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In this paper, we propose robust LT codes with alternating feedback (LT-AF codes), which lightly utilize the
feedback channel and surpass the performance of existing LT codes with feedback. In LT-AF codes, we
consider a loss prone feedback channel for the first time and propose the encoder to generate
degree-one output symbols (encoded symbols) only in acknowledgement to the reception of feedbacks.
Therefore, LT-AF codes become robust against feedback losses meaning that their performance does not
deteriorate even at high feedback loss rates in contrast to previous work. To realize this, we design a new
and parameterless coding degree distribution for LT-AF coding based on Ideal-Soliton (IS) distribution of LT
codes.

In addition, we design a new feedback scheme and use it in conjunction with an existing feedback
method. Therefore, in LT-AF codes the decoder can alternate between either types of feedback based
on its status. To generate our new type of feedback, we propose three novel algorithms to analyze the buf-
fered output symbols at the decoder. We will show that LT-AF codes require a significantly lower coding
overhead for a successful decoding.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Rateless codes [1–3] (also called fountain codes) are modern and
efficient forward error correction (FEC) codes with LT codes [1] being
the first practical realization of such codes. As the name suggests,
these codes do not have a fixed coding rate and are universal in
the sense that they are simultaneously near optimal for every era-
sure channel with varying or unknown erasure rate e 2 ½0;1Þ [1].

In the LT decoding process, when the decoding succeeds, a sin-
gle-bit feedback is sent to the LT encoder to inform it with the
decoding success. Clearly, this feedback channel remains unused
during the transmission. Consequently, previous studies [4–8] pro-
pose to employ the feedback channel during the transmission to
further improve the performance of LT codes.

The existing LT codes with feedback are designed such that the
decoder informs the encoder with the number of successfully
decoded input symbols (source symbols) [4–6], a suitable input
symbol for decoding [7], or the index of some of the previously
recovered input symbols [8]. Further, existing works have consid-
ered a lossless feedback channel, which may not always be the
case. Therefore, existing codes may experience high performance
degradation in the presence of feedback loss.

In this paper, we design robust LT codes with alternating feed-
back (LT-AF codes), in which we consider a realistic feedback chan-
nel with unknown or varying erasure rate efb 2 ½0;1Þ. Note that we
design LT-AF codes for efb < 1; hence, these codes are not defined
for efb ¼ 1, i.e., 100% feedback loss. We propose to employ the
degree-one output symbols (encoded symbols) generated at the
encoder as acknowledgment to the reception of feedbacks, which
required the design of a new degree distribution. Consequently,
we design a new and parameterless coding degree distribution for
LT-AF codes based on Ideal-Soliton (IS) degree distribution of LT
codes [1]. We will see that LT-AF codes show only a slight perfor-
mance degradation even for large values of efb in contrast to the
existing work; thus, we call them robust. Therefore, LT-AF codes
are robust against high feedback channel loss rates.

In addition, we design a new type of feedback for LT codes and
propose to combine it with the existing feedback generation tech-
nique proposed in [4]. Therefore, the decoder may issue two types
of feedback based on its needs. The decoder generates the first type
of feedback based on [4] to inform the encoder with the number of
successfully decoded input symbols, and the second type of feed-
back to request a specific input symbol that makes a significant
progress in the decoding of the previously received and buffered
output symbols. To generate our new proposed type of feedback,
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we propose three novel algorithms (with a trade-off in their algo-
rithm complexity and performance) to analyze the decoder’s buffer
and select suitable input symbols to request.

The paper is organized as follows. In Section 2, we provide a
brief review on LT codes. Next, in Section 3 we review the existing
rateless codes with feedback. In Section 4, we propose and analyze
LT-AF codes. Section 5, reports the performance of LT-AF codes and
evaluates its robustness against feedback channel loss. Finally, Sec-
tion 6 concludes the paper.

2. Overview of LT codes

First, without loss of generality and for simplicity, let us assume
that the input and output symbols are binary symbols. LT codes [1]
have simple encoding and decoding procedures as follows.

LT encoding: In LT encoding of k input symbols, first an output
symbol degree d is chosen from the Robust-Soliton (RS) degree dis-
tribution [1] fl1;l2; . . . ;lkg, where li is the probability that d ¼ i
and

Pk
i¼1li ¼ 1. This degree distribution can also be specified by its

generator polynomial lðxÞ ¼
Pk

i¼1lix
i. Next, d input symbols are

chosen uniformly at random from the k input symbols and are
XORed to generate an output symbol. We refer to the d contribut-
ing input symbols in forming an output symbol as its neighbors.
This procedure can be potentially repeated infinite number of
times to generate a limitless number of output symbols. However,
the encoder stops generating output symbols upon receiving the
single feedback indicating the decoding success.

The most important parameter of LT codes is the RS degree dis-
tribution designed by Luby [1]. The RS distribution lð:Þ is obtained
by combining the ideal-Soliton (IS) distribution qð:Þ and distribu-
tion sð:Þ given by

qðiÞ ¼
1
k i ¼ 1;

1
iði�1Þ i ¼ 2; . . . ; k;

(
ð1Þ

and

sðiÞ ¼

R
ik i ¼ 1; . . . ; k

R� 1;
R
k lnðRdÞ i ¼ k

R ;

0 i ¼ k
Rþ 1; . . . ; k;

8><
>:

respectively, where R ¼ c ln k
d

� � ffiffiffi
k
p

, and d and c are two tuneable
parameters [1]. It is easy to see that the average degree of output
symbols with IS distribution is q0ð1Þ ¼

Pk
i¼1iqðiÞ ¼ HðkÞ � ln k,

where q0ðxÞ is the first derivative of qðxÞ with respect to its variable
x, and HðkÞ is the kth Harmonic number [1]. Finally, RS degree dis-
tribution lð:Þ is obtained by

lðiÞ ¼ qðiÞ þ sðiÞ
b

; i ¼ 1; . . . ; k; ð2Þ

where b ¼
Pk

i¼1qðiÞ þ sðiÞ.
LT decoding: Rateless decoding is iteratively performed upon

arrival of new output symbols as follows. The decoder finds an out-
put symbol such that the value of all but one of its neighboring
input symbols is known. It recovers the value of the unknown
input symbol by simple bitwise XOR operations. This process is
repeated until no such an output symbol exists. If all k input sym-
bols are recovered a single-bit feedback indicating the decoding
success is issued.

Note that the set of output symbols reduced to degree-one1 is
called the ripple. If the ripple becomes empty, the decoding stops
and the decoder needs to wait for new output symbols to join the
ripple to continue the decoding. In addition, when an output symbol
1 An output symbol is said to have degree one if all but one of its neighboring inpu
symbols is known.
t

in the ripple decodes an input symbol, its degree reduces to zero and
is removed from the decoding process.

Clearly, due to randomness in forming of LT output symbols
they are statistically independent. Consequently, as shown in [1]
the only condition for a successful LT decoding is the delivery of
a certain number of output symbols. Let � be the required coding
overhead to have a successful decoding with high probability
(w.h.p.), i.e., ð1þ �Þ � k coded symbols are enough to decode k input
symbols w.h.p. Clearly, it is ideal to have � ¼ 0, i.e., full recovery of
k input symbols from k output symbols. Further, let c denote the
received coding overhead (meanwhile the transmission is in pro-
gress). Therefore, c � k is the number of received output symbols
at the receiver, and we have 0 6 c 6 ð1þ �Þ.

Although the distribution lð:Þ is asymptotically capacity achiev-
ing, i.e., �! 0 as k!1 [1], for small values of k (several hundreds
to thousands), the value of � becomes significantly larger than 0
[1,9,10]. This results in an inefficient FEC coding. Therefore, we
exploit the feedback channel to obtain a much smaller � for a finite
k in LT-AF coding.
3. Related work

Authors in [4] proposed shifted LT (SLT) codes to exploit the
available feedback channel. They have shown that when n input
symbols have been recovered at the decoder, the degree of each
arriving output symbol decreases by an expected k�n

k fraction
(due to earlier recovery of their neighboring input symbol). There-
fore, they propose to shift the RS distribution such that its average
degree l0ð1Þ is increased by k

k�n, where l0ðxÞ is the first derivative of
lðxÞ with respect to its variable x. With this setup, arriving output
symbols at the decoder always maintain an RS degree distribution
regardless of the value of n. SLT codes have a considerably
improved performance compared to regular LT codes. In this paper,
we make some changes to the idea of distribution shifting proposed
in SLT codes and employ it in the design of the LT-AF codes, while
showing that LT-AF codes outperform SLT codes.

In contributions [5,6], Growth codes and RT-oblivious codes have
been proposed, respectively, which have basically the same setup.
In these algorithms, as n increases and reaches to certain thresh-
olds a feedback indicating that decoder has achieved the corre-
sponding threshold is issued. Therefore, the encoder gradually
increases the degree of output symbols on-the-fly based on the
feedbacks such that the instantaneous decoding probability of each
delivered output symbol is maximized in a greedy fashion. Since
Growth and RT-oblivious codes only consider the instantaneous
recovery probability of each output symbol upon reception, they
may not perform as well as SLT and LT-AF codes.

In [11], authors have proposed to analyze the receiver’s buffer
and find the current optimal degree of output symbols such that
the received output symbols at the decoder can be reduced to
degree one or two with the highest probability. The idea proposed
in [11], has some similarities to one of the techniques that LT-AF
codes employ to generate the second type of feedback.

Authors in [7] propose to employ IS degree distribution qð:Þ for
LT coding. They have proposed to start decoding when an overhead
of c ¼ 1 has been delivered to the decoder. When the decoding
cannot be progressed further while some input symbols remain
unrecovered, a randomly selected input symbol that is a neighbor
of an output symbol of degree two is requested from the encoder.
This algorithm is performed iteratively until the decoding com-
pletes. Despite the advantages of the algorithm proposed in [7],
in this scheme many feedbacks are issued back-to-back as soon
as c exceeds 1. Further, during the iterative request process all
degree-two output symbols may be consumed (decoded), while
more input symbols remain unrecovered.
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4. LT-AF codes

Let Xk;nð:Þ denote the degree distribution of LT-AF codes for a
data-block of length k when n input symbols are already recovered
at the decoder. We adopt the idea of SLT codes [4], and propose to
shift Xk;nð:Þ based on the knowledge of n (see Section 3). Therefore,
we allow the decoder to issue the first type of feedback referred to
by fb1, which is used to keep the encoder updated with the current
value of n (number of decoded input symbols at decoder).

Although IS distribution is solely designed for the theoretical
analysis of RS distribution, we slightly modify and employ it at
the encoding phase of LT-AF codes in combination with two types
of feedback. The IS distribution is tuned for � ¼ 0 such that at each
decoding iteration in expectation exactly one input symbol is
recovered and only one output symbol is reduced to degree 1
and is added to the ripple. The single output symbol in the ripple
can decode one input symbol in the next iteration. Since on aver-
age only a single degree-one output symbol is generated for k out-
put symbols (note that qð1Þ ¼ 1

k), the IS distribution would realize
an optimal coding/decoding, i.e., complete recovery of k input sym-
bols from k output symbols and � ¼ 0.

However, due to inherent randomness and uncertainties in the
output symbol generation there is a high probability that an output
symbol does not reduce to degree one when an input symbol is
recovered. Consequently, the ripple becomes empty and the decod-
ing stops although undecoded output and unrecovered input sym-
bols are still remaining. Therefore, while the IS distribution shows
an ideal behavior in terms of the expected number of encoding
symbols needed to recover the data, it is quite fragile and imprac-
tical [1]. Despite this, we can easily see that if we exploit the feed-
back channel and request a suitable input symbol (which is an
output symbol of degree 1), the decoding may continue and the
IS distribution becomes practical. Therefore, we allow the decoder
to request its desired input symbols employing the second type of
feedback referred to by fb2.

Moreover, to design Xk;nð:Þwe propose to modify the IS distribu-
tion such that the encoder does not generate any degree-one out-
put symbol unless in response to a received feedback (fb1 or fb2).
With this setup we can utilize the reception of a degree-one output
symbol at the decoder as its acknowledgement for the successful
delivery of the feedback. Therefore, the encoder generates a
degree-one output symbol if and only if it has received a fb1 or
fb2, and the lack of the arrival of an output symbol at the decoder
with degree-one after issuing a fb1 or fb2 clearly indicates a feed-
back loss. Consequently, all feedback losses can be identified by
the decoder and a feedback retransmission is performed. This
modification makes LT-AF codes robust against feedback channel
loss, and the decoding recovery rate of LT-AF codes does not con-
siderably degrade at high feedback channel loss rates efb 2 ½0;1Þ
in contrast to existing work [4–8].

Clearly, the degree-one output symbol generated following the
arrival of a fb2 at the encoder contains the requested input symbol.
However, after a fb1 this output symbol contains a randomly
selected input symbol since fb2 is intended to inform the encoder
with n. Let Xk;nðxÞ ¼

Pk
j¼1Xk;n;jxj, where Xk;n;j is the probability of

selecting degree j to generate an LT-AF output symbol when n
input symbols are decoded at the receiver. Inspired by the distribu-
tion shifting idea from [4] and the setting of our problem we define
Xk;n;j as

Xk;n;j ¼
0 j ¼ 1;
k�an
k�1 qk�nðiÞ j ¼ i

1�n
k

l m
;2� an 6 i 6 k� n;

(
ð3Þ

where d:e is the ceiling function, qkð:Þ is the IS distribution for a
data-block of length k, and an is given by
an ¼
0 n ¼ 0;
1 n > 0:

�
ð4Þ

Note that for n ¼ k� 1, (3) results in Xk;n;k ¼ 1, i.e, at the end all
the k input symbols are added to form an output symbol.

Lemma 1. For any 0 6 n < k;Xk;n;j; j ¼ 2; . . . ; k is a probability
distribution.
Proof. First, we discuss 1 6 n < k, and investigate the special case of

n ¼ 0 next. We need to prove that mapping j ¼ i
1�n

k

l m
is a one-to-one

mapping from 1 6 i 6 k� n to 2 6 j 6 k for 1 6 n < k. In other
words, each integer i in the range 1 6 i 6 k� n is mapped to a distinct
j in f2;3; . . . ; kg. We have 1

1�n
k
P 1 for 1 6 n < k. Therefore, i

1�n
k

and i0

1�n
k

will differ by at least one for any two different integers i and i0.

Accordingly, j ¼ i
1�n

k

l m
and j0 ¼ i0

1�n
k

l m
will also differ by at least one.

Next, we need to show that 1 6 i 6 k� n results in 2 6 j 6 k.
We note that j is a non-decreasing function of i. Therefore, it is
sufficient to show that j P 2 when i ¼ 1 and j 6 k when i ¼ k� n.

The former is clear considering that 1
1�n

k
P 1 we have j ¼ 1

1�n
k

l m
P 2.

For the latter, we note that j ¼ k�n
1�n

k

l m
¼ k.

Based on the above discussions and having an ¼ 1, we conclude
that

Pk
j¼2Xk;n;j ¼

Pk�n
i¼1 qk�nðiÞ ¼ 1.

In the special case of n ¼ 0, we have j ¼ i
1�n

k

l m
¼ i. However to

avoid the generation of degree one symbols, we have set Xk;0;j ¼ 0
for j ¼ 1 in (3) (which has been equal to qkð1Þ ¼ 1

k in the IS
distribution). To compensation for this, we scale Xk;0;j for 2 6 j 6 k

by a factor k
k�1. Consequently,

Pk
j¼2Xk;0;j ¼ k

k�1

Pk
i¼2qkðiÞ ¼ 1. h
Lemma 2. The average degree of a check node generated employing
Xk;nð:Þ distribution is

X0k;nð1Þ ¼
X

j

jXk;n;j �
k

k� n
lnðk� nÞ; ð5Þ

where X0k;nðxÞ is the first derivative of Xk;nðxÞwith respect to its variable x.
Proof. The average degree of LT-AF distribution is

X0k;nð1Þ ¼
Xk

j¼2

jXk;n;j �
Xk�n

i¼2�an

i
1� n

k

� �
k� an

k� 1
qk�nðiÞ;

¼ k
k� n

k� an

k� 1

Xk�n

i¼2�an

iqk�nðiÞ:
ð6Þ

For n ¼ 0, we have an ¼ 0; which gives

Xk�n

i¼2

iqk�nðiÞ ¼
Xk�n�1

i¼1

1
i
¼ Hðk� n� 1Þ: ð7Þ

For n > 0, we have an ¼ 1, which gives

Xk�n

i¼1

iqk�nðiÞ ¼
1

k� n
þ
Xk�n

i¼2

1
i� 1

¼ Hðk� nÞ: ð8Þ

Given k� 1, we have k� 1 � k. Consequently, using (6) and (7),
or (6) and (8), we have X0k;nð1Þ � k

k�n Hðk� nÞ � k
k�n lnðk� nÞ. h
4.1. Generating fb1

Obviously, the encoder is not always aware of the current value
of n at the decoder unless its knowledge about n is updated by a
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fb1. Initially, the encoder assumes n ¼ 0 and employs the degree
distribution Xk;0ð:Þ to generate output symbols. Let nr denote the
most recent reported value of n using a fb1. Similar to [4], we pro-

pose the decoder to generate a fb1 when X0k;nð1Þ �X0k;nr
ð1ÞP

ffiffiffiffiffiffiffiffi
ln k
p

,

i.e., average degree of Xk;nð:Þ increases by at least
ffiffiffiffiffiffiffiffi
ln k
p

. Let ni be the
threshold that for n P ni the ith fb1 is generated. In the following
lemma we give the expression for ni.

Lemma 3. In LT-AF codes with data-block length k;ni the threshold of
n for which ith fb1 is issued is recursively obtained as follows.
n0 ¼ 0

ni ¼ kþW�1 �AiðkÞð Þ
AiðkÞ

� �
; i > 0;

ð9Þ

where AiðkÞ ¼ 1
k

ffiffiffiffiffiffiffiffi
ln k
p

þ k
k�ni�1

lnðk� ni�1Þ
� 	

and Wmð:Þ is the mth root

of Lambert W-Function (the Lambert W-Function is defined as the

inverse function of f ðxÞ ¼ x exp x [12]).
Proof. Let us first analyze n1 the value of n that initiates the first
fb1. Since before the first fb1 no distribution shifting occurs we have
X0k;n0

ð1Þ ¼ X0k;0ð1Þ ¼ ln k. Therefore, the first fb1 is issued for a value
of n1 that X0k;n1

ð1Þ �X0k;0ð1Þ ¼
ffiffiffiffiffiffiffiffi
ln k
p

. Using Lemma 2 we have

k
k� n1

lnðk� n1Þ �
k

k� n0
lnðk� n0Þ ¼

ffiffiffiffiffiffiffiffi
ln k
p

; ð10Þ

which gives

lnðk� n1Þ
k� n1

¼ 1
k

ffiffiffiffiffiffiffiffi
ln k
p

þ k
k� n0

lnðk� n0Þ

 �

: ð11Þ

Next, let AiðkÞ ¼ 1
k

ffiffiffiffiffiffiffiffi
ln k
p

þ k
k�ni�1

lnðk� ni�1Þ
� 	

. Employing Lam-
bert’s W function, we have

k� n1 ¼ �
W�1ð�A1ðkÞÞ

A1ðkÞ
; ð12Þ

which gives

n1 ¼ kþW�1ð�A1ðkÞÞ
A1ðkÞ

� �
: ð13Þ

Further, we can easily see that n2 can be obtained from
X0k;n2

ð1Þ �X0k;n1
ð1Þ ¼

ffiffiffiffiffiffiffiffi
ln k
p

, which in the same way gives

n2 ¼ kþW�1ð�A2ðkÞÞ
A2ðkÞ

� �
: ð14Þ

Finally, we have X0k;ni
ð1Þ �X0k;ni�1

ð1Þ ¼
ffiffiffiffiffiffiffiffi
ln k
p

that proves the
lemma. h

Lemma 3 gives the value of n for which fb1’s are generated. In
Fig. 1, we have depicted ni

k ; i 2 f1;2; . . . ;5g versus k. From Fig. 1,
we can see that ni

k decreases as k increases. As an example, we can
Fig. 1. Values of ni
k ; i 2 f1;2; . . . ;5g versus k.
see that at k ¼ 102 the first and the second fb1’s are issued at
n P 39 and n P 58, respectively. Further, for k ¼ 104 the first and
the second fb1’s are issued at n P 2740 and n P 4346, respectively.
4.2. Generating fb2

Since in LT-AF coding no degree-one output symbol is gener-
ated, no decoding is performed and we have n ¼ 0 until some
degree-one output symbols are requested using fb2’s. The idea to
generate fb2 is to smartly and greedily choose and request an input
symbol, whose reception at the decoder will result in the recovery
of the maximum number of input symbols.

It is well-known that LT codes have all-or-nothing decoding
property (also called waterfall phenomenon) [1], where an abrupt
jump in the ratio of decoded input symbols occurs at a c close to
1þ �. Therefore, transmission of fb2’s before c ¼ 1 does not consid-
erably contribute to decoding progress. Therefore, we propose to
generate fb2’s only when c exceeds 1. Note that authors in [7] have
employed the same idea to determine the start point of their single
type of feedback.

To uniformly distribute fb2’s and to avoid feedback channel con-
gestion, an LT-AF decoder issues a fb2 on the reception of every Dth
output symbol (starting from kth received output symbols, or
equivalently c ¼ 1). In other words, a fb2 is generated when the
number of received output symbols at the decoder is equal to
k; kþ D; kþ 2D; . . .. Clearly, a smaller D results in generating fb2

more frequently by the decoder.
The performance of LT-AF codes greatly varies with D. Clearly,

setting D ¼ 1, i.e., one feedback per every received output symbol,
results in the optimal LT-AF coding with the lowest coding over-
head. However, such a feedback scheme is not desirable due to
huge number of generated feedbacks and possibly congesting the
feedback channel. To have a fair comparison with SLT codes, we
experimentally set D ¼ ln k so that the number of generated feed-
backs in LT-AF codes becomes less or equal to the number of feed-
back in SLT codes as we later see.

Let us first describe the structure of input and output symbols
in the buffer of a decoder. Input and received output symbols of
an LT code at a decoder can be viewed as vertices of a bipartite
graph G. The input symbols are the variable nodes v i; i 2 f1; . . . kg
and the output symbols are the check nodes cj; j 2 f1;2; . . . ; ckg
[3,13], and they are connected to their neighbors denoted by
N ðv iÞ and N ðcjÞ, respectively, with undirected edges.

During data transmission some variable nodes v i; i 2 f1; . . . kg
are decoded and some check nodes cj; j 2 f1;2; . . . ; ckg are reduced
to degree zero and are both removed from the decoding graph G.
Let us refer to the set of remaining undecoded variable nodes by
Vun and the set of buffered check nodes with a degree higher than
one by Cbuff . We remind that the set of check nodes with degree
1 is called the ripple. Fig. 2 illustrates such a graph G at a decoder
at c ¼ 1 for k ¼ 7. Note that we interchangeably employ the terms
variable and check nodes for input and output symbols, respec-
tively, in the rest of the paper.
v3v2 v4 v5 v6v1

c1 c2 c4 c5c3 c6

v7

c7

Fig. 2. The bipartite graph representing the input and the output symbols of a LT-AF
code at the buffer of a decoder.
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It is important to note that the design of fb2 is to greedily
decode as many as possible input symbols so that decoding
succeeds at a smaller �. However, as discussed earlier as n
increases (where the decoder is closer to the end of decoding)
the average degree of check nodes should be increased to decrease
the probability of a check node being useless (due to earlier
recovery of all of their neighboring variable nodes). This is the
rationale to employ the distribution shifting and fb1 along with
fb2. In the next sections, we devise three algorithms to analyze
the graph G at the decoder and greedily select a suitable variable
node to generate fb2’s.
4.2.1. Generating fb2 based on Variable Node with Maximum Degree
(VMD)

One insight in choosing a suitable variable node is requesting
the variable node v i 2 Vun with the maximum degree. Such a selec-
tion greedily removes the largest number of edges in the first step
of decoding after the delivery of the respective input symbol.
Based on this idea we propose an algorithm called ‘‘Variable Node
with Maximum Degree’’ (VMD), where the decoder requests the
variable node with the highest degree in its current decoding
graph to issue a fb2. For instance, in Fig. 2 VMD would choose
and request v5. On the arrival of c8 containing only v5, the decod-
ing graph reduces to the graph shown in Fig. 3, where the dashed
nodes and edges are removed from graph G. We can see that c7 is
added to the ripple, which recovers v7 in the next decoding
iteration. Note that at this step the ripple becomes empty and
decoding stalls; hence, we have Cbuff ¼ fc1; c2; . . . ; c6g and
Vun ¼ fv1;v2;v3;v4;v6g. We can see that VMD greedily removes
the largest possible number of edges from G and decreases the
degree of many check nodes.

Although VMD seems naïve, we will later see that it greatly
improves the performance of LT codes with feedback, while it
has a low computational complexity.
4.2.2. Generating fb2 based on Longest Degree-Two Chain (LDC)
Although VMD’s complexity is suitably low, it aims for the

recovery of as many as possible input symbols by removing the
largest number of edges from the decoding graph only in the first
step of iterative decoding. However, removing the largest number
of edges in the first decoding iteration does not guarantee decoding
of the highest number of variable nodes. Therefore, we propose a
second algorithm ‘‘Longest Degree-2 Chain’’ (LDC), that considers
the subsequent decoding iterations as well.

From LT-AF distribution, we observe that at c ¼ 1 no decoding
can be performed; hence, we have Cbuff ¼ fc1; c2; . . . ; ckg and
Vun ¼ fv1;v2; . . . ;vkg. In such a decoding graph, on average 50%

of the check nodes are of degree-two since Xk;0;2 ¼ 0:5. Consider
a decoding graph G2, which is formed by check nodes of degree-
two and their respective neighbors, i.e., G2 ¼ fðv i

S
cjÞjcj 2

Cbuff ; jN ðcjÞj ¼ 2;v i 2 Vun;v i 2 N ðcjÞg. Indeed, G2 is the decoding
graph induced by degree-two check nodes.
v3v2 v4 v5 v6v1

c1 c2 c4 c5c3 c6

v7

c7 c8

Fig. 3. The decoding bipartite graph G after the reception of the requested variable
node v5 employing VMD. Dashed nodes and edges will be removed from G after the
reception of c8.
Definition. By investigating the decoding graph G2 we observe
that some check nodes along with nv > 1 variable nodes form
structures that the delivery of the any of nv variable nodes results
in the decoding of all other nv � 1 variable nodes. We call such a
structure decoding chain of length nv .

For instance, a single degree 2 check node forms a chain of
length nv ¼ 2 since knowing the value of either of its neighboring
variable node results in the decoding of the other one. Fig. 4 shows
two chains of length nv ¼ 4 with different structures. The graph G2

obtained from G in Fig. 2 has a chain of length nv ¼ 3 including
v1;v2, and v3 and a chain of length nv ¼ 2 including v5 and v7.
We emphasize that this rule only holds for check nodes of
degree-two as we discuss further in the next section.

From Fig. 4, we can see that the degree of variable nodes does
not affect the length of chains, and the chains extend as far as
the variable nodes are connected to degree-two check nodes. Based
on our discussion, the decoder finds all chains of degree 2 and ran-
domly selects a variable node from the longest chain. Next, this var-
iable node is requested employing a fb2. To give an example of the
size of the chain, for k ¼ 104 and c ¼ 1 we empirically find
nv � 250. Hence, on average the first fb2 generated employing
LDC decodes 250 variable nodes out of k ¼ 104. Later, we will see
that LDC has higher complexity compared to VMD while it sur-
passes VMD’s performance.

In [11], authors have analyzed the degree-2 chain of decoder’s
buffer and analytically found the optimal instantaneous degree
that maximizes the probability that output symbols are reduced
to degree one or two. The proposed method in [11] has many sim-
ilarities to LDC except that LDC uses the information from the lon-
gest degree-2 chain to request an appropriate input symbol using
feedback.
4.2.3. Generating fb2 based on Full Variable Node Decoding (FVD)
LDC is designed considering the graph induced by degree-two

check nodes only. However, higher degree check nodes are also
present in the decoding graph, which may form more complex
decoding chains. When higher degree check nodes are also consid-
ered, the main rule of the decoding chains is violated. That is, if
recovery of a particular variable node v i results in the recovery
of a set of variable nodes v j 2 Vi, the delivery of any of v j 2 Vi does
not necessarily guarantee the decoding of v i. Therefore, no decod-
ing chain can be defined in this case. Consequently, for all v i 2 Vun

we need to find Vi the set of variable nodes that are decoded as a
result of v i’s delivery.

In Fig. 5, we have illustrated a part of a decoding graph of a LT-
AF code. We can observe that the delivery of v2 results in the
decoding of v1 and v3, while delivery of v1 does not decode v2

and v3. This is clearly due to considering c2 that is a degree-three
check node in the decoding chain.

Therefore, we propose ‘‘Full Variable Node Decoding’’ (FVD) that
considers all check nodes with any degree, and provides the opti-
mal selection of variable nodes to issue fb2’s. FVD is performed
once when a fb2 is to be issued as follows.
v3v2v1

c1 c2 c3

v4v3v2

c1 c2 c3

v1v4

Fig. 4. Two decoding chains with nv ¼ 4.



v3v2v1

c1 c2 c3

Fig. 5. Chain of decoding considering check nodes with degrees higher than two.
Delivery of v1 does not necessarily decode v2 and v3 while delivery of v2 results in
decoding of v1 and v3.
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1. For all v i 2 Vun find Vi by running dummy decodings.
2. Find i� ¼ argmaxijVij and generate a fb2 containing i�.

FVD finds the variable node v i� for fb2 that results in the largest
number of decodings considering the full graph G. As we later see,
FVD has a much higher complexity than LDC and VMD.

4.3. Combining fb1 and fb2

Assume that in LT-AF coding, no fb2 is generated. An fb1 is gen-
erated if and only if n (the number of decoded input symbols) sur-
passes certain thresholds n1k;n2k; . . . (see Lemma 3). Since no
degree-one is ever generated using the degree distribution (3), n
does not increase due to lack of degree-one output symbols. There-
fore, no fb1 is issued as well. Consequently, acknowledgments to
fb1 in form of degree-one are also not generated. We can see that
without fb2 the decoding is stalled no matter how large c grows.
Clearly, this is resolved by simply adding fb2’s that are generated
at certain c’s. This is the reason why feedbacks in LT-AF codes
starts with a fb2, and as we discussed in Section 4.2, we propose
to start their transmission at c ¼ 1.

In Fig. 6, we have shown the average values of c for which fb1’s
and fb2’s are generated in LT-AF codes with VMD for k ¼ 500 and
k ¼ 1000. The values of c have been found by averaging values of
c for which each feedback is generated over a large enough number
of numerical simulations. We can observe that in LT-AF codes feed-
backs start with a fb2 and the few first feedbacks are fb2’s. After
several fb2’s, n increases such that it surpasses ni’s and fb1’s are
generated accordingly.
5. Performance evaluation

In this section, we evaluate the performance of LT-AF codes
employing numerical simulations. Our results are obtained
employing Monte-Carlo method by averaging over the results of
at least 107 numerical simulations.
Fig. 6. The order and the frequency of generating fb1 and fb2 versus c in LT-AF codes
with VMD.
5.1. LT-AF decoding error rate

We plot the decoding bit-error-rate (BER) (average ratio of unre-
covered input symbols to the total number of input symbols
1� E n

k

� 

) and the ratio of successful decodings versus received over-

head c in Figs. 7 and 8, respectively, for k ¼ 500 and k ¼ 1000 with
D ¼ ln k (see Section 4.2 for the definition of D). Note that we set
c ¼ 0:9 and d ¼ 0:1 for SLT codes as proposed in [4]. We also plot
the BER of Growth codes [5] in Fig. 7.

Figs. 7 and 8 show that LT-AF codes significantly surpass SLT
codes. We can see that the required coding overhead � (to achieve
BER 6 10�6) for k ¼ 1000 has decreased from 0:3 for SLT codes to
0:09;0:12, and 0:14 for LT-AF coding using FVD, LDC, and VMD
algorithms, respectively. This is respectively equal to 70%;60%,
and 53% reduction in codings overhead, �, for full decoding com-
pared to SLT codes.

Next, we summarize the average runtime of a full round of
decoding including the time that decoder need to generate fb2’s
for LT-AF codes employing FVD, LDC, and VMD along with SLT
codes in Table 1.

Table 1 shows that the complexity of FVD is way higher than
the other two proposed algorithms. However, we can see that
LDC and VMD have close complexities. Therefore, LDC may be
the best option that provides a low complexity besides improved
coding performance. Further, we can see that LT-AF codes employ-
ing VMD and LDC have lower complexities compared to SLT codes.
The reason for this lower complexity is that in LT-AF codes for
c < 1 no decoding is performed and no feedback is generated,
and when the decoding starts the full recovery is obtained at a
smaller c resulting in less number of decoding iterations.
Therefore, LT-AF codes employing VMD and LDC outperform SLT
Fig. 7. The BER of SLT codes, Growth codes, and various setups of LT-AF codes
versus received overhead c for k ¼ 500 and k ¼ 1000.



Fig. 8. The ratio of successful decodings for SLT codes and various setups of LT-AF
codes versus received overhead c.

Table 1
Runtime comparison of LT-AF and SLT codes on the same platform in seconds.

Algorithm N ¼ 500 N ¼ 1000

LT-AF + VMD 0.122 0:683
LT-AF + LDC 0:181 1:050
LT-AF + FVD 11:000 122:270
SLT 0:535 1:550
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codes both in the number of required output symbols and
complexity.

5.2. Number of feedbacks

In this section, we compare the total number of feedbacks
issued by LT-AF codes and compare it to that of SLT codes for
k ¼ 500 and k ¼ 1000 with D ¼ ln k (see Section 4.2 for the defini-
tion of D). As we mentioned earlier, we aim to have equal or smal-
ler number of feedbacks compared to SLT codes. The expected
number of feedbacks for LT-AF and SLT codes are summarized in
Table 2
The average number of feedbacks issued in LT-AF and SLT codes for full decoding of
data block.

Algorithm N ¼ 500 N ¼ 1000

fb1 fb2 Total fb1 fb2 Total

LT-AF + VMD 2.68 7.37 10.05 2.68 9.29 11.97
LT-AF + LDC 3.15 6.49 9.64 3.90 8.00 11.90
LT-AF + FVD 2.75 6.01 8.76 3.58 6.92 10.5
SLT – – 10.43 – – 12.27
Table 2 for k ¼ 500 and k ¼ 1000. From Table 2, we can verify that
LT-AF codes can decrease the required coding overhead for a suc-
cessful decoding � with slightly smaller number of feedbacks,
which is achieved with D ¼ ln k.

5.3. Effect of distance of fb2’s, D, on the performance

As described in Section 4.2, we set D ¼ ln k to achieve the same
or smaller number of feedbacks in LT-AF codes compared to SLT
codes to realize a fair comparison. In this section, we investigate
how variations in D affects the performance of LT-AF codes. We
set D ¼ 2 ln k and D ¼ 2log10k and plot the BER of LT-AF codes
using VMD versus c in Fig. 9 for k ¼ 500 and k ¼ 1000.

Fig. 9 shows that the BER of LT-AF codes improve if the number
of fb2 increases and vice versa. However, we can see that even with
D ¼ 2 log k LT-AF codes still surpass SLT codes. It is worth noting
that with D ¼ 2 ln k and D ¼ 2log10k the total number of feedbacks
are 6.67 and 15.68, respectively.

5.4. Robustness to erasure in feedback channel

We mentioned that LT-AF codes are designed to be resilient to
loss in feedback channel and their decoding recovery rate does
not considerably deteriorate for efb 2 ½0;1Þ. In contrast, the existing
codes with feedback [4–8] may show some levels of degradation in
the presence of loss in feedback channel. We evaluate the effect of
feedback loss on the performance of LT-AF codes and SLT codes.
Assume that the loss rate of the feedback channel is efb ¼ 0:9
(which is not known to encoder and decoder), hence 90% of the
feedbacks are lost in transmission. Note, that in a lossy forward
Fig. 9. The BER of SLT codes and LT-AF codes with VMD for various D’s versus
received overhead c for k ¼ 500 and k ¼ 1000. Markers show the values of c where
fb2’s are issued.



Fig. 10. Effect of 90% feedback loss on the performance of SLT and LT-AF codes
employing VMD. The curves representing LT-AF codes for e ¼ 0 and e ¼ 0:9 are
almost overlapping.

Fig. 11. Improving the performance of Raptor codes using the proposed alternating
feedbacks technique in LT-AF codes.
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channel the degree-one acknowledgements may also be dropped
while fb1 or fb2 may have already been delivered. In the case of
fb2 loss, the retransmission compensates this loss. However, in case
of fb1 loss, the encoder shifts the degree distribution accordingly
while the decoder remains unaware of this shift. In this case, feed-
back retransmission is not even required since the degree distribu-
tion shift has already occurred. Therefore, we consider the worst
case in our simulations and assume that if an acknowledgement
is lost the distribution shifting does not occur as well. Fig. 10 shows
the performance of LT-AF codes and SLT codes for k ¼ 1000 and
efb ¼ 0:9.

Fig. 10 shows the excellent resilience of LT-AF codes to feedback
loss in contrast to SLT codes. In practice, the performance of SLT
codes approach that of regular LT codes as the feedback loss ratio
increases. It is worth mentioning that at the loss rate of efb ¼ 0:9,
the decoder generates about 10 times the number of feedbacks it
generates with efb ¼ 0. However, due to loss in feedback channel,
equal number of feedbacks are received at the encoder in both
cases. To the best of our knowledge the existing work has not
designed a facility to detect a feedback loss and are not resilient
to feedback loss as a consequence. This significantly distinguishes
the LT-AF codes.

5.5. Alternating feedbacks for Raptor codes

Raptor codes [2] are extension to LT codes to realize rateless
codes with linear time encoding and decoding. Raptor encoding
includes two steps. In the first step, the data of length k is precoded
with a high rate linear code (inner code) to generate ~k intermediate
symbols. Next, the intermediate symbols are encoded using an LT
code (outer code) to generate the final output symbols. In this sec-
tion, we show that alternating feedbacks can also greatly decrease
the required amount of Raptor coding overhead.

We choose an optimized degree distribution from [2] given by
(15), and employ it instead of IS distribution qk;nð:Þ in LT-AF coding
along with VMD. To performs the precoding, we employ an LDPC
inner code with parameters Pðx4;1100;50Þ, where in LDPC ensem-
ble PðKðxÞ; ~k; rÞ;KðxÞ is the degree distribution of variable nodes and
r is the number of check nodes (see [2, Sec. VII-C] for more infor-
mation). In Fig. 11, we compare the performance of regular Raptor
codes, Raptor codes without precoding, and Raptor codes with
VMD (without precoding) for k ¼ 103.

XðxÞ ¼ 0:00797xþ 0:49357x2 þ 0:16622x3 þ 0:07265x4

þ 0:08256x5 þ 0:05606x8 þ 0:03723x9 þ 0:05559x19

þ 0:02502x65 þ 0:00314x66 ð15Þ
Fig. 11 shows that our proposed alternating feedback genera-
tion method can greatly decrease the amount of required overhead
in Raptor codes. We can see that to achieve the error rates of smal-
ler than 10�6, regular Raptor codes require coding overhead of
� � 0:41, while they need an overhead of � � 0:13 when VMD is
employed. As expected, Raptor codes without precoding have a
high error floor, and do not have a comparable performance.
6. Conclusion

In this paper, we proposed LT-AF codes that are LT codes with
alternating feedback, which reduce the amount of required over-
head for successful decoding by lightly utilizing the feedback chan-
nel. We designed a new coding degree distribution to employ
degree-one output symbols as acknowledgement to the reception
of feedbacks. This made LT-AF code resilient against high loss rates
in the feedback channel. The designed degree distribution of LT-AF
codes is parameterless in contrast to all previous work.

Next, we proposed a new method to generate feedbacks for LT
codes and combined it with an existing method in the design of
LT-AF codes. Therefore, in LT-AF coding, the decoder can employ
two types of feedbacks according to its status. To design our coding
scheme we devised three algorithms to analyze the decoder’s buf-
fer and request a suitable input symbol for decoding progress.

We showed that our contribution in the design of LT-AF codes
compared to existing work is threefold. LT-AF codes reduce the
coding overhead for a successful decoding. Further, we observed
that LT-AF codes have no parameter to tune in contrast to regular
LT codes. Finally and most importantly, LT-AF codes’ performance
does not considerably degrade at large loss rates in the feedback
channel.
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