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Abstract—Several studies on fountain codes have proposed
degree distribution optimization schemes to maximize symbol re-
covery rate. However, if the number of transmitted coded symbols
is limited or the channel erasure probability is high, it may be
impossible that a user recovers all of the data symbols regardless
of degree distribution employed by the source. In this study, we
focus on a new system model where one source transmits fountain-
coded symbols to multiple users who already possess some data
symbols and coded symbols. Assuming that each user can transmit
a feedback packet containing its own state information before the
source transmits coded symbols, we propose two types of degree
distribution design schemes that are suitable for the system model.
Simulation results demonstrate the efficiency of our proposed
schemes by comparing with conventional methods in terms of
symbol recovery rate and full recovery rate.

Index Terms—Degree distribution design, erasure codes,
fountain codes, rateless codes.

I. INTRODUCTION

FOUNTAIN codes [1]–[4] are representative forward error-
correcting codes for the erasure channel [9]. A well-

designed degree distribution enables the decoder to recover all
k data symbols with nR = (1 + �)k received coded symbols,
where � is a small positive number. Various studies [4]–[8]
on design of degree distribution have introduced optimization
schemes that maximize symbol recovery rate (SRR). Sanghavi
[5] introduced a degree distribution optimization scheme that
maximizes the asymptotic SRR when a fixed coding overhead
r := nR/k is given. Talari and Rahnavard [7] studied a degree
distribution optimization with multiple objectives when multi-
ple r’s are given. Zeng et al. [6] regarded the overhead r of the
received symbols as a random variable and proposed a best-
effort optimization scheme that maximizes the average SRR.

In general, the previous studies assumed that users do not
possess any data symbols and coded symbols before transmis-
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sions. In this work, we refer to such users as empty-state users
(ESU). On the other hand, we consider the case where some
users have received insufficient coded symbols at the previous
transmission. Then they have already recovered several data
symbols and possess some unreleased1 coded symbols. We
refer to such users as intermediate-state users (ISUs). In this
paper, we describe how to design an efficient degree distribution
for broadcasting systems with multiple ISUs in terms of SRR.

ISUs appear in several scenarios. For example, we can con-
sider a case where a source transmits a finite number nT of
coded symbols to multiple ESUs. If nT is large enough, most
of the users can recover all of the data symbols. However, if
some users are in a shadow area, they received many erased
symbols and may fail to recover some data symbols. At this
time, if additional resources are available for transmitting coded
symbols, the users received the coded symbols as ISUs. In
this case, a performance improvement can be achieved if the
degree distribution employed by the source is designed by
considering the states of the ISUs. In addition, we can consider
a wireless sensor network as an example. In wireless sensor
networks, some global and important information is broadcast
to distributed sensor nodes by a control unit such as a satellite.
Moreover, the circumstances are considered to be hostile in
general. Due to the fragile channel conditions, the transmission
can be terminated before the sensor nodes recover all of the data
symbols.

In this paper, we assume the availability of feedback to
inform the source of each user’s state. There are some previous
studies [11]–[15] on fountain coding schemes using feedback.
The previous works mainly dealt with one-to-one transmission
scenario. Hagedorn et al. [11] proposed a shifted LT (SLT)
coding scheme that employs multiple degree distributions mod-
ified from the RSD. Kim and Lee [12] proposed a similar
manner with growth codes [18] using multiple feedback packets
to improve intermediate performance. Talari and Rahnavard in
[15] proposed LT coding scheme using two types of feedback
and enhance the decoding performance for small k.

The authors in [13] proposed LT feedback codes and Raptor
feedback codes, which showed significant improvements in
terms of coding overhead and encoding/decoding complexity
by employing a few feedback packets. In [13], the feedback was
used to exclude the recovered data symbols from the encoding
process. However, the method is not scalable for multi-user

1Unreleased indicates the state where an coded symbol’s degree is greater
than or equal to two after removing the edges that correspond to recovered data
symbols on the bipartite graph.
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systems because the sets of the recovered symbols for each user
are different in general due to random erasures. To make our
scheme scalable for a multi-user system, in this paper no data
symbol is excluded. In addition, each user transmits a feedback
packet only once before the transmission of coded symbols,
while in [13] the user transmits a few feedback packets during
the transmission.

Sejdinović et al. [16] studied a fountain code design for a
data multicast system when the users have some data symbols.
In [16], no data symbol is excluded during encoding process
because the authors assumed a multi-user system. Similarly,
we also assume a multi-user system, so no data symbol is
excluded as well in this paper. Moreover, Our proposed scheme
is efficiently applicable for the case where the users have not
only some data symbols but also some coded symbols and the
erasure rates of the users may be different.

In our work, we propose two types of degree distribution
design schemes for the system model. These two schemes
are based on the results of [6]; they are a fairly generalized
optimization scheme and a suboptimal code generating scheme.

The remainder of this paper is organized as follows. In
Section II we review some previous works and in Section III our
system model is specified. In Section IV, we describe our pro-
posed optimization scheme for the system model, and an alter-
native design scheme is explained in Section V. In Section VI,
we evaluate the performance of the degree distributions de-
signed by the proposed optimization schemes and we provide
our conclusions in Section VII.

II. CONVENTIONAL OPTIMIZATION PROBLEM

In this paper, we establish an optimization problem by mod-
ifying the optimization scheme proposed in [6]. Zeng et al. [6]
regarded the coding overhead r as a random variable and the
optimization scheme was provided to maximize the average
SRR over r given the probability distribution h(r), which is
referred to as overhead distribution. Note that it is commonly
assumed that the source is informed of h(r) in our work and [6].
The objective function defined in [6] is

∫∞
0 h(r)y(r,�(·))dr,

where y(r,�(·)) is the asymptotic SRR obtained by AND-OR

tree analysis [17] and can be represented by

y (r,�(·)) = inf
{
t ∈ [0, 1) : r�′(t) + ln(1 − t) < 0

}
. (1)

Using Riemann sum, the objective can be rewritten as

max
�(·)

NR∑
i=1

p[i]y (r̂i,�(·)) , (2)

where p[i] is a discretized overhead distribution of h(r), r̂i is an
arbitrary value in i-th subinterval and NR denotes the number of
subintervals. The discretized overhead distribution is given by

p[i] = (ri − ri−1)h(r̂i)/
∑NR

i=1(ri − ri−1)h(r̂i). In this paper, we
use both of h(r) and p[i] for the sake of convenience.

Zeng et al. [6] also proposed a heuristic approach which
does not require solving any optimization problem. The degree
distribution �+(x) obtained by the approach was referred to as

TABLE I
IMPORTANT ACRONYMS

linearly mixed degree distribution and it can be obtained by

�+(x) = x Pr[0 < r ≤ ln 2]
+ x2 Pr[ln 2 < r ≤ 1] + �R(x) Pr[r > 1], (3)

where �R(x) denotes an RSD with suitable parameters (c, δ).
In Section V of this paper, we propose a generalized version of
this scheme.

III. SYSTEM MODEL

Note that Table I shows important acronyms used in this
paper. We first specify the flow of our proposed coding scheme
as follows.

After the end of the previous transmission, some users fail to
decode some input symbols due to the lack of received symbols.
The users are regarded as ISUs in the current transmission. The
recovered input symbols and the unrecovered input symbols are
referred to as previously recovered input (PRI) symbols and
previously unrecovered input (PUI) symbols, respectively. In
addition, the unreleased output symbols, which can contribute
to decoding later, are referred to as remaining output (RO)
symbols.

In this work, we focus on the current transmission, which can
be divided into the following phases. (A) The source collects
each ISU’s state information via a feedback packet. (B) The
source designs an efficient degree distribution from one of our
proposed schemes, which are described in Sections IV and V.
(C) The source generates output symbols and broadcasts them
continuously.

Let B = {b1, b2, · · · , bk} be a set (a sequence) of input
symbols of the same length (bits), nT be the number of output
symbols transmitted at a source and nR be the number of
output symbols received by a user. In addition, we assume that
bi �= bj for i �= j such that |B| = k without loss of generality,
where |B| denotes the cardinality of a set B.

Consider a case where a single ISU U1 exists, and let B1(⊂
B) denote the set of PUI symbols of U1. The user U1 has already
recovered the input symbols in B \ B1 so the user regards the
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Fig. 1. (a) Small M and small |Bm|, (b) Small M and large |Bm|, (c) Large M
and small |Bm|. The union

⋃M
m=1 Bm approaches to B as M and |Bm| increase.

elements only in B1 as the input symbols that need to be
recovered. In this case, if we assume that the source is informed
of the elements of B1 by a k-bit feedback, then we can consider
two options for encoding of the input symbols in B1. The first
option is to encode only the input symbols in B1 and the second
option is to encode all of the input symbols in B regardless
of B1. J. H. Sørensen et al. [14] showed that the first option
weakens the code performance when the source employs an
RSD. The authors also showed that the first option with a few
adjustments of degree distribution provides a small gain.

However, the first option is not appropriate for multi-user
systems because in most cases the sets of PUI symbols for
the users are different. Consider a broadcasting system with
multiple users U1, · · · , UM and let the corresponding set of PUI
symbols of the users be denoted by B1, · · · ,BM , respectively.
Every Bm is a subset of B and its elements are selected ran-
domly, because the input symbols are recovered in an arbitrary
order due to the nature of fountain codes. Fig. 1 shows graphi-
cally that

⋃M
m=1 Bm → B as M and |Bm| increase. This means

that none of the input symbols in B should be excluded when
M and Bm’s are sufficiently large.

Our system model is specified as shown in Fig. 2, which
comprises a single source S, and M multiple users U1, · · · , UM .
In Fig. 2, the state of each user can be represented by three
parameters that are defined as follows.

Definition 1: The state of a user Um is represented by
(zm, vm, �m(·)), which is referred to as user state information
(USI). The three factors are defined as

zm
�= |Bm|

k
,

vm
�= No. of RO symbols for Um

k
,

�m(x)
�=
∑
d≥2

�m,[d]xd, (4)

where the coefficients of �m(x) are defined as

�m,[d]
�= No. of degree-d RO symbols for Um

No. of RO symbols for Um
. (5)

In (5), the degree means the number of neighbors in Bm.
In Definition 1, zm and vm are the ratios of the amounts of

PUI symbols and RO symbols to k, respectively. The degree
distribution �m(x) is the statistical degree distribution of the
RO symbols for Um. As mentioned previously, the RO symbols
are unreleased output symbols so their degrees are greater than
or equal to two, i.e., �m,[1] = 0 for m = 1, · · · , M.

Fig. 2. Fountain-coded symbol broadcasting system with M ISUs. Each user
Um has zmk PUI symbols and vmk RO symbols with a degree distribution
�m(x). The number of output symbols received by Um from S depends on the
overhead distribution hm(r).

Now we consider the size of a feedback packet. By trans-
mitting a feedback packet, each user informs S of its own
USI, which is composed of two decimals, zm and vm, and
a degree distribution �m(x). The USI can be represented as
integer values; as shown in Definition 1,zmk is a non-negative
integer and vmk�m(x) is a polynomial with non-negative in-
teger coefficients. The integer zmk is always less than k, so

log2 k� bits are required for a feedback of zmk. Similarly, an
arbitrary number vmk�m,[d] is always less than maxd vmk�m,[d],
so 
log2(maxd vmk�m,[d])� bits are required to represent a coef-
ficient of �m(x). Note that the coefficient of x of �m(x) is always
zero. Then all of the coefficients of x2, · · · , xDm of �m(x) can
be represented by (Dm − 1) · 
log2(maxd vmk�m,[d])�, where
Dm is a sufficiently large integer to represent �m(x) with high
enough accuracy. In practical cases, the coefficients of xd for
small d’s are much greater than those for high d’s, which can
be represented with smaller bits. Thus we expect that the size
of a feedback packet can be reduced significantly by adopting a
more efficient method but in this paper we do not consider other
methods to reduce the amount of feedback.

IV. SCHEME-1: OPTIMAL DEGREE DISTRIBUTION

BASED ON AND-OR TREE ANALYSIS

AND-OR tree analysis allows us to estimate the asymptotic
SRR, which is considered to be an upper bound of the SRR of
the finite-length fountain codes. In general, the SRR predicted
by AND-OR tree analysis (asymptotic performance) is almost
the same as that of the finite-length fountain codes if the
codes are sparse enough. Otherwise, code performance do not
matches the asymptotic performance.

In this section, we describe our first degree distribution
design scheme, which we refer to as SCHEME-1. SCHEME-1
is divided into two steps. First, we explain how to design an
asymptotically optimal degree distribution using the AND-OR
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tree analysis. When the obtained distribution is employed
for finite-length fountain codes, its SRR performance may
be significantly different from the asymptotic performance.
Thus, we employ an optimization scheme with finite-length
analysis, which is a revised version of AND-OR tree analy-
sis. By using the finite-length analysis, we can reduce the
difference between the code performance and the asymptotic
performance.

A. Optimization With Asymptotic Analysis

In this paper, our goal is to maximize the expected sum
of the number of additionally recovered input symbols out of
PUI symbols. Let Cm(r,�(·)) denote the set of the additionally
recovered input symbols in the current transmission. Note that
Cm(r,�(·)) ∈ Bm and Cm(r,�(·)) depends on r and �(·) which
denotes the degree distribution employed by S at the current
transmission. Then our objective function can be represented as
Er[∑M

m=1 |Cm(r,�(·))|].
Now, we define three quantities to clarify the objective

function.
Definition 2: Given r and �(·), the local conditional symbol

recovery rate (LCSRR), denoted by ym(r,�(·)), is defined as

ym (r,�(·)) �= |Cm (r,�(·))|
|Bm| , (6)

which represents the ratio of the additionally recovered input
symbols relative to the PUI symbols for Um with rk received
output symbols.

Definition 3: Given �(·) and pm[i], the local average symbol
recovery rate (LASRR), denoted by ym(�(·)), is defined as

ym (�(·)) �= Er [|Cm (r,�(·))|]
|Bm| =

∑NR
m

i=1

∣∣Cm
(
r̂i,�(·))∣∣ pm[i]
|Bm| ,

(7)

where NR
m denotes the number of subintervals of hm(r) for

the Riemann sum. LASRR ym(�(·)) is the expected value of
LCSRR for Um.

Definition 4: Given �(·) and pm[i] for m = 1, · · · , M, the
global average symbol recovery rate (GASRR), denoted by
yg(�(·)), is defined as

yg (�(·)) �=
Er

[∑M
m=1 |Cm (r,�(·))|

]
∑M

m=1 |Bm| . (8)

The GASRR is defined as the ratio of the sum of the number
of the additionally recovered input symbols relative to the
sum of the number of PUI symbols for all users. The numerator
of (8) is the objective mentioned above. The denominator is
independent of �(·) so it can be regarded as a constant. Thus
the objective function is equivalent to yg(�(·)).

The objective function yg(�(·)) can be expressed as follows:

yg (�(·)) =
Er

[∑M
m=1

|Cm(r,�(·))|
k

]
∑M

m=1
|Bm|

k

(9)

=
Er

[∑M
m=1

|Bm|
k

|Cm(r,�(·))|
|Bm|

]
∑M

m=1 zm

=
∑M

m=1

{
zmEr

[ |Cm(r,�(·))|
|Bm|

]}
∑M

m=1 zm

=ρ

M∑
m=1

zmym (�(·)) (10)

where ρ=(
∑M

m=1 zm)
−1

. From (6) and (7), we can rewrite
(10) as

yg (�(·)) = ρ

M∑
m=1

NR
m∑

i=1

zmpm[i]ym
(
r̂i,�(·)) . (11)

Now we employ AND-OR tree analysis to obtain the asymp-
totic LCSRR ym(r,�(·)). The conventional AND-OR tree anal-
ysis (1) needs to be modified to reflect new parameters of USI.

First, we investigate the reduced degree distribution for Um,
which we can observe in the bipartite graph after removing the
edges connected to B \ Bm. The following lemma shows the
relationship between the degree distribution employed by S and
the reduced degree distribution for Um.

Lemma 1: Let the degree distribution employed by S and
the reduced degree distribution for Um be denoted by �(x) and
�m(x), respectively. Then �m(x) can be represented as

�m(x) ≈ �(1 − zm + zmx). (12)

Proof of this lemma was briefly described in [16] as well, and
here we provide the proof in detail in Appendix A.

In the proposed system model, each user Um has two types
of the output symbols. The first is the additionally received
output symbols from S with an reduced degree distribution
of �(1 − zm + zmx). The second is the RO symbols with a
statistical degree distribution of �m(x). If Um has rk additionally
received output symbols, Um has (r + vm)k output symbols
including the RO symbols. Hence the degree distribution �m(x)
of all of the output symbols can be represented by the weighted
summation of �(1 − zm + zmx) and �m(x) as follows:

�m(x) = r�(1 − zm + zmx) + vm�m(x)

r + vm
. (13)

Note that the input node degree distribution of PUI symbols
is preserved although the edges connected to PRI symbols
are removed. Then we can apply the conventional AND-OR

tree analysis (1), to obtain the asymptotic LCSRR ym(r,�(·)).
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From (13) and (1), we have the asymptotic LCSRR

ym (r,�(·)) = inf

{
t ∈ [0, 1) :
(r + vm)

zm

∂

∂ t
�m(t) + ln(1 − t) < 0

}
. (14)

where (r + vm)/zm is the relative overhead for Um, which
denotes the ratio of the number (rk + vmk) of the given output
symbols relative to zmk PUI symbols. Now we can obtain the
asymptotic LASRR ym(r,�(·)) from (13) and (14). Finally, our
optimization problem is completed as (15), shown at the bottom
of the page.

B. Optimization With Finite Length Analysis

In general, the SRR measured from simulations may not
match well the asymptotic performance due to a shortage of
ripple symbols,2 which is caused by variance in the number of
ripple symbols. For example, when r = 1, the soliton distribu-

tion �(x) = ∑∞
d=2

xd

d(d−1)
[4] is asymptotically optimal for an

ESU because it generates one ripple on average at each iteration
of decoding. However, since the number of ripple symbols is
random, there might be no ripple symbols during the decoding
process in finite-length cases.

Shokrollahi [4] provided a modified version of AND-OR

tree analysis to maintain a sufficient number of the ripples,
which is called finite-length analysis. Shokrollahi regarded the
transitions in the number of the ripples as a random walk and
increased the number of the ripples by considering the standard
deviation of the random walk. The key idea of this analysis
is to make the expected number of the ripples greater than or
equal to α

√
(1 − t)k, where α is a suitable positive constant.

As a result, [4] provides an optimization problem that obtains
a degree distribution, which satisfies the following inequality
constraint;

r�′(t) + ln

(
1 − t − α

√
1 − t

k

)
≥ 0, (17)

for t ∈ [0, 1 − δ], where δ is a suitably small positive constant.

2Ripple symbols mean output symbols of degree 1 in a bipartite graph after
removing all of the edges connected with recovered input symbols.

Applying the similar approach, we can formulate the degree
distribution optimization problem as (16), shown at the bottom
of the page, by adding a term α�{√(ηym(r,�∗

a(·)) − t)/zmk}
to (15). Here, η is a constant slightly less than one.

Note that there are three modifications in the square root
terms of (16) and (17). The followings are the rationales behind
these modifications.

• The number of the input symbols that we desire to
recover is zmk, not k.

• Note that α
√

(1 − t)/k in (16) contributes to the expected
number of ripple symbols for 0 ≤ t < 1. When r is small,
full recovery may not be possible, i.e., achievable symbol
recovery rate is less than 1. We regard ym(r,�∗

a(·))
as a target performance, which is the LCSRR of the
asymptotically optimal solution �∗

a(·). Thus (1 − t) is
replaced with (ηym(r,�∗

a(·)) − t) to maintain the number
of the ripples only in 0 ≤ t ≤ ηym(r,�∗

a(·)).
• �{·} is added to prevent the optimization problem from

generating an imaginary number.

V. SCHEME-2: LINEARLY MIXED DEGREE DISTRIBUTION

The optimization problems (15) and (16) in the previous
section require a significant amount of computations for AND-
OR tree analysis. Hence, we now propose a simple heuristic
design scheme, called SCHEME-2, which requires much fewer
computations for AND-OR tree analysis. We refer to the degree
distribution designed obtained by SCHEME-2 as the linearly
mixed degree distribution �+(·). In the following subsections
we explain the key ideas of designing the linearly mixed degree
distribution for a single-user system and then extend it to a
multi-user system.

A. Single-User Case

In this subsection, we consider a single user with USI
(z, v, �(·)) and overhead distribution h(r). First, we define
single degree distribution (SDD) as follows.

Definition 5: Let �d(x) be composed of a single degree
component as follows:

�d(x)
�= xd, for d = 1, 2, · · · . (18)

�∗
a(·) �= arg max

�(·)
ρ

M∑
m=1

Nr
m∑

i=1

zmpm[i]ym
(
r̂i,�(·))

where ym(r̂i) = inf

{
t ∈ [0, 1) : r̂i�

′(1 − zm + zmt) + vm

zm
�′

m(t) + ln(1 − t) < 0

}
(15)

�∗(·) �= arg max
�(·)

ρ

M∑
m=1

Nr
m∑

i=1

zmpm[i]ym
(
r̂i,�(x)

)

where ym(r̂i)= inf

⎧⎨
⎩t ∈ [0, 1) : r̂i�

′(1−zm+zmt)+ vm

zm
�′

m(t)+ln

⎛
⎝1−t−α�

⎧⎨
⎩
√

ηym
(
r̂i,�∗

a(·)
) − t

zmk

⎫⎬
⎭
⎞
⎠<0

⎫⎬
⎭ (16)
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The linearly mixed degree distribution proposed in [6] is a
weighted sum of the two SDD and one RSD as (3). In this
paper, we define a generalized version of linearly mixed degree
distribution as shown in the following definition.

Definition 6: A linearly mixed degree distribution �+(·)
is defined as a weighted sum of several SDDs �d(x) and a
modified RSD �MR(x), i.e.,

�+(x) =
k∑

d=1

wd�d(x) +
(

1 −
k∑

d=1

wd

)
�MR(x), (19)

where wd ≥ 0 for i = 1, · · · , k and
∑k

d=1 wd ≤ 1. We describe
�MR(x) later in this subsection.

First we describe how to set wd for d = 1, · · · , k in a similar
manner to that introduced in [6]. To set wd , we find the
interval of r where �d(·) is optimal. Thus we now describe the
necessary conditions such that �d(·) is optimal.

Lemma 2: For a SDD �d(x) = xd ,

�′
d(x) ≥ �′

i(x), for x ∈
[

d − 1

d
,

d

d + 1

]
, (20)

where i is an arbitrary positive integer and �′(x) = d
dx�(x).

The proof of this lemma can be found in Appendix B.
Corollary 1: For SDD �d(x) = xd ,

�′
d(x) ≥ �′(x), for x ∈

[
d − 1

d
,

d

d + 1

]
, (21)

where �(x) is an arbitrary degree distribution.
Proof: The proof of this corollary can be found in

Appendix C. �
Lemma 2 and Corollary 1 show that �′

d(x) is greater than or
equal to the derivative of an arbitrary degree distribution in the

interval x ∈
[

d−1
d , d

d+1

]
. Now we recall AND-OR tree analysis;

y (r,�d(·)) = inf

{
t ∈ [0, 1) : r�′

d(1 − z + zt)

+v

z
�′(t) + ln(1 − t) < 0

}
, (22)

where y(r,�d(·)) is the asymptotic SRR. If the infimum value

exists in t ∈ (
d−1

d +z−1
z ,

d
d+1 +z−1

z ], �d(·) is optimal because
�d(1 − z + zt) is greater than an arbitrary distribution �(1 −
z + zt) in the interval. Thus we can summarize necessary con-
ditions such that �d(·) is optimal as the follows;

Condition 1: The infimum value of (22) is greater than
d−1

d +z−1
z ;

r�′
d(1 − z + zt) + v

z
�′(t) + ln(1 − t) ≥ 0,

∀ t ∈
(

0,

d−1
d + z − 1

z

]
. (23)

Condition 2: The infimum value of (22) is less than or equal

to
d

d+1 +z−1
z ;

∃t ∈
(

d−1
d + z − 1

z
,

d
d+1 + z − 1

z

]
:

r�′
d(1 − z + zt) + v

z
�′(t) + ln(1 − t) < 0. (24)

By substituting t+z−1
z with t in (23) and (24), we have simpler

conditions (25) and (26), respectively:

r�′
d(t) ≥ g(t), ∀ t ∈

(
1 − z,

d − 1

d

]
, (25)

∃t ∈
(

d − 1

d
,

d

d + 1

]
: r�′

d(t) < g(t), (26)

where g(t) := − v
z �′

(
t+z−1

z

)
− ln 1−t

z . Using (25) and (26), we

can obtain the interval satisfying the necessary conditions (27)
and (28), respectively;

r ≥ max
t∈
(

1−z, d−1
d

] g(t)

�′
d(t)

. (27)

r ≤ g

(
d

d + 1

)/
�′

d

(
d

d + 1

)
. (28)

Let (rL
d , rR

d ] denote the interval satisfying (27) and (28). Then
the interval can be represented as the following recursions:

rR
0 = 0,

rL
d = min

⎛
⎝z − v, max

⎛
⎝rR

d−1, max
t∈
(

1−z, d−1
d

] g(t)

�′
d(t)

⎞
⎠
⎞
⎠ ,

rR
d = min

(
z − v, max

(
rL

d , g

(
d

d + 1

)/
�′

d

(
d

d + 1

)))
.

(29)

The first line of (29) is redundant but it is added to restrict the
following rL

d and rR
d to a non-negative number. In the second

and third lines, maximal values of rL
d and rR

d are limited to
z − v which is the asymptotic overhead required to recover zk
PUI symbols when vk RO symbols are already possessed. The
operation max(·, ·) of second and third lines in (29) is added
to establish the relation; 0 ≤ rL

1 ≤ rR
1 ≤ rL

2 ≤ · · · ≤ rL
d ≤ rR

d ≤
· · · ≤ z − v. The following definition turns out to be useful.

Definition 7: Denote D+ as the maximum value of d, where
(rL

d , rR
d ] is not a null set.

Table II shows four examples of the intervals (rL
d , rR

d ] for
d = 1, · · · , 9 and D+, which were obtained from (29). The first
example z = 1.0, v = 0 (the second column) shows (rL

d , rR
d ]

for an ESU. The results show that �1(x) and �2(x) are opti-
mal in r ∈ (0, ln 2], r ∈ (ln 2, 0.75 ln 3], respectively, which are
consistent with the results derived in [5]. In the example, no
interval exists such that �d(·) is optimal for d ≥ 3. On the other
hand, we can see that �d(x) can be optimal for d ≥ 3 in other
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TABLE II

INTERVALS
(

rL
d , rR

d

]
AND D+ FOR THE GIVEN EXAMPLES. THE SYMBOL ∅ MEANS THE NULL SET

examples. For example, in the fifth column, intervals (rL
d , rR

d ]
for 3 ≤ d ≤ 8 exist while (rL

1 , rR
1 ] and (rL

2 , rR
2 ] are null sets.

According to (29), there is a slight possibility that rL
d �= rR

d−1
although Table II shows rL

d = rR
d−1 for all of the examples.

Consider the case where rR
d−1 �= rL

d . Both �d−1(·) and �d(·)
are not optimal in the interval (rR

d−1, rL
d ]. Nevertheless, we

regard �d−1(·) as a nearly optimal solution in r ∈ (rR
d−1, rL

d ].
Similarly, we regard �D+(·) as a nearly optimal solution in
r ∈ (rR

D+, z − v] although it is not optimal in the region. Then,
we have the weights wd as follows:

wd =

⎧⎪⎪⎨
⎪⎪⎩
∫ rL

d+1

rL
d

h(r)dr, for d = 1, 2, · · · , D+ − 1,∫ z−v

rL
d

h(r)dr, for d = D+,

0, otherwise.

(30)

To complete �+(·), we need to set �MR(·). In theory, zk
output symbols at least including the RO symbols are required
to recover zk input symbols. Thus, r > z − v is the region
where full recovery is possible in theory. Thus, we employ the
shifted robust soliton distribution (SRSD) introduced in [11].
The SRSD is designed by utilizing only z of USI and it does
not requires solving an optimization problem. Nevertheless, it
obtains a significantly good performance. The SRSD can be
represented by the following definition.

Definition 8: Given z and an RSD �R(x) = ∑zk
d=1 �R,[d]xd ,

which is an appropriate distribution when the number of input
symbols is zk, the SRSD �SR(x) is defined as

�SR(x)
�=
∑
d≥1

�R,[d]x
d/z�, (31)

where 
·� rounds to the nearest integer.
Finally, the linearly mixed degree distribution is established

as follows.
Definition 9: Given an RSD �R(·), USI (z, v, �(·)) and

rL
1 , rL

2 , · · · , rL
D+ , the linearly mixed degree distribution �+(x)

is defined as

�+(x)
�=

D+−1∑
d=1

[
�d(x)

∫ rL
d+1

rL
d

h(r)dr

]

+ �D+(x)
∫ z−v

rL
D+

h(r)dr + �SR(x)
∫ ∞

z−v

h(r)dr. (32)

B. Multiple-User Case

In the previous subsection, only the single-user case was
considered. In this subsection, we explain how to design �+(·)
for a multi-user case. Let �+

m(·) denote the linearly mixed
degree distribution designed with the USI of Um. There are
many possible options to design �+(·) from �+

m(·) but we
describe only two simple ones. The first option is to set �+(·) =
�+

m̂(·), where m̂ is selected such that GASRR yg(�
+
m(·)) is max-

imized, i.e. m̂ = arg minm yg(�
+
m(·)). The second option is to

combine �+
1 (x), · · · ,�+

M(x) with certain weights q1, · · · , qM

i.e., �+(x) = ∑M
m=1 qm�+

m(x). The second option seems more
reasonable than the first one but it requires solving an additional
problem about how to determine q1, · · · , qM . In this work,
we do not address this problem. Note that the first option is
employed in evaluation of the performance of SCHEME-2 in
Section VI.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of SCHEME-1
and SCHEME-2 in terms of the GASRR by comparing them with
the conventional scheme (denoted by SCHEME-3) introduced in
[6]. In addition, we compare the degree distribution obtained by
our scheme with RSD in terms of the FRP [3].

We consider three USIs, denoted by USI1, USI2 and
USI3, whose (zm,vm) for m = 1, 2, 3 are (0.7, 0.1), (0.6, 0.1)
and (0.5, 0.1), respectively. In addition, we assume that the
users received some output symbols with RSD at the pre-

vious transmission, so we set �m(x) = �̂R(x)
1−�̂R,[0]−�̂R,[1]

, where

�̂R(x) = ∑
d≥0 �̂R,[d]xd = �R(1 − zm + zmx). In most of the

simulations, we set k = 2000, (c, δ) = (0.05, 0.5) for RSD
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TABLE III
DEGREE DISTRIBUTIONS DESIGNED BY SCHEME-1 AND SCHEME-2: α = 0.5 EXCEPT �∗

8(x), η = 0.95

Fig. 3. LASRR/GASRR versus the number of transmitted output symbols.
The degree distribution �∗

3(·) is employed and ε = 0.1.

and SRSD, and α = 0.5, η = 0.95 for SCHEME-1. Here, let us
calculate the amount of feedback informing of USI1 roughly
as described at the last paragraph in Section III. First, 11 bits
are required to represent z1. In case of �1(x), most of the
RO symbols have a degree smaller than or equal to 80 with a
probability greater than 0.99, so the coefficients of v1k�1(x)
can be represented by 79 integers with satisfactory accuracy,
where each integer is 7 bits. Thus 564 bits are required to
represent USI1. Similarly, we can see that 501 bits and 438 bits
are required for feedback of USI2, USI3, respectively.

We assume that overhead distributions are identical and r ∼
Bin(n,(1−ε))

k , where Bin(n, 1 − ε) denotes a binomial distribu-
tion with mean n(1 − ε) and variance nε(1 − ε) with an erasure
rate ε. Note that nT and n are different. The notation nT is the
number of transmitted output symbols while n is a parameter
used to determine the overhead distributions in the optimization
schemes. Some degree distributions used in this section are
provided in Table III.

A. GASRR With Varying n and ε

In this subsection, we consider three users, U1, U2 and
U3, whose USIs are USI1, USI2 and USI3, respectively.
Fig. 3 shows the performance of �∗

3(x) in Table III in terms
of GASRR and LASRRs. We can see that U1’s LASRR is
the worst whereas U3’s LASRR is the best. This is because

Fig. 4. GASRR versus erasure rate: k = 2000, α = 0.5, η = 0.95.

a smaller zm makes the relative overhead r/zm larger. For
example, when 1100 output symbols are given, the relative
overheads for U1 and U3 are 1100

1400 ≈ 0.79 and 1100
1000 = 1.10,

respectively. The GASRR yg(�(·)) is a weighted sum of the
LASRRs y1(�(·)), y2(�(·)) and y3(�(·)); thus, the GASRR
curve is plotted between the curves for U1 and U3.

Note that the most meaningful part in Fig. 3 is the GASRR
curve around nT = 1100, because �∗

3(·) is designed for n =
1100. Fig. 4 shows the GASRR curves plotted by connecting
only the meaningful segments. The x-axis and y-axis represent
the erasure rate ε ∈ {0, 0.1, · · · , 0.5} and GASRR, respectively.
Note that we employ six degree distributions for each curve
and the distributions are optimized for each ε. Some degree
distributions employed in Fig. 4 are shown in Table III.

Fig. 4 shows that the code performance observed by the
simulation matches the asymptotic performance. SCHEME-1
and SCHEME-2 outperform SCHEME-3 for all ε and n. In
addition, SCHEME-1 seems to be slightly better than or similar
as SCHEME-2. However, when n = 1100 and ε = 0.0, the
simulation result of SCHEME-1 is significantly worse than the
asymptotic performance. Moreover, SCHEME-1 shows worse
performance than SCHEME-2 at the point.

We suggest two methods to improve the GASRR perfor-
mance at ε = 0.0. The first method is to control α in (16).
By increasing α, we can increase the expected number of the
ripple symbols and reduce the possibility of decoding failure
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Fig. 5. GASRR versus the number of transmitted output symbols: k = 2000,
ε = 0.0.

during the early decoding iterations. The second is to choose
n slightly smaller than 1100. The reason is that in general
finite-length fountain codes require additional output symbols
to achieve the asymptotic performance. We have �∗

6(·) and
�∗

7(·) in Table III, which are obtained by the two methods,
respectively. In Fig. 5, it is shown that the performances are
improved by the two approaches at nT = 1100. While the
GASRRs with �∗

2(·) obtained by the simulation and analysis
show a significantly large gap, those with �∗

7(·) and �∗
8(·) show

the smaller gap. In addition, Fig. 7 shows that �∗
7(·) and �∗

8(·)
outperform �+

2 (·).

B. GASRR With Various Sets of USIs

In this subsection we evaluate the performance of our pro-
posed schemes with varying combinations of users. We first
consider the cases where some users are of empty-state and
the others are of USI2. As shown by the dashed lines in
Fig. 6, our proposed schemes provide no gain when the ratio of
ESUs are high because ESUs are dominant factors in designing
degree distribution. Meanwhile, our proposed schemes provide
a significant gain when the ratio of ISUs is large.

Fig. 6 shows also that our proposed schemes provide gains
significantly over the conventional scheme when all of the users
are intermediate-state; their USIs are either USI1 or USI2. In
addition, we can see that GASRRs of the proposed schemes
increase as the ratio of the users with USI2 grows. Note that the
users with USI2 have a smaller z than that of USI1. Because
nT is fixed in the simulation, an increase of the ratio of users
with USI2 causes a decrease of the sum of the number of PUI
symbols, which is the denominator of (8). In general, when nT is
fixed and the number of input symbol decreases, SRR increases.
From the characteristic, we can expect that GASRR increases
when the number of the users with smaller z grows, and the
tendency can be seen in Fig. 6.

C. GASRR With Small Input Length

In this subsection, we investigate the efficiency of our pro-
posed schemes in terms of GASRR when k is small. For the

Fig. 6. GASRR versus the ratio of U2 to all of the users: k = 2000, n = nT =
1000, ε = 0, α = 0.5, η = 0.95.

simulation, we assume that there are three users Um whose
parameters (zm, vm), m = 1, 2, 3 are (0.7, 0), (0.6, 0) and (0.5,
0), respectively. Note that using a fixed set of RSD parameters
(c, δ) for every k does not guarantee good performance and
adjusting RSD parameters for each k is not proper to show an
influence of k. Thus we set vm = 0 for m = 1, 2, 3 to exclude
the effect of RO symbols.

In Fig. 7, we can see that the proposed schemes show
much better performances than SCHEME-3 in terms of GASRR.
In addition, it can be seen that the asymptotic GASRR
performance for each scheme seems almost independent of
k. Meanwhile, the simulation results show that the perfor-
mances of SCHEME-1 and SCHEME-2 are different from
the asymptotic performances when k is small. In addition,
we can see that the simulation results approach the corre-
sponding asymptotic performance as k increases. In partic-
ular, SCHEME-1 shows the tendency clearly; at k = 25 the
difference between simulation and analysis is significantly
large, but at k = 210 the result of simulation is almost con-
sistent with the result of analysis. Note that when k = 25, the
degree distributions optimized by SCHEME-1 and SCHEME-2
are �∗(x) = x3 and �+(x) = 0.4315x2 + 0.5666x3 + · · · , re-
spectively. In general, the asymptotic SRR matches well the
SRR of finite-length codes when k is large enough or the
codes are sparse enough. Due to the characteristic, as shown
in Fig. 7, SCHEME-1 shows a larger gap than in terms of
GASRR between the analysis and simulation and has even
worse performance at k = 25 than SCHEME-2.

D. Full Recovery Performance

This subsection compares the FRP of our schemes and LT
codes with an RSD. We assume that there are three users U1, U2
and U3 whose USIs are USI1, USI2 and USI3, respectively.

In general, when evaluating FRP performance, it is assumed
that nT is sufficiently large for all of the users to achieve full
recovery, so we set ε = 0. Moreover we set n = maxm(zm −
vm + 0.05)k = 1300, because at least maxm(zm − vm)k output
symbols are required to guarantee full recovery of all users. The
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Fig. 7. GASRR versus the number of input symbols k: n = nT = 22
32 k,

ε = 0.2, α = 0.5, η = 0.95.

Fig. 8. FRP for each user and their average FRP versus the number of received
output symbols nR with �∗

8(·): k = 2000.

degree distributions �∗
8(·) and �+

8 (·) in Table III are designed
by SCHEME-1 and SCHEME-2, respectively.

Fig. 8 shows that U3 and U1 require the smallest and the
largest overhead, respectively, to achieve high FRP. In Fig. 8,
the so-called “water fall” regions, where the FRP of each user
increases rapidly, are distinguishable because the values of zm

for m = 1, 2, 3 are different. This produces the fluctuations in
the curve of the average FRP, which is the probability that a
randomly selected user achieves full recovery.

Fig. 9 shows the full recovery performance of our proposed
schemes and LT codes with RSD. Note that the degree distribu-
tion obtained by SCHEME-2 is an SRSD [11] with RSD parame-
ters (c, δ) = (0.05, 0.5), which is designed without considering
RO symbols. Thus it is reasonable that SCHEME-1 outperforms
the others at the high FRP region in terms of average FRP. In
addition, Fig. 9 shows the FRP performance for U1 which is
the user requiring the most output symbols for full recovery.
Likewise, SCHEME-1 shows better performance than the others
in terms of the FRP performance for U1. Table IV shows the
expected number of output symbols for full recovery.

Fig. 9. Average FRP and U1’s FRP versus the number of received output
symbols nR: k = 2000, c = 0.05, δ = 0.5, �∗

8 and �
+
8 are employed.

TABLE IV
EXPECTED NUMBER OF REQUIRED OUTPUT

SYMBOLS FOR FULL RECOVERY

E. Computational Complexity

We investigate encoding/decoding complexities of de-
signed degree distributions in terms of average degrees. Ta-
ble III shows �∗

i (·) and �+
i (·), i = 1, · · · , 7, which are the

degree distributions used in Section VI-A, and �∗
8(·) and �+

8 (·)
which are used in Section VI-B. We can see that their average
degree tends to increase as ε decreases and n increases. In
general, degree distributions designed for small overhead tend
to have low average degrees; the average degrees of �∗

i (·)
and �+

i (·) for i = 1, · · · , 7 are less than 4. Meanwhile, degree
distributions designed for large overhead, such as RSD and
raptor distribution, have high average degrees; the average
degrees of RSD with (k, c, δ) = (2000, 0.05, 0.5) and raptor
distribution [4] are approximately 11.0 and 5.9, respectively.
From Table III, we can see that the average degrees (18.7
and 15.3, respectively) of �∗

8(·) and �+
8 (·) are higher than

those of RSD and raptor distribution. Here, we should note
that our proposed schemes cause higher encoding/decoding
complexities.

For example, in case of Fig. 9, if �∗
8(·) is employed, 25084(≈

1341.4 × 18.7) edges should be processed for full recovery of
U1 on average. If RSD is employed, 17016(≈ 1546.9 × 11.0)

edges should be processed for full recovery of U1 on average.
As a result, about 47% more computations are required for
encoding/decoding of �∗

8(·), if we exclude decoding compu-
tations of RO symbols.
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VII. CONCLUSION

In this study, we considered a broadcasting system that is
composed of a source and multiple intermediate-state users,
which hold some previously recovered input symbols and some
output symbols that are insufficient to recover all of the in-
put symbols. We showed that conventional degree distribution
optimization schemes are inefficient for our proposed system
model because they cannot utilize the states of the users
as design parameters or they are not scalable for multi-user
systems. Thus, we proposed a generalized degree distribution
optimization scheme, called SCHEME-1, which maximizes the
global average symbol recovery rate. Additionally, we proposed
another degree distribution design scheme, called SCHEME-2,
where the degree distribution design procedure has a low com-
putational complexity. Based on Monte Carlo simulations, we
showed that our optimization schemes outperform the conven-
tional schemes in terms of global average symbols recovery rate
and full recovery probability. Meanwhile, the degree distribu-
tions obtained by our schemes shows higher encoding/decoding
complexity than the conventional degree distributions such as
RSD and raptor distribution.

APPENDIX A
PROOF OF LEMMA 1

Proof: Consider an output symbol that neighbors d input
symbols in B. The probability (Pd→d′) that a degree-d output
symbol neighbors d′(≤ d) PUI symbols (∈ Bm) is

Pd→d′ =
(kzm

d′
)(k(1−zm)

d−d′
)

(k
d

) . (33)

When k � d, (33) can be approximated as

Pd→d′ ≈
(

d

d′

)
zd′

m (1 − zm)d−d′
. (34)

Then the reduced degree distribution �m(x) is

�m(x) ≈
∑
d′≥0

⎡
⎣xd′ ∑

d≥0

�[d]Pd→d′

⎤
⎦

=
∑
d′≥0

⎡
⎣xd′ ∑

d≥0

�[d]zd′
m

(
d

d′

)
(1 − zm)d−d′

⎤
⎦ . (35)

If we change the order of the summations, (35) can be repre-
sented as

�m(x) ≈
∑
d≥0

⎡
⎣�[d]

∑
d′≥0

(
d

d′

)
(xzm)d′

(1 − zm)d−d′
⎤
⎦

=�(1 − zm + zmx). (36)

�

APPENDIX B
PROOF OF LEMMA 2

Proof: Let fd,i(x) be a ratio of �′
d(x) to �′

i(x), i.e.,

fd,i(x)
�= �′

d(x)

�′
i(x)

. (37)

Then fd,i(x) = d
i xd−i and the problem changes into showing

that fd,i(x) ≥ 1 in x ∈
[

d−1
d , d

d+1

]
.

Now we consider two cases where d > i and d < i. Let
a is an arbitrary positive integer. When i = d − a (i.e.,
d > i) fd,i(x) is a monotonically increasing function in x ≥
0 since d

dx fd,i(x) = da
d−a xa−1 ≥ 0. Furthermore, fd,i

(
d−1

d

)
=(

d−1
d−a

) (
d−1

d

)a−1 ≥ 1 for an arbitrary positive integer a. There-

fore fd,i(x) ≥ 1 is true for x ≥ d−1
d . Similarly, when i = d +

a (i.e., d < i), fd,i(x) is a monotonically decreasing func-
tion in x ≥ 0 since d

dx fd,i(x) = − da
d−ax−a−1 < 0 in x ≥ 0 and

fd,i

(
d

d+1

)
≥ 1, so fd,i(x) ≥ 1 in x ∈

[
0, d

d+1

]
. Consequently,

�′
d(x) is greater than or equal to �′

i(x) for an arbitrary positive

integer i for the interval x ∈
[

d−1
d , d

d+1

]
. �

APPENDIX C
PROOF OF COROLLARY 1

Proof: Let �(x) = ∑
i �[i]xi be an arbitrary degree

distribution, then it can be rewritten as �(x) = ∑
i �[i]�i(x).

An SDD �d(·) can be represented by �d(x) = �d(x)
∑

i �[i]
because

∑
i �[i] = 1. Then the first derivative of �d(x) can be

represented by �′
d(x) = ∑

[i≥1] �[i]�′
d(x). Using Lemma 2, the

Corollary 1 is proven as follows;

�′
d(x) =

∑
[i≥1]

�[i]�′
d(x) (38)

≥
∑
[i≥1]

�[i]�′
i(x) = �′(x), (39)

for x ∈
[

d−1
d , d

d+1

]
. �
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