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A Framework for Compressive Sensing
of Asymmetric Signals Using Normal

and Skew-Normal Mixture Prior
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Abstract—In this work, we are interested in the compressive
sensing of sparse signals whose significant coefficients are dis-
tributed asymmetrically with respect to zero. To properly address
this problem, we develop a framework utilizing a two-state nor-
mal and skew normal mixture density as the prior distribution
of the signal. The significant and insignificant coefficients of the
signal are represented by skew normal and normal distributions,
respectively. A novel approximate message passing-based algo-
rithm is developed to estimate the signal from its compressed
measurements. A fast gradient-based estimator is designed to infer
the density of each state. Experiment results on simulated data
and two real-world tests, i.e., multi-input multi-output (MIMO)
communication system and weather sensor network, confirm that
our proposed technique is powerful in exploiting asymmetrical
feature, and outperforms many sophisticated methods.

Index Terms—Compressive sensing, asymmetrical signal,
mixture model, approximate message passing.

I. INTRODUCTION

C OMPRESSIVE sensing (CS) [1], [2] is a powerful tech-
nique for solving certain ill-posed linear inverse prob-

lems. In compressive sensing, the signal is sampled by a linear
projection as,

y = Ax + e, (1)

where x ∈ R
N×1 is the signal of interest, A ∈ R

M×N is
the known sampling matrix with M � N , y ∈ R

M×1 is the

observed measurements, and e ∈ R
M×1 ∼ N(0, σ 2

e IM×M ) is
the measurement white Gaussian noise.

It is noted that M � N in (1), therefore, the inverse
problem has infinitely many solutions. Compressive sensing
enables reliable reconstruction of the signal under the condi-
tions that the signal is sufficiently sparse/compressible, and
the sampling matrix satisfies certain properties [1]. Here by
sparse/compressible, we intend that K � N entries of the
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signal have significant magnitudes, with the remaining entries
being insignificant, and the ratio K/N is referred to as the
sparsity rate in the literature.

A great number of applications have been inspired by the suc-
cess of compressive sensing. For instance, CS found great uti-
lization in MIMO broadcast network [3], orthogonal frequency
division multiplexing (OFDM) system [4] [5], heterogeneous
cellular networks (HetNets) [6], distributed data storage [7],
multiple description coding (MDC) [8], multimedia communi-
cation [9], [10], network fault identification [11], [12], and time
series analysis [13].

In this work, we are particularly interested in the reconstruc-
tion task. To reconstruct the signal from its under-sampled pro-
jection, sparsity promoting algorithms are employed. Among
the many, basis pursuit [1] and LASSO [14] are probably the
most classic techniques. By casting the problem as a convex
optimization problem, they yield close to optimal performance
at O(N 3) complexity. The sparse reconstruction task can be
treated from a Bayesian aspect as well, where the distribu-
tion of the signal is modelled by a mixture of a few density
components. In [15] and [16], the signal is modelled by a mix-
ture of Laplace densities, and the coefficients are inferred by
approximate message passing (AMP). In [17], two types of
mixture models, i.e., a Bernoulli-Gaussian mixture and a two-
state Gaussian mixture, are utilized as the prior distributions of
the wavelet transform coefficients of images.

As can be seen, the density components in these studies
[15]–[18] are symmetrically distributed around their means. In
practice, the underling density of the signal coefficients could
be asymmetric.

One example can be found in multibeam opportunistic
random-beamforming network [3], where the Base Station,
equipping with Q antennas, schedules its downlink transmis-
sion based on the Signal to Interference and Noise Ratio (SINR)
of the mobile users.

Specifically, the SINR of n-th user on q-th Base Station
antenna is calculated as [3],

SINRn,q =
|gᵀ

n
ψ

q
|2

1/ρn +∑
l �=q |gᵀ

n
ψ

l
|2 ≥ 0, (2)

where ρn is a positive scaler standing for the Signal to Noise
Ratio (SNR), g

n
∈ C

Q×1 is the complex Gaussian Channel vec-

tor, and ψ
q

∈ R
Q×1 is the random beam generated at Base

Station. As can be seen in (2), SINR is strictly positive, and
is therefore asymmetric about zero.
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Another example can be found in sensor networks, where
certain type of weather data, let us say outside air temperature,
when subtracted from the historical average, is asymmetrically
positive or negative when the disrupting weather phenomena
is heat or cool, respectively. Additionally, it is found that in
microarray time course data analysis from biomedical research
[19], the gene expressions involved in embryo are more often
developed with an increasing trend.

Therefore, distributions including normal and Laplace in this
case may not be a proper model to capture all the salient
features, and dealing with asymmetric signals calls for more
sophisticated approaches. Two related work can be found in
[20] and [21]. In [20], a normal density mixture is employed as
the prior distribution, and a powerful algorithm is put forward to
estimate the signal while learning the mixture via Expectation
Maximization [22]. In [21], an effective technique is developed
to handle non-negative sparse signals by modelling the signal
with a non-negative normal mixture.

While being highly effective in general, both [20] and [21]
have limitations. For example, the mixture using normal com-
ponents in [20] is known to be sensitive to outliers, and the per-
formance degrades with smaller sample size [23]. Meanwhile,
the work [21] is designed exclusively for non-negative signals,
and is not capable in handling signals with both positive and
negative significant elements.

Given these limitations, we are aiming to solve for asym-
metrical signals, and to develop a new and more generalized
framework. To this end, a two-state normal and skew normal
mixture density is proposed. The significant coefficients of the
signal are represented by a skew normal density, which is more
general than the normal one, and comes with more flexibility
in dealing with the asymmetric features. A message passing
algorithm is developed to estimate the signal from the measure-
ments. A fast gradient-based estimator is designed to infer the
density of each state.

The performance of our proposed technique is examined
under a variety of tests, including phase transition, noisy
reconstruction, support set recovery rate, and runtime tests.
Furthermore, our technique finds promising applications
in MIMO communication system, as well as weather sensor
network. We show that in MIMO communication system, given
the same amount of feedback overhead, our technique is able
to realize a significantly higher achievable sum rate. Besides,
in weather sensor network application, the disrupting weather
phenomena can be successfully learned by our proposed
technique.

Overall, experimental results of both simulated and real-
world tests show that, our technique can effectively exploit
the asymmetric feature of the signal, while being competitively
efficient in solving large scale problems.

The remainder of this paper is organized as follows. A
review of loopy belief propagation and approximate mes-
sage passing is provided in Section II. The signal model and
our approximate message passing algorithm utilizing the two-
state normal and skew normal mixture density are detailed in
Section III. Gradient-based parameter estimation is detailed
in Section IV. The complexity of our technique is analyzed in
Section V. Experimental results are summarized in Section VI,
and Section VII concludes the paper.

II. OVERVIEW OF APPROXIMATE MESSAGE PASSING

A. AMP: Fidelity and Complexity

In the reconstruction phase of compressive sensing, the task
is to find the solution that complies with the measurements
y, while providing the best consistency with the prior sparsity
model.

A variety of methods with varying balance between recon-
struction fidelity and complexity are developed1. For instance,
LASSO [1], [14] is known to achieve the least reconstruction
distortion, with computational complexity O(N 3). On the other
hand, while the fast scheme such as iterative thresholding [25],
[26] has much less complexity, it requires more samples, i.e.,
greater M , to achieve a similar fidelity of LASSO [1], [14].

Approximate message passing [15], [16], [27] is a power-
ful technique that realizes the best of reconstruction fidelity
and computational complexity. In [27], it is shown that the
performance of AMP can be precisely modelled by the State
Evolution, where under the conditions that the signal is ade-
quately sparse and the number of measurement is sufficient,
the formal Mean Square Error [28] of AMP reduces to 0.
Moreover, with the complexity dominated by multiplying the
sampling matrix (of size M-by-N ), with a vector (of size N -by-
1), AMP is one of the fastest techniques in compressive sensing
community [27].

B. Estimate Marginal Posterior by Message Passing

AMP is built on the success of message passing. Message
passing, also known as belief propagation decoding [18],
[29], allows efficient approximation of the marginal posterior
P(xn|y), for n = 1, . . . , N , by exchanging messages between
variable nodes x and check nodes y, where the messages carry
the probability distribution of the corresponding variable nodes.

Specifically, let ν i
xn→ym

(xn) be the message sent from vari-
able node xn to check node ym at i-th iteration, and denote
ν i

ym→xn
(xn) as the reverse, with both messages encoding the

belief, namely probability density function (pdf ), of xn .
The message from variable node xn to check node ym ,

ν i
xn→ym

(xn), is calculated as the product of the prior distribu-
tion of xn , i.e., f (xn), and all incoming messages to xn from
check nodes y, with the exception of the one from ym [18],

νi
xn→ym

(xn) ∼= f (xn)
∏

u∈{1,...,M}\m

νi−1
yu→xn

(xn), (3)

where ∼= denotes identity up to a normalization constant.
The message from check node ym to variable node xn ,

νi
ym→xn

(xn), is evaluated based on the product of the constraint
on ym , and all incoming messages of ym from variable nodes x ,
with the exception of the one from xn . Under white Gaussian
noise environment, the constraint on ym is

con(ym, x) = 1√
2πσe

exp

(
− (ym − Aᵀ

m·x)2

2σ 2
e

)
, (4)

where Am· represents the m-th row of A, and superscript ᵀ
denotes vector and matrix transpose. In what comes next, Amn

1See [24] and reference therein for a survey of popular methods for the
compressive sensing reconstruction task.
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is the entry at the m-th row and n-th column of A. Similarly,
A·n denote the n-th column of A.

Since con(ym, x) involves all variable nodes x , the product
is then marginalized by sum over all x but xn [18], i.e.,

νi
ym→xn

(xn) ∼=∫
· · ·
∫

︸ ︷︷ ︸
N−1

con(ym, x)
N∏

t=1
t �=n

νi
xt →ym

(xt ) dx1 · · · dxt · · · dxN︸ ︷︷ ︸
t∈{1,...,N }\n

. (5)

C. Minimal-Mean-Squared-Error (MMSE) Inference by
Approximation

In classic message passing [18], message is represented in
the form of 1/σS uniform samples of the corresponding pdf ,
where σS is the standard deviation of the insignificant coeffi-
cients. Therefore, a storage proportional to M N/σS is needed
at each iteration.

While being reasonably effective in some cases, this pro-
cedure calls for considerably large memory space, and is not
satisfactorily efficient under large signal dimensionality and
very small σS .

AMP, on the other hand, is more efficient. Specifically, with
adequately large M and N , message in AMP is approximated2

by Gaussian density, which is further parameterized by the
corresponding mean and variance [15]–[17], i.e.,

νi
xn→ym

(xn) ≈ N
(

xn;μi
xnm
, σ 2 i

xnm

)
, (6)

where

μi
xnm

=
∫ ∞

−∞
xnν

i
xn→ym

(xn) dxn, (7)

σ 2 i
xnm

=
∫ ∞

−∞
(xn − μi

xnm
)2νi

xn→ym
(xn) dxn, (8)

and

νi
ym→xn

(xn) ≈ N
(

xn;μi
ymn
, σ 2 i

ymn

)
, (9)

in which

μi
ymn

= 1

Amn
×
⎛
⎝ym −

∑
t∈{1,...,N }\{n}

Amtμ
i
xtm

⎞
⎠ , (10)

σ 2 i
ymn

= 1

A2
mn

×
⎛
⎝σ 2

e +
∑

t∈{1,...,N }\{n}
A2

mtσ
2 i
xtm

⎞
⎠ . (11)

Following the notation in [15] and [16], define the mean
operator F(κ, ς), and variance operator G(κ, ς) as,

F(κ, ς) = E fv→c(X), (12)

G(κ, ς) = Var fv→c (X), (13)

where the pdf of X is fv→c(x) ∼= N(x; κ, ς) f (x), with f (x)
denoting the prior distribution of X .

2In this work, ≈ is utilized to denote approximation.

Therefore, with the above approximation, and combining the
product term in (3) which are all Gaussian, νi+1

xn→ym
can be

written as,

νi+1
xn→ym

(xn) ∼= N(xn; κ i
nm, ς

i
n) f (xn)

∼= N
(

xn;μi+1
xnm
, σ 2 i+1

xnm

)
,

(14)

where

κ i
nm =

M∑
u=1
u �=m

Aunμ
i
yun
, ς i

n = 1

M

M∑
u=1

A2
unσ

2 i
yun
, (15)

μi+1
xnm

= F(κ i
nm, ς

i
n), σ 2 i+1

xnm
= G(κ i

nm, ς
i
n). (16)

As can be seen, following the above update rule, variable
node xn sends a unique pair of

(
μi

xnm
, σ 2 i

xnm

)
to ym , for m =

1, . . . ,M . In turn, check node ym sends a unique pair of(
μi

ymn
, σ 2 i

ymn

)
to xn , for n = 1, . . . , N . As a result, the memory

requirement scales with 2M N .
The work [15] and [16] further show that, with mild accuracy

compromise, the storage requirement can be further reduced by
first order approximation.

Specifically, by first order approximation, it is intended that
variable node xn sends a uniform pair to all check nodes, i.e.,
νi

xn→ym
= N

(
μi

xn
, σ 2 i

xn

)
, for m = 1, . . . ,M . Similarly, check

node ym sends a uniform pair to all variable nodes, i.e.,

νi
ym→xn

= N
(
μi

ym
, ς i

)
, for n = 1, . . . , N , in which [15]–[17],

μi
xn

= F(κ i−1
xn
, ς i−1), (17)

σ 2 i
xn

= G(κ i−1
xn
, ς i−1), (18)

μi
ym

= ym −
N∑

n=1

Amnμ
i−1
xn

+ μi−1
ym

M

N∑
n=1

F
′(κ i−1

xn
, ς i−1), (19)

ς i = σ 2
e + 1

M

∑N

n=1
σ 2 i

xn
, (20)

κ i−1
xn

=
∑M

m=1
Amnμ

i−1
ym

+ μi−1
xn
, (21)

with F
′(κ i−1

xn
, ς i−1) being the first order derivative of

F(κ i−1
xn
, ς i−1) with respect to κ i−1

xn
. After convergence of mes-

sage passing, the MMSE estimate of the signal is formed as
x̂ = [μId

x1 , . . . , μ
Id
xN ]ᵀ, where Id represents the last message

passing iteration.

III. APPROXIMATE MESSAGE PASSING BASED ON

NORMAL AND SKEW NORMAL MIXTURE DENSITY

A. Skew Normal Density

In this work, we are aiming to estimate sparse signals
whose significant coefficients are distributed asymmetrically
with respect to zero.
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Signals with this asymmetrical feature can be either right-
skewed, or left-skewed. Specifically, for right-skewed, the
majority of the significant coefficients are of positive sign, with
the remaining few being negative. Similarly, for left-skewed, the
majority of the significant coefficients are of negative sign, with
the remaining few being negative.

As discussed, due to the symmetry, neither normal nor
Laplace densities could encapsulate the asymmetric nature of
signals with such prior information.

In this work, we employ a normal and skew normal density
mixture as the prior distribution of such signals. More specifi-
cally, the distribution of the significant coefficients is modelled
by a skew normal density, the probability density function of
which was formally defined in [30] as,

SN(x; ξ, ω, α) = 2

ω
φ

(
x − ξ

ω

)



(
α

x − ξ

ω

)
, (22)

where ξ, ω, and α represent the location, scale, and shape
parameters, φ(·) and 
(·) denote the pdf and the cumula-
tive density function (cdf ) of the standard normal distributed
random variable, respectively.

Compared to the normal pdf , a noteworthy aspect of (22) is

the additional term 


(
α

x − ξ

ω

)
, which controls the skewness

of the density. It is readily seen that (22) reduces to a normal
density when α is set to 0, and approaches to positive/negative
half normal density in the limits α → ±∞.

Fig. 1a and 1b show two curves of the skew normal densi-
ties with (ξ, ω, α) being set to (0, 100,−10) and (0, 100, 10),
respectively. It can be seen that both of these two densities are
asymmetric with respect to x = 0, where the density with nega-
tive shape parameter α in Fig. 1a is left-skewed, and the density
with positive α in Fig. 1b is right-skewed. Besides, as com-
pared to the non-negative normal density [21], the skew normal
density is more flexible in accommodating both positive and
negative elements.

Similar to [18], the distribution of the insignificant coeffi-
cients is modelled by normal density. Meanwhile, we consider
the case where the location parameter ξ = 0. Overall, the pdf
of the signal can be written as,

f (x) ∼= (1 − λ)× N(x; 0, σ 2
S )+ λ× SN(x; 0, ωL , αL), (23)

where λ = K/N denotes the sparsity rate. For convenience, let
� = [σ 2

S , ωL , αL ] be the characterizing parameters set of the
mixture.

B. System Diagram

Our proposed method consists of two functionality modules,
with each module being iterative. Fig. 2 is the system diagram
of our technique.

The first module, as shown in the left of Fig. 2, involves
the estimation of the signal using the approximation message
passing with skew normal and normal mixture density. After
the message passing completes, the estimation x̂ is then fed
to the second module, where the parameters of the mixture,
�̂ = [σ̂ 2

S , ω
∗
L , α

∗
L ], are inferred. These two modules execute

alternatively and repeatedly until convergence is achieved.

Fig. 1. Skew Normal Density. (a) Left-skewed with α = −10. (b) Right-
skewed with α = 10.

Fig. 2. System Diagram.

C. Message Passing

In this section, we will detail our message passing algorithm
utilizing the proposed skew normal and normal mixture density.

Specifically, given (6) to (11), and recalling the skew normal
and normal mixture density (23), the message from xn to ym at
(i + 1)-th iteration can be written as,

νi+1
xn→ym

(xn) ∼= N(xn; κ i
nm, ς

i
n) f (xn)

= (1 − λ)N
(

xn; κ i
nm, ς

i
n

)
N(xn; 0, σ 2

S )

+ λN
(

xn; κ i
nm, ς

i
n

)
SN(xn; 0, ωL , αL), (24)

where κ i
nm = ∑M

u=1
u �=m

Aunμ
i
yun

, and ς i
n = 1

M

∑M
u=1 A2

un σ
2 i
yun

.

With the above, the next step is to approximate (24) by nor-
mal density (6). This calls for the evaluation of the mean and
variance of νi+1

xn→ym
. For our specific problem, in which the prior

density is a normal and skew normal mixture, one needs to ana-
lyze the product N(x |κ, ς)SN(x |0, ω0, α0) in (24). Therefore,
Lemma 1 to Lemma 3 are derived below.

Lemma 1: Let U ∼ N(μ, σ 2) be a Gaussian random vari-

able. We have E(
(hU + k)) = 
(
k + hμ√
1 + h2σ 2

) for any h, k ∈
R.

Proof: Lemma 1 is a direct extension of Lemma 2

in [30], which states that E(
(hV + k)) = 
(
k√

1 + h2
) for

V ∼ N(0, 1). By change of variable, V = U−μ
σ

, Lemma 1
follows. �

Corollary 1: Let G(x) = N(x; κ, ς)SN(x; 0, ω0, α0) be the
product of the pdf of normal and skew normal densities, then
C0
∫∞
−∞ G(x)dx = 1 for a C0 ∈ R

+.

Proof: To prove Corollary 1, it is sufficient to show
that

∫∞
−∞ G(x)dx has a finite value. Recalling G(x) ≥ 0 and


(x) ≤ 1 for x ∈ R, it is derived that,
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∫ ∞

−∞
G(x)dx < 2

∫ ∞

−∞
N(x; κ, ς)N(x; 0, ω2

0)dx

<

√
2

πω2
0

∫ ∞

−∞
N(x; κ, ς)dx =

√
2

πω2
0

. (25)

�
Additionally,

∫∞
−∞ G(x)dx is found to be,∫

G(x)dx =
∫

N(x; κ, ς)SN(x; 0, ω0, α0)dx (26)

=
∫

1

πω0
√
ς

exp

(
− (x − κ)2

2 ς
− x2

2ω2
0

)



(
α0x

ω0

)
dx (27)

= 1

πω0
√
ς

exp

(
−κ2

2(ς + ω2
0)

)∫
exp

(
− (x − μ)2

2σ 2

)



(
α0x

ω0

)
dx

(28)

=
√

2

π(ς + ω2
0)

exp

(
−κ2

2(ς + ω2
0)

)∫
N(μ, σ 2)


(
α0x

ω0

)
dx,

(29)

where μ = κω2
0

ς + ω2
0

, σ 2 = ςω2
0

ς + ω2
0

, and all integrals are from

−∞ to ∞.
Applying Lemma 1 on the integral term in (29),

it is derived that, C0 = υ exp(γ )
(η)−1, in which

υ = (
0.5π(ς + ω2

0)
)1/2

, γ = κ2

2(ς + ω2
0)

, η = hμ√
1 + h2σ 2

,

h = α0

ω0
.

Lemma 2. Let the pdf of the random variable X be C0 ×
N(x; κ, ς)SN(x; 0, ω0, α0). The moment generating function
of X is found to be,

MX (t) = exp

(
μt + σ 2t2

2

)

−1(η)


(
η + hσ 2t√

1 + h2σ 2

)
.

(30)
Proof:

MX (t) = C0

∫
exp(t x)N(x; κ, ς)SN(x; 0, ω0, α0)dx (31)

= 
(η)−1
∫

exp(t x)N(μ, σ 2)


(
α0x

ω0

)
dx (32)

=
exp

(
μt + t2σ 2

2

)

(η)

∫
N(μ+ tσ 2, σ 2)


(
α0x

ω0

)
dx (33)

= exp

(
μt + σ 2t2

2

)

−1(η)


(
η + hσ 2t√

1 + h2σ 2

)
, (34)

where (32) holds due to Corollary 1, and (34) holds due to
Lemma 1, and all integrals are from −∞ to ∞. �

With the moment generating function MX (t), the mean and
variance of the density function C0 × G(x) are derived.

Lemma 3. Let the pdf of the random variable X be C0 ×
N(x; κ, ς)SN(x; 0, ω0, α0). Then the mean and variance are
given by

E(X) = μ+ θσ 2

√
2π


−1(η) exp

(
−1

2
η2
)
, (35)

TABLE I
MESSAGE PASSING PARAMETERS FOR F(κ, ς) AND G(κ, ς)

TABLE II
MESSAGE PASSING PARAMETERS FOR F

′(κ, ς)

and

Var(X) = μ2 + σ 2 + (E(X)− μ) ρ − (E(X))2, (36)

respectively, where θ = h√
1+h2σ 2

, and ρ = 2μ+μh2σ 2

1+h2σ 2 .

Using Lemma 1 to Lemma 3 and omitting the iteration super-
script i and subscripts n and m for coefficients, (24) can be
approximated by normal density as,

νx→y(x) ∼= N(μx , σ
2
x ), (37)

μx = F(κ, ς) = p1μ1 + p2μ2, (38)

σ 2
x = G(κ, ς) = p1

(
μ2

1 + σ 2
1

)
+ p2

(
μ2

2 + σ 2
2

)
− (p1μ1 + p2μ2)

2 , (39)

where μ1, σ
2
1 , p1, μ2, σ

2
2 , p2 are calculated in Table I.

Omitting the iteration superscripts and coefficient subscripts,
F

′(κ i−1
xn
, ς i−1) in (19) is calculated as,

F
′(κ, ς)= (1 − λ)

(
μ1ζ1 + C

C1
ρS

)
+ λ

(
μ2ζ2 + C

C2
δ

)
, (40)

in which ζ1, ζ2 and δ can be calculated as Table II.
Therefore, similar to the approximate message passing (17)-

(21) for arbitrary prior density, our approximate message pass-
ing utilizing the proposed normal and skew normal density
(23) is concluded as (38), (39), (19), (20) and (21), where
F

′(κ i−1
xn
, ς i−1) in (19) is calculated as (40).

IV. GRADIENT BASED PARAMETER ESTIMATION

We now detail the parameter estimation for the density of
each state. To estimate the parameters, we fit the reconstruction
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of AMP to the proposed normal and skew normal prior density
model (23). It is expected that, the prior density model, and the
learned parameters can regularize later AMP reconstructions.

Our strategy is divide-and-conquer. First of all, the recon-
struction is divided into two sets, i.e., large state set and
small state set, according to the sparsity rate3 λ = K/N .
Specifically, Let T be the set of K largest coefficients of x̂ =
[μId

x1, . . . , μ
Id
xN ]. Meanwhile, denote T c as the set containing the

remaining N − K coefficients.
For the small state, its variance can be estimated as the

unbiased sample variance, i.e.,

σ̂ 2
S = 1

N − K − 1

∑
x̂i ∈T c

x̂2
i . (41)

Given the large state set T , the parameters are estimated by
maximizing the log-likelihood of the large state set T , with
respect to ωL and αL , i.e.,

ω∗
L , α

∗
L = arg max

ωL , αL∈R
�(T ;ωL , αL), (42)

where

� = K log
2

ωL
− 1

2

∑
x̂i ∈T

(
x̂i

ωL

)2

+
∑
x̂i ∈T

log

(



(
αL

x̂i

ωL

))
.

(43)

Besides, the gradients of ωL and αL with respect to (47) are
found to be,

d�

dωL
= − K

ωL
+
∑
x̂i ∈T

x̂2
i

ω3
L

− αL

ω2
L

∑
x̂i ∈T

φ
(
αL

x̂i
ωL

)



(
αL

x̂i

ωL

) x̂i , (44)

d�

dαL
= 1

ωL

∑
x̂i ∈T

φ

(
αL

x̂i

ωL

)




(
αL

x̂i

ωL

) x̂i . (45)

With (43) and gradients (44) (45), one can choose from a
variety of solvers, including trust-region-reflective [31], [32],
interior-point [33] algorithms to find the optimum ω∗

L and α∗
L ,

after which �̂ = [σ̂ 2
S , ω

∗
L , α

∗
L ] is fed back to the approximate

message passing (24).
It should be noted that (43) is not convex in general. As a

result, the proposed gradient estimator can only find local solu-
tions, and a good initialization strategy becomes consequential
for our task.

In this work, we find that initializing ωL and αL such that the
expected mean and variance of the skew normal density match
the sample mean and variance of the large state coefficients of
x̂ works satisfactorily. Therefore, ωL is initialized at,

ω0 =
√
μ2

T + σ 2
T , (46)

3As [18], the sparsity rate, λ = K/N , is assumed to be known at the
reconstruction stage.

TABLE III
AVERAGE RUNNING TIME (IN NANOSECONDS, 10−9 SECONDS) OF

FREQUENTLY EVALUATED FUNCTIONS

and the initial value of αL can be found by solving the
following,

α2
0

1 + α2
0

= π

2

μ2
T

μ2
T + σ 2

T

, (47)

where μT and σ 2
T are the sample mean and variance of large

state set T .
Give the reconstruction, the noise variance can be estimated

based on the residual, i.e.,

σ̂ 2
e = 1

M

M∑
m=1

(ym − Am· x̂)2. (48)

V. COMPLEXITY ANALYSIS

Thanks to the efficient AMP framework, and together with
the fast gradient-based parameter estimation, our proposed
technique is highly computationally effective.

Similar to [15], [16], [27], the complexity of each message
passing iteration in our AMP module is dominated by mul-
tiplying sampling matrix A ∈ R

M×N with vector x̂ ∈ R
N×1.

Besides, as can be seen in (44) and (45), the parameter esti-
mation module involves only vector operations. This makes the
complexity of our proposed technique dominated by the AMP
module.

It is worth pointing out that in our derivation, evaluat-
ing functions including φ(·), 
(·), as well as their division
φ(·)/
(·), will incur sizable computation overhead. Table III
summarizes the running time of several frequently evaluated
functions in our scheme.

The test is implemented in Matlab [34] and is performed
on a computer with dual core 2.67 GHz CPUs, and 8 GB of
1333 MHz RAM, where the input argument of each function
is a scaler, and the results are the average of 108 random and
independent trials.

It can be seen in Table III, compared to scaler addition, eval-
uating φ(·) and 
(·) are generally 5 to 6 times slower, while
the division φ(·)/
(·) is about 14 times slower.

Therefore, as a rule of thumb, a Floating Point Operations
(FLOP) proportional to 10M × (2N − 1) ≈ 20M N is expected
at each iteration. As will be seen in the test, the runtime of our
proposed method scales decently as the signal dimensionality
N increases, making it one of most efficient techniques in the
community.

VI. SIMULATIONS

In this section, the performance of our proposed method
is evaluated under phase transition, noisy reconstruction, sup-
port set recovery, and runtime tests. Besides, our technique
is examined under two real world applications, i.e., MIMO
communication and weather sensor network.
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The sampling matrix A is generated from standard Gaussian
ensemble, with each column being normalized to unit norm,
i.e., ‖A·n‖2 = 1, for n = 1, . . . , N .

In reconstruction, our method alternates between approxi-
mate message passing and parameter estimation. Unless oth-
erwise specified, these two modules execute up to 8 times,
or stopped when consecutive normalized reconstruction differ-
ence ‖x̂new − x̂old‖2

2/‖x̂new‖2
2 ≤ 10−6. In approximate mes-

sage passing, μ1
xn

is initialized at 0 for n = 1, . . . , N , μ1
ym

is set

to ym for m = 1, . . . ,M . Besides, ς1 (20) is set to 104 to make
the inference robust. The message passing is executed up to
50 iterations, or until the convergence, which is claimed when
‖μ̂i+1 − μ̂

i‖2 is less than 10−7, where μ̂i = [μi
x1
, . . . , μi

xN
].

In estimating the parameters, we employ the classic trust-
region-reflective [31], [32] as the optimizer, where ωL is
bounded by [0,∞]. Additionally, αL is bounded by [−15, 15]
for numerical stability. The optimization is terminated after 500
iterations, or when the consecutive log-likelihood difference
≤ 10−6, whichever comes earlier.

A. Phase Transition

In the first test, the proposed method is examined under the
empirical phase transition test [28]. The support set of the signal
is generated uniformly at random, namely, index n = 1, . . . , N
is sampled with a uniform probability λ = K/N . In generat-
ing the magnitude of the significant coefficients, two cases are
considered.

In the first case, the significant coefficients are gener-
ated identically and independently from normal distribution
N(0, σ 2), where the standard deviation σ follows a prior uni-
form distribution U[5, 25]. Besides, the significant coefficients
are made strictly non-negative by taking the absolute values.

In the second case, the significant coefficients are gener-
ated identically and independently from uniform distribution
U[bl , bu], where the lower bound follows a prior uniform dis-
tribution bl ∼ U[−20, 0], and the upper bound follows a prior
uniform distribution bu ∼ U[0, 200].

The insignificant coefficients are generated from normal dis-
tribution with mean 0 and variance 10−4. In the first execution
of approximate message passing module, � = [σ 2

S , ωL , αL ] is
set to [10−5, 50, 0], which in later executions, will be updated
at the solution found by the gradient based parameter estima-
tor �̂ = [σ̂ 2

S , ω
∗
L , α

∗
L ]. The signal length is set to N = 1000.

Meanwhile, M/N is set from 0.05 to 0.5 at steps of 0.025.
For each value of M/N , K/M is varied from 0 to 1 at
steps of 0.025. 500 independent trials are executed for each
combination of M/N and K/M , and the Normalized Square
Error (NSE), evaluating as NSE � ‖x̂ − xtrue‖2

2/‖xtrue‖2
2

with xtrue denoting the ground truth, is recorded for each
trial.

As in [28], the maximum value of K/M , up to which the
corresponding success rate is ≥ 50% is registered. Besides, a
success trial is defined as the one with NSE ≤ 10−4.

The performance is compared with two AMP based tech-
niques, namely EMGMAMPMOS [20], and EMNNAMP [21].
Besides, SPGL1 [35], and CVX [36] are included in the

Fig. 3. Phase transition test. (a) Significant coefficients are strictly non-
negative. (b) Significant coefficients are a mix of positive and negative
elements. The signal length is set to N = 1000.

comparison to solve LASSO [14]. It should be noted, CVX
[36] is aided with side information, where the optimization is
constrained with upper bound being the maximum of xtrue,
and lower bound being the minimum of xtrue. Additionally,
several powerful Bayesian and greedy algorithms, including
Sparse Bayesian Learning (SBL) [37], Bayesian Compressive
Sensing (BCS) [38], and Orthogonal Matching Pursuit (OMP)
[39] are also included in the tests. Furthermore, since the spar-
sity rate λ is assumed to be known in our scheme, for fairness,
the sparsity ratio in EMGMAMPMOS [20], EMNNAMP [21],
and OMP [39] are fixed to λ = K/N . The simulation results
are plotted in Figures 3a and 3b.

As can be seen in Fig. 3a where all significant coefficients
are strictly non-negative, EMNNAMP [21] gives the bench-
mark phase transition curve by taking advantage of the non-
negative normal density mixture. It is also noted that in Fig. 3a,
although without any prior of the non-negativity, our pro-
posed scheme is capable of exploiting the asymmetric feature
of the significant coefficients, and provides very competitive
performance.

Since EMNNAMP [21] is designed exclusively for non-
negative signals, its plot is omitted in Fig. 3b, where the
significant coefficients consist of both positive and negative
components. As can be seen in Fig. 3b, comparing to many
sophisticated techniques, our method provides the most com-
petitive performance. This shows our technique can effectively
exploit the underlining skewness of the signal, while being suf-
ficiently flexible to accommodate both positive and negative
elements.
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B. Noisy Reconstruction

In the second test, the performance of our technique is exam-
ined under noisy environments. The significant coefficients are
generated in ways similar to previous phase transition test. To
make the reconstruction more challenging, unlike the phase
transition test where the magnitudes of insignificant coefficients
are negligible, in this test, the insignificant coefficients are gen-
erated from normal distribution with mean 0 and variance 0.5. It
should be noted that similar setups, referred to as heavy-tailed
tests 4, can be found in [20] where Student’s-t and log-normal
prior densities are utilized to generate the signals.

The length of the signal is set to N = 500. The number
of significant coefficients K is set to 50, and the number of
samples M is set to 125. The noise vector e is sampled from
Gaussian density, i.e., e ∼ N(0, σ 2

e IM×M ), and is added to the
measurement. The variance of the noise, σ 2

e , is adjusted such
that SNR = 10 log10(‖Axtrue‖2

2/‖e‖2
2) is varied from 10 dB to

30 dB at 2 dB increments. Meanwhile, � = [σ 2
S , ωL , αL ] are

set to [1, 50, 0] at the first execution of approximate message
passing module. The noise variance is initialized at 1, and is
estimated as (48) in later reconstruction iterations.

The performance of our proposed technique,
EMGMAMPMOS [20], EMNNAMP [21], SPGL1 [35],
and CVX (bounded) [36], SBL [37], BCS [38], and OMP [39]
are compared and the results are summarized in Fig. 4, where
each data point is the average of 500 independent trials. As can
be seen, our technique yields superior results in both Fig. 4a
and 4b.

C. Support Set Recovery

In this test, the capability of support set recovery is exam-
ined. As previous tests, two types of signals are generated, i.e.,
strictly non-negative, and mix of positive and negative, where
for each type of signals, the parameters characterizing both
significant state and insignificant state, as well as the initial-
ization of � = [σ 2

S , ωL , αL ], are set identical to those of phase
transition test. The measurement is noiseless.

The length of signal is set to N = 500, and the number of
random samples is fixed at M = 125. We gradually vary the
number of significant coefficients K by adjusting K/M from
0.025 to 1, at steps of 0.025, where for each value of K , 500
independent random trials are performed. Besides, the support
set recovery rate is calculated by counting the trail with correct
recovery of support set, i.e., the trial whose estimated support
set matches exactly with the ground truth. Since not all tech-
niques are able to yield strictly sparse solutions, a threshold
of 0.1 is applied to get the estimated support from the raw
reconstruction.

We compare our proposed technique with EMGMAMPMOS
[20], EMNNAMP [21], SPGL1 [35], and CVX (bounded) [36],
SBL [37], BCS [38], and OMP [39], and the results are plot-
ted in Figures 5a and 5b. As can be seen, for each method, the
support set recovery rate decays with increasing K . Yet, thanks
to ability of exploiting the asymmetrical feature of the signal,

4By default, the heavy-tailed tests in EMGMAMPMOS [20] assumes a sym-
metrical signal, and the means of the density components are fixed to 0. For
fairness, we turn on the update of means for EMGMAMPMOS.

Fig. 4. NSE vs. SNR. (a) Significant coefficients are strictly non-negative.
(b) Significant coefficients are a mix of positive and negative elements.

our proposed technique is capable of providing reliable support
recovery over a decently large region of K in both Figures 5a
and 5b.

D. Runtime

We are now testing the Runtime of our proposed technique.
In this test, the length of signal, N , is varied from 500 to 5000,
at steps of 500. Meanwhile, without lose of generality, we fix
M/N = 0.5, and K/M = 0.4, for all values of N . Signals are
generated such that all significant coefficients are strictly pos-
itive, where the characterizing parameters of the densities, as
well as the initialization of� = [σ 2

S , ωL , αL ], are set similar as
phase transition test. The test is performed on a computer with
hex core 2.0 GHz CPUs, and 32 GB of 1333 MHz RAM.

We compare the runtime of our technique with
EMGMAMPMOS [20], EMNNAMP [21], SPGL1 [35],
and CVX (bounded) [36], SBL [37], BCS [38], and OMP [39],
where all methods are implemented with Matlab [34].

The mean runtime are plotted in Fig. 6, where each data
point is the average of 50 independent trials. Clearly, similar
to the two AMP relatives, namely EMGMAMPMOS [20] and
EMNNAMP [21], our proposed technique is computationally
effective. This advantage is most remarkable under relatively
large signal dimensionality. For example, when N = 5000, our
technique yields an average runtime of 6.204 Seconds (sec),
which is more than 650 times faster than CVX, and 6.27 times
faster than SPGL1. Besides, comparing to OMP, our technique
runs 26 times faster. Moreover, our technique has advantage
over Bayesian algorithms, with BCS and SBL being 3.73 and
299 times slower.
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Fig. 5. Support Recovery Rate vs. K/M (a) Significant coefficients are strictly
non-negative. (b) Significant coefficients are a mix of positive and negative
elements.

Fig. 6. Signal Length N vs. Average Runtime (in seconds).

E. Communication Throughput Test

In this test, the performance of our technique is evaluated
under real world communication application, i.e., multibeam
opportunistic random-beamforming network [3], [40]. In [40],
a communication scheme is proposed to study the multiuser
capacity in MIMO broadcast channels. By broadcasting random
beams to all users and requesting their SINRs, Base Station
is able to dedicate its antennas to users with stronger SINR.
Therefore, compared to randomly allocating antennas, higher
sum-rate capacity can be achieved, at the cost of the associated
feedback overhead [40]. It is further shown that in [3], simi-
lar sum-rate capacity can be realized with substantially reduced
feedback overhead, by requesting those SINRs above certain
threshold from the corresponding users.

The uplink feedback of SINRs is then modelled by compres-
sive sensing. Specifically, as (10) of [3], the reception at Base
station can be represented as y = Bx + e , where x ∈ R

N×1 is

the SINRs of all users [3], [40], and e ∈ R
M×1 is the white

Gaussian noise vector, with independent and identically dis-
tributed (i.i.d.) Gaussian element em ∼ N(0, σ 2

e ). Besides, the
matrix B = [b·1, . . . , b·N ] ∈ R

M×N is formed by concatenat-
ing signature sequence vectors [3], i.e., b·n ∈ R

M×1, with its
entry following Gaussian distribution N(0, 1/M). Additionally,
in this context, N is denoting the number of single-antenna
mobile users, M is denoting the number of time slots designated
at the uplink feedback channel.

With the reception of under-sampled SINRs, LASSO is then
applied at Base Station to get an estimate of SINRs [3], after
which, the Base Station antenna can be allocated to user with
the strongest SINR. This process is repeated Q times, such that
all Q antennas at BS are allocated5.

In this test, SINRs are generated as (2). Specifically, similar
to [3], in the downlink, the q-th Base Station antenna broadcasts
random beams ψ

q
∈ R

Q×1 to all users, with [ψ
1
, . . . , ψ

Q
] ∈

R
Q×Q being orthonormal and q = 1, . . . , Q. Meanwhile, ele-

ments of channel vector g
n

∈ C
Q×1 are i.i.d. following com-

plex Gaussian distribution, with zero mean and unit variance.
Additionally, a homogeneous communication environment is
considered [3], where the SNR is set to ρn = 10 in (2) for
n = 1, . . . , N .

x ∈ R
N×1 is generated by keeping the largest S elements out

of the N SINRs, and making the remaining N − K elements
to 0. Besides, the available time slots in the uplink channel is
set to M = 10 × S, where S = 10. Additionally, the number of
antennas at Base Station is set to Q = 4. The uplink channel is
noisy, with σe = 0.5.

At the Base Station, we apply our proposed method to recon-
struct the SINRs. The achievable sum rate is calculated similar
to (29) of [3], which is proportional to the support set recovery
rate. It should be noted in [3], exact model recovery rate [41] of
LASSO [14] is employed as the support set recovery rate. In our
test, the support set recovery rate is empirical, where a thresh-
old of 0.2 × ρn is applied to get the estimated support from the
raw reconstruction.

Similar to previous tests, we compare our technique with
EMGMAMPMOS [20], EMNNAMP [21], SPGL1 [35], and
CVX (bounded) [36], SBL [37], BCS [38], and OMP [39].
Besides, � = [σ 2

S , ωL , αL ] is initialized similar to phase tran-
sition test, and the noise variance is estimated as (48).

Fig. 7 shows the achievable sum rate obtained from the
variant methods, where each data point is averaged on 500 inde-
pendent trials, and the number of users N is varied from 100 to
1000, at steps of 100. It can be seen in Fig. 7, the achievable sum
rate increases when more users are involved. Meanwhile, given
the same feedback overhead, i.e., S = 10 and M = 10 × S,
our proposed technique yields competitive achievable sum rate
by taking advantage of the asymmetrical property of SINRs.
Moreover, comparing to [3] where LASSO (SPGL1 [35]) is
used to reconstruct SINRs, our proposed technique provides

5For ease of notation, we omit the superscripts denoting the BS antennas of
B, x , y, and x̂ .
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Fig. 7. Achievable Sum-Rate (bps/Hz) vs. Number of Mobile Users N .

constantly higher achievable sum-rate. It is also noticed that in
Fig. 7, although has being developed for decades, OMP gives
very competitive results in this test.

F. Weather Data Test

In the last test, we are interested in evaluating our proposed
technique with a dataset collected from a real weather sensor
network. The data is referred to as cooling degree day departure
from normal [42]. Cooling degree day is derived from outside
air temperature, and is widely used in estimating the energy
needed to cool a structure [42]. The phrase departure from
normal suggests that a 30-year historical average is subtracted
from the data. Our data is obtained from Automated Surface
Observing System (ASOS) [43], and is accessible at National
Climate Data Center [42].

The data is of length N = 395, and has K = 143 nonzero
coefficients. As can be seen in the histogram plotted in
Fig. 8a, the nonzero coefficients are asymmetrically positive.
As previous tests, the data is down-sampled by projection with
a Gaussian random sampling matrix A. The measurement is
noisy, and the noise variance σ 2

e is adjusted such that the SNR is
varied from 10 dB to 30 dB at 2 dB increments. For each value
of SNR, 100 realizations of random sampling matrix A are
generated, and M = 2K . For each trial, our method performs
approximate message passing decoding and parameter esti-

mation up to 8 times, or stopped ‖x̂new − x̂old‖2
2/‖x̂new‖2

2 ≤
10−2. Additionally, � = [σ 2

S , ωL , αL ] is initialized similar to
phase transition test, and the noise variance is estimated as (52).

We compare our technique with EMGMAMPMOS [20],
SPGL1 [35], and CVX (bounded) [36], SBL [37], BCS [38],
and OMP [39]. Since the significant coefficients contain neg-
ative elements, EMNNAMP [21] is excluded from the test.
Fig. 8b summarizes the reconstruction NSE as SNR varies.
Overall, our scheme provides satisfactory results in most of the
range. It is noteworthy that, although not being designed for
asymmetrical signals, BCS [38] gives very competitive results
by exploiting the sparsity of the signal in this test.

VII. CONCLUSION

In this work, the compressive sensing of the sparse sig-
nals whose significant coefficients are distributed asymmetri-
cally with respect to zero is analyzed. To properly capture

Fig. 8. Temperature Data Test (a) Histogram of the temperature data.
(b) NMSE vs. SNR.

the asymmetry, a two-state normal and skew normal mixture
density is proposed to model the density of the signal. The sig-
nificant and insignificant coefficients of such signals are repre-
sented by a skew normal distribution and a normal distribution,
respectively. An approximate message passing algorithm is then
designed to take inference of the signal from the compressive
sensing measurement while providing fitting to the model. A
gradient-based parameter estimator is put forward to infer the
underlining density of each component. Experiment results on
simulated data and two real-world data, i.e., MIMO communi-
cation system and weather sensor network, show our proposed
technique can effectively exploit the asymmetrical feature, and
provides competitive results compared to the state-of-the-art
techniques.

However, it should be noted that, our proposed technique is
most effective with signals which can be well represented by the
two state normal and skew normal density mixture model. As
an interesting extension of this work, an AMP based algorithm
with multi-state skew normal density mixture can be developed.
Additionally, aside from the numerical study, rigorous theoret-
ical analysis of our technique is an important topic for future
research.
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