propose

CStorage-P. In Section 4, we design and analyze AB and

CStorage-B. In Section 5, we evaluate the performance of

CStorage-P and CStorage-B. Finally, Section 6 concludes the

paper.

2. Background

In this section, we review CS, PB, and the related work.

2.1. Compressive sensing

Let θ = [θ1θ2 . . . θN]T (θi ∈ R) be the transform of a signal

x = [x1x2 . . . xN]T (xi ∈ R) in transform domain � ∈ R
N×N, i.e.,

x = �θ . x is said to be compressible in � if θ has only K sig-

nificant coefficients (the rest N − K coefficients can be set to

zero). Such a signal is referred to by K-sparse signal.

The idea behind CS is that when x is K-sparse in � , only

M � N (M ≥ O(K log N)) measurements y = [y1y2 . . . yM]T of

x can reproduce an estimate x̂ using CS reconstruction with

a comparable error to the best approximation error using K

largest transform coefficients [3,4,9]. CS is composed of the

two following key components.

Encoding: The measurements are generated by y = �x,

where � is a well-chosen M × N random matrix called pro-

jection matrix.

Decoding: Signal reconstruction can be performed by find-

ing the estimate θ̂ (and consequently x̂ = �θ̂ ) via solving

θ̂ = argmin‖θ‖1, s.t. y = ��θ, (1)

where ‖θ‖1 = ∑N
i=1 |θi|. The problem (1) is an underdeter-

mined system of equations. In this paper, we employ the

well-known basis pursuit technique to solve (1) [3,4].

Initially, measurement matrices were dense random ma-

trices with entries selected from {−1, +1} or N(0, 1), where

N(0, 1) is the zero mean and unit variance Gaussian distri-

bution [3,4]. Later, it was shown that when � is dense and

orthonormal, e.g., Fourier transform basis, a sparse � also sat-

isfies CS requirements on � [9,10]. Therefore, in this paper

we employ sparse � matrices, since as we later see they

can be formed with a much smaller number of transmis-

sions. Further, the selection of � depends on the nature

of the signal. For instance, temperature signals are shown

to be sparse in discrete cosine transform (DCT) basis [7].

Therefore, without loss of generality in the rest of this pa-

per we assume that � is the DCT transform basis, while

we could have chosen any other dense and orthonormal

basis.

2.2. Probabilistic broadcasting

Consider a WSN with N nodes having identical transmis-

sion range rt deployed uniformly and randomly in an area
A = 1 × 1, where two nodes can communicate if their Eu-

clidian distance is less than rt. The network is asymptotically

connected with

r2
t = A( ln n + ω(n))

πn
, (2)

if and only if ω(n) → ∞ [11]. In PB, a node ni broadcasts

its reading xi to all its neighbors. Any node in the network

that receives xi for the first time rebroadcasts xi with forward-

ing probability p [12] (with p = 1, PB boils down to simple

Flooding [13]). The fractions of nodes that receive a particu-

lar transmission RPB(p) and the fraction of nodes that perform

the transmission TPB(p) are depicted in Fig. 1 for N = 104 and

rt = 0.025.

Fig. 1 shows that at p ≈ 0.24 a large fraction (about 70%)

of nodes receives the reading. Moreover, we can see that al-

though increasing p beyond p ≈ 0.24 does not improve the

delivery of the reading, it considerably increases the num-

ber of transmissions. Therefore, a well-chosen small forward-

ing probability p∗ = 0.24 would be sufficient to ensure that a

large fraction of nodes in a network has received a transmis-

sion [14,15]. Using a few simple calculations, for N = 104 and

rt = 0.025 we can see that a node has on average nneighbor =
20 neighbors, and receives nneighbor × p∗ ≈ 5 copies of each

transmission on average.

2.3. Related work

Authors in [16] propose LORD Scalable and a Mobility-

Resilient Data Search System. The LORD maps sensor reads

to a geographical region and stores it in multiple nodes in

the region, thus enhancing mobility-resilience. In contrast to

CStorage, LORD does not take advantage of compressibility of

the readings due to the spatial correlation of the readings. In

[17], authors discuss that the real sensor readings may not

be compressible in DCT nor in other orthogonal transforma-

tions. To achieve a sparse representation for spatiotemporal

readings in real WSNs, they develop a novel two-dimensional

dictionary training method.

Authors in [18] fit the power-law decaying data model to

the real data collected in WSNs due to its strong compress-

ibility, and propose CDC. CDC performs on-the-fly compres-

sion of sensor readings to reduce communication overhead

and energy consumption. Authors in [19] propose to employ

random walks to form the random measurements in a WSN.

We will compare CStorage with such algorithms later and

show that CStorage outperforms in the number of required

transmissions.

Authors in [20] proposed ICStorage, which is built on

top of our initial results on CStorage-P [8]. They propose

to merge the received measurements from neighbors into

the measurements maintained at nodes, and forwarding the

new packets. Further, authors in [21] propose STCNC that

exploits both spatial and temporal (spatiotemporal) correla-

tions among sensor readings that further increases the en-

ergy efficiency. These algorithms consider a different prob-

lem compared to CStorage.

Previously, Wang et al. in [9] showed that sparse �

matrices can satisfy CS requirements and designed a data

storage algorithm based on these sparse � matrices. Further,

authors in [6,7,22–25] proposed centralized data collection al-

gorithms where measurements are formed enroute and are
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Fig. 1. The fraction of nodes receiving a transmission RPB(p) and fraction of nodes the perform the transmissions TPB(p) versus forwarding probability p in PB.
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Fig. 2. Network with N = 5 and n1 transmitting x1 employing PB. The trans-

mitting nodes are depicted with a dark color.
collected at a sink. These algorithms in contrast to CStorage

require routing tables or full topology knowledge, which are

not always possible in practical WSNs.

Authors in [26] proposed to employ gossiping to dissem-

inate the reading in the network. In gossiping, each node it-

eratively exchanges their reading with a random neighbor.

After many iterations all network nodes obtain the value of

the reading and a measurement is formed at nodes. We will

compare CStorage with Gossiping since the both algorithms

require the same type of information, which makes a fare

comparison possible.

Finally, authors in [2,27,28] proposed data storage algo-

rithms for sensor networks based on error correction codes.

Although these algorithms are efficiently designed, they have

not exploited the compressibility of the signals in a WSN to

reduce the number of transmissions.

On the other hand, existing work in [29–33] are compara-

ble with CStorage-B, which will be discussed in Section 4.1.

3. Compressive data storage employing PB

In CStorage, node n j, j ∈ {1, 2, . . . , N}, maintains a CS

measurement y j ∈ R, where y j = φ jx and φj is an N-

dimensional row vector and x = [x1x2 . . . xN]T is sensors’

reading (xi is the reading of ni). Let �tot = [φT
1
φT

2
. . . φT

N
]T and

y
tot

= [y1y2 . . . yN]T . Further, let ϕj, i be the element at the jth

row and the ith column of �tot. The matrix �tot is formed

when nodes receive various readings employing an underly-

ing data dissemination algorithm. We will propose two dis-

semination algorithms for this purpose. We first employ PB

and refer to the compressed storage scheme as CStorage-P.

We also propose another dissemination scheme called alter-

nating branching, and refer to the corresponding compressed

storage scheme as CStorage-B.

When the transmissions are over, �tot is formed distribu-

tively (as described in detail later) in the network. The data

collector queries M nodes for their measurements yj and the

corresponding φj maintained at each node, and forms y ∈ R
M

and � ∈ R
M×N . Next, the data collector obtains x̂, an estimate

of x, employing basis pursuit by solving (1).
3.1. CStorage-P design

The CStorage-P to form �tot in the network is described

in the following.

1. All nodes choose ϕj, j from N(0, 1) and initialize their

measurement to y j = ϕ j, jx j, where N(0, 1) is the zero

mean and unit variance Gaussian distribution.

2. Ns nodes randomly select themselves as a source node

and broadcast their reading to their neighbors.

3. Upon reception of xi for the first time by node l, nl, per-

forms the following:

(a) Chooses ϕl, i from N(0, 1) and adds ϕl, ixi to yl.

(b) Broadcasts xi with probability p (PB).

To describe CStorage-P, let us consider a small network with

N = 5 nodes as shown in Fig. 2 and investigate one PB of

CStorage-P. At the beginning, we have ϕi, j = 0 for all i 
=
j, i, j ∈ {1, . . . , 5}. Assume n1 broadcasts x1. Since n2 and n3

are in the transmission range of n1, they would receive x1.

Nodes n2 and n3 multiply x1 by ϕ2, 1 and ϕ3, 1 and add them

to y2 and y3, respectively. Next, n2 and n3 independently de-

cide whether to broadcast x1 with probability p or not. As-

sume that n2 decides to broadcast x1. Node n4 would receive

x1 and adds ϕ4, 1x1 to y4. However, we assume that n3 and n4

decide not to rebroadcast x1. Thus, the PB of x1 is over and

the matrix �tot obtains the form of (3). As we can also see

from �tot that x1 (corresponds to the 1st column of �tot) con-

tributes to CS measurements y1, y2, y3, and y4. The same pro-

cedure is performed for Ns source nodes selected uniformly at

random to form �tot. Therefore, column j of �tot corresponds

to dissemination of xj, sensor reading of node j, and row i of
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Table 1

Transmission range rt , and the corre-

sponding average number of neighbors

and p∗ in random WSNs.

rt No. of neighbors p∗

0.021 13 0.38

0.022 16 0.32

0.024 18 0.28

0.026 21 0.25

0.027 24 0.22

0.029 27 0.19

0.031 30 0.17

0.033 33 0.16

0.034 37 0.14

nt p

nt

nt 1,

,

Fig. 3. Structure of AB algorithm, where the current transmitter, nt , selects

one next transmitter, nt, 1.
�tot corresponds to the measurements formed at node i.

�tot =

⎛
⎜⎜⎜⎜⎝

ϕ1,1 0 0 0 0

ϕ2,1 ϕ2,2 0 0 0

ϕ3,1 0 ϕ3,3 0 0

ϕ4,1 0 0 ϕ4,4 0

0 0 0 0 ϕ5,5

⎞
⎟⎟⎟⎟⎠ (3)

3.2. Suitable values of Ns and p

As shown in [9], a sparse � matrix can be used to recover

a signal with same order of number of measurements as a

dense measurement matrix if � has M independent rows (is

full rank). In other words, any M rows of �tot that correspond

to collecting any M measurements by a data collector need

to be independent. We need to find the suitable values of Ns

and p such that the collected M rows of �tot form a sparse

� with the aforementioned properties while Ntot, the total

number of transmissions for the Ns disseminations, is min-

imized. If TPB(p) denotes the fraction of network nodes that

perform the retransmission in a PB with forwarding proba-

bility p (see Section 2.2), each PB requires TPB(p)N transmis-

sions. Therefore, we have Ntot = TPB(p)NNs. In the following

theorem from [8], we find the expected number of indepen-

dent rows of � as a function of Ns and p.

Theorem 1 ([8]). Let an M × N matrix � be the measurement

matrix obtained from �tot in CStorage-P. Further, let RPB(p) be

the fraction of nodes that receive a transmission using PB with

forwarding probability p (see Section 2.2). r(j), the expected

number of independent rows of � after the jth transmission

(out of Ns transmissions), is given by the following:

r(0) = 0,

r( j) = 1 − (1 − RPB(p))M−r( j−1)

+ r( j − 1), j ∈ {1, 2, . . . , Ns}. (4)

Using Theorem 1, we can show that for Ns ≥ M the num-

ber of independent rows of � approaches M for a large

enough p, and for Ns < M the number of independent rows

of � never reaches M [8]. Further, we can show that as Ns

increases a suitable matrix can be generated with a smaller

value of p. Consequently, we see an interesting trade-off since

increasing Ns increases Ntot = TPB(p)NNs, while it reduces the

required p and consequently TPB(p). It can be shown that the

optimal value of p and Ns that minimizes Ntot is when Ns is

set slightly larger than M and p = p∗ [8]. The values of p∗ for

various rt’s and the respective average number of neighbors

for A = 1 × 1 and N = 104 are given in Table 1.

4. Compressive data storage in WSNs employing

CStorage-B

In this section, we propose a novel data dissemination al-

gorithm referred to by alternating branching (AB) that is inde-

pendent of network topology (has no parameter to tune). We

will then employ AB for data dissemination in CStorage and

propose CStorage-B in Section 4.6.
4.1. Issues with PB algorithm

Consider the nodes in Fig. 3, where nt is about to rebroad-

cast a reading xi (for instance using PB). Let nt, p be the par-

ent of nt, from which nt has received xi. Clearly, all nodes in

N (nt,p) have received xi, where N (nt,p) denotes the set of

one-hop neighbors of nt, p. When nt performs the transmis-

sion, nodes in the gray shaded area of Fig. 3 receive xi poten-

tially for the first time.

Clearly, to greedily minimize the total number of trans-

missions, the distance of nt to nt, p (hence the size of gray area

in Fig. 3) should be maximized [29]. However, since in PB, nt

blindly makes the forwarding decision regardless of its dis-

tance to nt, p, nt may be positioned close to nt, p and its trans-

mission may be redundant. This is the first issue in PB that

results in redundant transmissions.

Authors in [29] proposed to employ the location of nodes

obtained by GPS to find a node nt that has the maximum dis-

tance with nt, p. However, GPS may be unavailable in many

WSNs, while two-hop neighbor information can be easily ob-

tained at nodes. Therefore, we design alternating branching

dissemination algorithm that takes advantage of the two-hop

neighbor information to find nodes that are possibly the far-

thest from the current transmitter exploiting their neighbor

information. This resolves the first issue of PB.

The second issue with PB is that the local density of neigh-

bors is not included in the calculation of p. Therefore, nodes

in network corners, close to borders, and in sparse regions

of network receive less number of transmissions. Although,

there have been several work that propose to locally tune p,

they still have a parameter that needs tuning based on net-

work wide information. Authors in [30] propose SmartGossip,

which has several parameters (γ , T, μ1, μ2, σ , and δ) that are

tuned based on network parameters. In algorithms proposed

in [31,32], nodes need to be aware of the network diameter to
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nt 2
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Fig. 4. Structure of AB algorithm, where the current transmitter, nt , selects

two next transmitters, nt, 1 and nt, 2 .
tune p. In [33], nodes need to know the optimal number of

next transmitters, which is network dependent.

Consequently, in AB we propose each transmitter to select

a fixed number of next transmitter(s) regardless of any of net-

work parameter to have a uniform dissemination throughout

the network. This ensures that there are enough number of

transmitters even in sparse areas of network, and results in

uniform dissemination of xi regardless of the density of nodes

as we later see.

4.2. The alternating branching design

Although, in large scale WSNs global routing tables may

not be obtained, obtaining one-hop and two-hop neighbor

information is simple. If all nodes broadcast a hello mes-

sage, every node obtains one-hop neighbor information. If

all nodes broadcast the list of their neighbors following all

hello messages of the first round, every node obtains two-

hop neighbor information. Clearly, this results in 2N trans-

missions in total.

Based on our discussions, in AB we propose a node nt that

is retransmitting xi to be responsible to choose the next trans-

mitter(s). Thus, nt has been selected to be a transmitter by

nt, p. Assume only one next transmitter nt, 1 is chosen by nt

in Fig. 3. Because all nodes in N (nt,p) have already received

xi, the next transmitter of nt is selected from N (nt)\N (nt,p),
where \ denotes the subtraction of two sets (nodes in the gray

area of Fig. 3).

Clearly, a neighbor of nt that has the minimum number of

common neighbors with nt, p is probably (and not necessar-

ily) farthest node whose transmission potentially results in

the largest new covered area. This is a greedy selection at nt

and is not by any means an optimal farthest node selection

when only two-hop neighbor information is available. Con-

sequently, nt chooses the next transmitter nt, 1 such that

nt,1 = argminnt,l
|N (nt,l)

⋂
N (nt,p)|, (5)

where
⋂

denotes the intersection of two sets.

Ideally, nt, 1 is placed on the transmission border of nt and

on the straight line connecting nt and nt, p. We emphasize

that we have shown the ideal setup for the sake of simplicity

and in our actual implementation next hop is not necessar-

ily on the edge of transmission range nor is on a straight line

with nt, p (it is selected based on Eq. (5)).

Consider a source node ni that initiates the broadcast of

xi and assume all its neighbors rebroadcast xi. If we allow

these nodes to choose only one next transmitter, and those

transmitters to choose one transmitter again and so on, they

will (ideally) form straight lines of transmitters that emanate

from ni and travel toward borders. Clearly, such dissemination

will be incomplete in the network. Therefore, some nodes

should choose more than one next transmitter so that the

transmitters branch and multiply (as the branches of a tree

multiply) and xi is well disseminated by an increase in the

number of transmitters.

Consider selecting two next transmitters by the current

transmitter n′
t , as depicted in Fig. 4. We can see that as

the number of next transmitters increases, the overlapping

area of their coverage also increases, hence their transmis-

sions become less efficient. Consequently, we propose to

choose only two next transmitters when branching occurs.
Let n′
t,1, n′

t,2 ∈ N (n′
t)\N (nt,p) denote the two next transmit-

ters. Similar to choosing one next transmitter nt, 1, we can

possibly provide the largest new covered area by the trans-

mission of n′
t,1, n′

t,2 when they have minimum number of

common neighbors with each other and with nt, p. Therefore,

n′
t,1

, n′
t,2

are selected such that

n′
t,1, n′

t,2 = argminn′
t,1

,n′
t,2
|N (n′

t,1)
⋂

N (n′
t,2)

⋂
N (nt,p)|,

(6)

as shown in Fig. 4.

The branching should occur frequently in random net-

works to ensure enough new branches are produced to ex-

plore new uncovered areas especially when nodes are sparse.

Therefore, we propose to branch at every other transmitter.

To control the branching, we propose to include a single-bit

binary counter as branching flag along with xi. When nt wants

to broadcast, it first checks the branching flag. If the flag is 0,

nt chooses one next transmitter and two otherwise. Next, it

flips the flag, and rebroadcasts xi along with the ID of the next

transmitter(s) and the branching flag. In addition, if a node is

selected as the next transmitter of xi but it has received it

before, the branch has been chosen from an area where xi

has already been disseminated. Therefore, this transmission

is redundant and is ignored. With such a scheme nodes al-

ternatively select one and two next transmitters. Therefore,

we refer to our algorithm by alternating branching (AB). Note

that ni initiates the broadcast of xi with branching flag of

0. In Fig. 5, we have shown the dissemination of one read-

ing using AB with the source node located in the center of a

A = 1 × 1 network with N = 104 nodes at four different pro-

gressive time snaps until AB is completed.

In Fig. 5, we can see that branches emanate from the

source and are spread towards borders. However, due to ran-

dom placement of nodes they may not move straightly to-

ward edges. Further, we can see that branches may arrive at

the same node after a few steps and terminate. Moreover, we

can see that the nodes that have not received the transmis-

sion are well distributed throughout the network.

4.3. Analysis of AB on grids

Let us first investigate AB in an ideal grid setup. If we re-

peat the ideal pattern of transmitting nodes shown in Figs. 3

and 4, they form an isometric grid network shown in Fig. 6.

We should note that isometric grids have been previously

considered in WSNs [34]. It is easy to see that the transmit-

ters form hexagon cells.
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Fig. 5. Dissemination of a reading from the source node at the center (shown by a star) using AB. The dark colored nodes are the transmitters forming branches,

the light colored nodes are the nodes that receive the reading, the white areas are the nodes that do not receive the transmission. Figures belong to the same

dissemination in progressive snap times from left to right and up to down, until the dissemination is complete.

Fig. 6. Ideal implementation of AB that results in isometric grid. The transmitters are shown with filled black circles, nodes that receive the transmission but

do not retransmit are shown by hollow circle, the nodes that do not receive the transmission are shown by gray square (in the center of hexagons formed by

transmitters), and arrows show the progress direction of the branch. Clearly, transmitters form hexagon shaped cells. The left and the right panels show the grid

when the transmission range is one and two grid size, respectively.
Let rg ∈ {1, 2, . . .} denote the transmission range of nodes

on the isometric grid as multiples of grid-size (in Fig. 6, we

have rg = 1 and rg = 2 on left and right, respectively). We

may simply formulate the fraction of nodes that receive and

transmit in AB on isometric grid. Since the whole network

has the same hexagon shaped cells, the fraction of nodes that

transmit and receive are equal for a cell and the whole net-

work. The transmitters around a hexagon also belong to its

neighboring hexagons too, while the nodes inside a hexagon

only belong to one cell. Using Fig. 6 and the discussion pro-

vided, the number of nodes that solely belong to one hexagon

NH and the number of nodes that do not receive a transmis-

sion in one hexagon NNR are given by the following lemma

Lemma 1. In ideal AB on an isometric grid, for transmission

range rg ∈ {1, 2, . . .}, the number of nodes that solely belong to

one hexagon NH and the number of nodes that do not receive a

transmission in one hexagon NNR are given by

NH = 1 − 6rg + 6

2rg∑
i=1

i and NNR = 1 + 6

rg−1∑
i=1

i. (7)

Using Lemma 1, we find the fraction of nodes that receive

a transmission, Rg, and the fraction of nodes that perform the

transmission, Tg, in a grid network in the following Theorem.
Theorem 2. In ideal AB on an isometric grid, for transmis-

sion range rg ∈ {1, 2, . . .}, the fraction of nodes that receive the

transmission, Rg, and the fraction of nodes that perform the

transmission, Tg, is the same for one hexagon and the whole net-

work. Therefore, we have

Rg = NH − NR

NH

and Tg = 6

NH

. (8)

We also employ Monte-Carlo numerical simulations to

find the average fraction of receivers, Rr, and transmitters,

Tr, when the deployment of nodes is random with N = 104.

Further, to perform a comparison with existing work, we

assume nodes in the random network are equipped with

GPS [29], and also propose a second implementation of al-

ternating branching, where nodes are equipped with GPS

and the farthest nodes are selected based on their actual

position referred to by ABGPS. We denote the average frac-

tion of receivers and transmitters in ABGPS by RGPS and TGPS,

respectively.

Since AB has no parameter to tune, we vary the trans-

mission range rt from its minimum value, i.e., threshold of

rt for which network becomes disconnected (as discussed in

Section 2.2), to large values where nodes are densely con-

nected. The number of neighbors in isometric grid cannot

take all values in contrast to random networks and is given
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by 6
∑rg

i=1
i ∈ {6, 18, 36, . . .}. Fig. 7, compares Rr, Rg, Tr, and Tg.

Rr and Tr are plotted versus the average number of neighbors.

Fig. 7 shows that AB provides almost constant fraction

of receivers and transmitters despite drastic changes in net-

work topology. Therefore, if the network changes over time

AB automatically adapts to changes. This is in contrast to PB

where RPB and TPB are greatly affected by p. In addition, from

Fig. 7 we can observe that although AB performs very close

to ABGPS (ideal setup), while it eliminates the need for GPS

information.

We can also observe that as the transmission range in-

creases, AB becomes more efficient and Tr reduces while

Rr increases, and its performance approaches that of ABGPS.

However, in ideal grid network the fraction of receivers drops

as the networks becomes denser. In addition, Fig. 7 shows

that isometric grid analysis of AB can provide close estimates

for Rr and Tr. This shows that AB performs close to grid model

on random networks although the neat hexagon shaped cells

may not appear due to random placement of nodes.

4.4. Distance between transmitters in random networks

It is of interest to find the expected distance of nt with

the next hops, d̄, in AB since next transmitters are not nec-

essarily placed on the border of nt. Clearly, we expect d̄ to

be as close as possible to rt. Let us first compare d̄ in AB and

ABGPS in Fig. 8. We remind that ABGPS maximizes d̄ using ex-

act nodes locations while AB uses two-hop neighbor infor-

mation (which is a very limited information compared to ex-

act nodes location) to perform the same task.

Fig. 8 confirms that AB can perform very close to ideal

case, ABGPS. Therefore, we may assume AB is maximizing the

distance of the next transmitter to nt. Using this result, we

can analytically find d̄. For the sake of simplicity, let us as-

sume the transmission range of nt is unit, i.e., rt = 1, and find

d̄. Let Xi be a random variable indicating the Euclidian dis-

tance of nt with a neighbor in N (nt). The pdf and cdf of Xi

are given by fXi
(d) = 2d, 0 ≤ d ≤ 1 and FXi

(d) = d2 [29]. The

following lemma gives the pdf of a random variable defined

as maximum of several random variables.
Lemma 2. Let Xi, i = {1, 2, . . . , k} be i.i.d. random variables

with the same cdf FX(d), and let the random variable Xmax =
max{X1, . . . , Xk}. FXmax

(d) the cdf of Xmax is FXmax
(d) = F k

X
(d).

Proof. FXmax
(d) = P(Xmax ≤ d) = P(X1 ≤ d, . . . , Xk ≤ d) =

P(X1 ≤ d) . . . P(Xk ≤ d) = F k
X
(d). �

Node nt maximizes the distance of the next forwarders

from the set N (nt)\N (nt,p) located in the gray area in Fig. 3.

The size of the shaded region is Asel = d̄
2

√
4 − d̄2 + 2 arcsin d̄

2

[29].

The number of nodes in the shaded area is given by

Nsel = N
A

Asel = ρAsel , where ρ = N
A

is the density of nodes.

Let Xmax = max{X1, . . . , Xk} be the random variable denoting

the distance of next transmitters to nt. Using Lemma 2, we

have FXmax
(d) ≈ d2Nsel . Consequently, the expected distance

d̄ is simply obtained by d̄ = E[Xmax], where E[.] denotes the

expected value of a random variable. The expected value of

a random variable Z can be calculated from its cdf FZ(x) by

E[Z] = ∫ ∞
0 (1 − FZ(x))dx − ∫ 0

−∞ FZ(x)dx. This gives

d̄ = E[Xmax] =
∫ 1

0

(1 − z2Nsel )dz,

= 1 − 1

2Nsel + 1

= 1 − 1

2ρ
[

d̄
2

√
4 − d̄2 + 2 arcsin d̄

2

]
+ 1

After a few simple mathematical operations, we obtain

ρ = d̄

(1 − d̄)
(

d̄
√

4 − d̄2 + 4 arcsin d̄
2

) . (9)

The value of d̄ may be obtained from (9) for any ρ . For in-

stance, at average number of neighbors equal to 22 we have

d̄ = 0.963, and in the worst case for almost disconnected net-

work (average neighbor number of 12), we have d̄ = 0.93.

Therefore, the assumption that next forwarders are placed

on the transmission range border of nt in grid networks is

not far from reality in random networks. Therefore, Rg and Tg

may provide close estimates of Rr and Tr as shown in Fig. 7.
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4.5. Dissemination uniformity

Assume the data collector queries the M nodes located in

the center of the network to obtain M measurements. These

nodes will experience the best disseminations due to their

centrality in the network. Let Rcen denote the average fraction

of these M nodes that receive a particular transmission. Next,

assume the data collector gathers M measurements from M

nodes in a network corner, and let Rcor denote the fraction of

these M nodes that receive the same transmission. In order

to compare the dissemination uniformity of AB and PB, let

us define dissemination uniformity μ = E[Rcen − Rcor]. Clearly,

we are interested in a uniform dissemination, which results

in μ ≈ 0, i.e., nodes in the corner receive the disseminations

with the same probability as the nodes in the center of the

network.

We find μ for PB and AB using extensive numerical sim-

ulations in Fig. 9 for a network with N = 104 nodes and M =
700. In PB, for each transmission range we set p = p∗ from

Table 1. To perform a comparison between these two algo-

rithms, we have also depicted Tr and TPB, the fraction of nodes

that perform the transmission in AB and PB, respectively.
Fig. 9 confirms that the dissemination in AB is well uni-

form and almost the same at the corners compared to the

center of the network in contrast to PB, while the number of

transmissions is even smaller.

4.6. CStorage-B design

Similar to CStorage-P, in CStorage-B node n j, j ∈
{1, 2, . . . , N}, maintains a CS measurement yj and after

dissemination �N×N
tot is formed in the network, except that

AB replaces PB for data dissemination purpose. Conse-

quently, the steps of CStorage-B are as follows.

1. All nodes choose ϕj, j from N(0, 1) and initialize their

measurement to y j = ϕ j, jx j .

2. Ns nodes randomly select themselves as a source node

and broadcast their reading to their neighbors with

the single-bit flag set to 0.

3. Upon the reception of xi for the first time by node l, nl,

it performs the following:

(a) Chooses ϕl, i from N(0, 1) and adds ϕl, ixi to yl.
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Table 2

The temperature signal reconstruction error in

CStorage-P and CStorage-B denoted by eP and eP ,

respectively, for all rt .

Ns eP eB

102 0.371 0.367

500 0.205 0.208

103 0.138 0.138

1500 0.102 0.103

2100 0.084 0.083

104 0.084 0.083
(b) Checks to see if it has been selected as a next

forwarder or is a direct neighbor of source node,

ni. If either of aforementioned conditions is met,

it checks xi’s single-bit flag. If the flag is 0, it

chooses one next transmitter using (5), or other-

wise chooses two next transmitters using (6). Fi-

nally, it flips the single-bit flag and rebroadcasts

xi along with the flag and the ID of the next for-

warder(s) (AB).

After the transmissions are finished, Ns readings will be dis-

seminated throughout the network. Similar to CStorage-P,

a data collector queries M measurements y and the corre-

sponding φj’s from an arbitrary set of M nodes and obtains

the measurement matrix � (which is subset of �tot) and ob-

tains x̂. We may rewrite Theorem 1 for CStorage-B to find the

expected number of independent rows in Theorem 3 for Ns

disseminations.

Theorem 3. Let an M × N matrix � be the measurement ma-

trix obtained from �tot in CStorage-B. Further, let Rr be the frac-

tion of nodes that receive a transmission using AB on a random

network (see Fig. 7). r(j), the expected number of independent

rows of �′ after the jth transmission (out of Ns transmissions),

is given by the following:

r(0) = 0,

r( j) = 1 − (1 − Rr)
M−r( j−1)

+ r( j − 1), j ∈ {1, 2, . . . , Ns}. (10)

Employing Theorem 3 (similar to CStorage-P), it is easy to

shows that Ns needs to be slightly larger than M to form a

measurement matrix � with M independent rows (becomes

full rank).

5. Performance evaluation

To perform the numerical simulations we employ the

real temperature readings data sets from EPFL’s SensorScope

project, LUCE deployment [35]. We capture a snapshot of

the network temperature on 5/1/2007 at 12:1. We will have

N = 104 nodes randomly deployed A = 1 × 1 and vary rt. In

PB, we set p = p∗ from Table 1 based on rt.

We employ the normalized reconstruction error defined

by e = ‖x−x̂‖2‖x̂‖2
to evaluate the reconstruction accuracy, where

‖.‖2 denotes the norm-2 of the signal. The selection of M

depends on the target reconstruction error of the signal x .

Clearly, e = 0 denotes perfect recovery. Without loss of gen-

erality, we set the target error to et = 0.09 (while any other

et may be chosen). Employing dense � matrices, we observe

that M = 2 × 103 results in average reconstruction error of

e ≈ 0.085. Therefore, we fix the number of measurements

to M = 2 × 103. Clearly, a smaller et necessitates choosing a

larger M.

5.1. Performance evaluation of CStorage-P and CStorage-B

We theoretically showed that Ns should be slightly larger

than M using Theorems 1 and 3. In our simulations, we find

the value of Ns for which the desired � is constructed and

et is achieved. We remind that the dissemination phase (em-

ploying PB and AB) forms non-zero entries in the columns of
� corresponding to the Ns source nodes. Therefore, a larger

Ns corresponds to a denser �, which has M independent rows

with a higher probability.

We implement CStorage-P and CStorage-B, and find their

respective reconstruction errors eP and eB by running a large

number of iterations of data dissemination on randomly de-

ployed networks in Table 2. Further, we plot the total number

of transmissions in Fig. 10.

Table 2 shows that CStorage-B performs as well as

CStorage-P although it is absolutely parameterless (in

CStorage-P we need to set p = p∗ for each rt). Further, Table 2

confirms out theoretical results and shows that we need to

set Ns slightly larger than M to achieve et, and increasing Ns

further does not improve eP and eB while it considerably in-

creases the number of transmissions as shown in Fig. 10. For

performance evaluation of CStorage-P versus its parameter p

see [8, Fig. 6].

We can see that in CStorage-P with Ns = 2100, for aver-

age number of neighbor of 13 (minimum number for con-

nectivity) and 37 (densely connected), we have Ntot = 5.31 ×
106 and Ntot = 2.1 × 106, respectively. For the same network

structures CStorage-B requires Ntot = 4.68 × 106 and Ntot =
1.19 × 106, respectively. AB requires 2N = 2 × 104 trans-

mission for hello messages to obtain the two-hop neigh-

bor information. This increases Ntot to Ntot = 4.7 × 106 and

Ntot = 1.21 × 106. Therefore, CStorage-B decreases Ntot by at

least 11.8%, while it can automatically match to network

changes.

5.2. Comparison with existing algorithms

To the best of our knowledge, there are three stateless

and distributed data dissemination algorithms for large scale

WSNs, simple Flooding [13], dissemination using random

walks [2], and dissemination using gossiping [26]. Dissemi-

nation using gossiping has the advantage that it generates a

dense �, which results in a large number of transmissions.

Therefore, we compare the performance of CStorage with

dissemination using flooding and random walks, which may

generate a sparse �, with fixed rt = 0.025.

Note that in dissemination using random walks, we con-

tinue the random walks until 70% of nodes have received

the dissemination similar to CStorage-P. Further, we assume

when a node performs the transmission in random walks all

its neighbors may employ the received reading to form their

measurement, although only one neighbor is selected as the

next transmitter. To have a fast mixing-time and uniform dis-

semination we employ the Metropolis–Hastings algorithm
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respectively.
[36] with uniform equilibrium distribution to find the neigh-

bor selection probabilities in random walk. With this setup,

data dissemination using random walks in CStorage results in

Ntot = 8.4 × 107.

The simplest dissemination algorithm is the simple

Flooding [13], which results in Ntot = NsN = 2.1 × 107 trans-

missions when used along with CS. Clearly, if CS is not em-

ployed all N readings must be stored in all N nodes result-

ing in Ntot = N2 = 108 transmissions. Therefore, employing

CS reduces the number of transmissions from 108 to 2.1 ×
107, and CStorage-P and CStorage-B further reduces Ntot to

3.27 × 106 and 2.83 × 106, respectively. Therefore, we can

see that CStorage-P and CStorage-B have reduced the num-

ber of transmissions about one order of magnitude, which can

considerably increase the life time of the network.

6. Conclusion

In this paper, we proposed two distributed data stor-

age algorithms using compressive sensing (CS) referred to by

CStorage-P and CStorage-B. These algorithms are distributed

and are suitable for WSNs where no routing tables may be

obtained. In CStorage-P, the readings of randomly selected

network nodes are disseminated throughout the networks

using probabilistic broadcasting (PB) to form CS measure-

ments at nodes. After the dissemination phase, a data col-

lector may query a small arbitrary set of nodes to recover all

readings.

CStorage-P has a parameter that needs to be tuned based

on network parameters. Hence, it may not be scalable and

flexible to network changes. Therefore, we designed a novel

parameterless data dissemination algorithms referred to by

alternating branching (AB) that requires two-hop neighbor in-

formation at nodes. AB can automatically tune to network

changes and requires less number of transmissions com-

pared to PB. We discussed the advantages of CStorage-P and

CStorage-B and showed that they can greatly decrease the to-

tal number of transmissions for data storage compared to ex-

isting stateless algorithms.
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