
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 5, MAY 2012 1237

On the Intermediate
Symbol Recovery Rate of Rateless Codes

Ali Talari, Student Member, IEEE, and Nazanin Rahnavard, Member, IEEE

Abstract—Existing rateless codes have low intermediate symbol
recovery rates (ISRR). Therefore, we first design new rateless
codes with close to optimal ISRR employing genetic algorithms.
Next, we assume an estimate of the channel erasure rate is
available and propose an algorithm to further improve the ISRR
of the designed codes.

Index Terms—Codes optimization, genetic algorithms, inter-
mediate performance, rateless codes.

I. INTRODUCTION

RATELESS codes are modern forward-error-correction
(FEC) codes with capacity-achieving performance on

erasure channels [1]–[3]. A rateless encoder at a source S
can potentially generate a limitless number of output symbols
ci, i ∈ {1, 2, . . .} from k input symbols x = {x1, x2, . . . , xk}.
Let kγ and z ∈ [0, 1] denote the number of received output
symbols and the fraction of decoded input symbols, respec-
tively, at a decoder D.

To generate an output symbol, first its degree is randomly
chosen to be d with probability Ωd using a probability
distribution {Ω1,Ω2, . . . ,Ωk} (also shown by its generator
polynomial Ω(x) =

∑k
i=1 Ωix

i). Next, d input symbols are
selected uniformly at random and are bitwise XORed to form
the output symbol. We call the d contributing input symbols in
forming an output symbol as its neighbors. Rateless decoder
iteratively finds output symbols with only one unrecovered
neighboring input symbol and decodes their value by bitwise
XOR operations. It has been shown that D can fully decode x
(z = 1) from any subset of kγsucc output symbols with high
probability [1]–[3], where γsucc is called the coding overhead
and is slightly larger than one.

Although rateless codes are capacity achieving, in interme-
diate range, i.e., 0 ≤ γ ≤ 1, input symbols are barely decoded
because most of the received output symbols are buffered
for a later decoding [4]–[7]. Therefore, rateless codes have
a low intermediate symbol recovery rate (ISRR), i.e., z ≈ 0 at
0 ≤ γ ≤ 1. However, in some applications such as multimedia
content delivery partial recovery of the input symbols is still
beneficial, which motivates us to design rateless codes with
high ISRR.

Paper approved by S.-Y. Chung, the Editor for LDPC Coding and Infor-
mation Theory of the IEEE Communications Society. Manuscript received
January 12, 2011; revised September 13 and December 19, 2011.

This material is based upon work supported by the National Science
Foundation under Grants ECCS-1056065 and CCF-0915994.

The authors are with the Department of Electrical and Computer Engineer-
ing, Oklahoma State University, Stillwater, OK 74078 USA (e-mail: {ali.talari,
nazanin.rahnavard}@okstate.edu).

Digital Object Identifier 10.1109/TCOMM.2012.030712.110032

In this paper, we first employ multi-objective genetic al-
gorithms to design degree distributions that have almost op-
timal ISRR throughout 0 ≤ γ ≤ 1. We employ the term
“almost optimal” because genetic algorithms are known to
find solutions that are not necessarily global-optimum but are
rather very close to the global-optimum solution. Therefore,
throughout our code design process the term optimal implies
almost optimal. In the next step, we assume that an estimate of
the channel erasure rate ε ∈ [0, 1) is available at S and propose
rateless coded symbol sorting (RCSS), which rearranges the
transmission order of output symbols to further improve the
ISRR. Preliminary results of this paper have appeared in [8]
and [9].

This paper is organized as follows. Section II provides a
review on existing work. In Section III, we design distribu-
tions to realize high ISRR utilizing multi-objective genetic
algorithms. In Section IV, we propose RCSS and discuss its
capabilities. Finally, Section V concludes the paper.

II. RELATED WORK

In [4], the author shows that the intermediate range of
rateless codes can be divided into three regions. The three
intermediate regions for 0 ≤ z < 1 are z ∈ [0, 12],
z ∈ [12 ,

2
3], and z ∈ (23 , 1), which approximately give the

equivalent regions of γ ∈ [0, 0.693], γ ∈ [0.693, 0.824],
and γ ∈ [0.824, 1]. Further, author designs optimal degree
distributions that achieve the upper bound on ISRR of all
rateless codes in these regions. However, the codes designed
in [4] are asymptotically optimal and may not be employed
when k is finite. Further, the proposed degree distributions are
only optimal in one intermediate region.

In [5], [7] authors propose to employ feedbacks from D
to keep S aware of z. They propose to gradually increase the
degree of output symbols such that the instantaneous recovery
probability of each arriving output symbol is maximized.
The codes designed in [5], [7] require feedbacks, hence their
application is not always feasible.

Authors in [6] propose to transmit output symbols in the
order of their ascending degree. Although this would increase
the ISRR, we will see that RCSS always outperforms this
technique.

III. RATELESS CODE DESIGN WITH HIGH ISRR

In this section, we design degree distributions for rateless
coding with various k’s employing multi-objective genetic
algorithms.

0090-6778/12$31.00 c© 2012 IEEE

1238 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 5, MAY 2012

A. Decision Variables and Objective Functions

To obtain high ISRRs in all three intermediate regions,
we need to tune the degree distribution Ω(.) considering all
three intermediate regions of 0 ≤ γ ≤ 1. We choose three
overheads γ = 0.5, γ = 0.75, and γ = 1 (one from each
intermediate region, see Section II) and define the respective
value of z at these γ’s as our objective functions. Let z0.5,Ω(.),
z0.75,Ω(.), and z1,Ω(.) denote the value of z at three selected
γ’s representing three objective functions that we aim to
concurrently maximize and realize a high ISRR. With this
setup, we have three conflicting objective functions meaning
that improving z at one point would decrease z at one or both
other γ’s. As a result, we employ multi-objective optimization
methods to design our desired distributions.

Clearly, in our optimization problem the decision variables
are entries of Ω(.). Codes that are designed to realize a high
ISRR have Ω(.)’s with much smaller maximum degree com-
pared to codes designed for full input symbol recovery [1]–
[3]. For instance, codes that optimally perform in the first and
second intermediate regions have maximum degrees of only
1 and 2 [4], respectively. Consequently, we consider degree
distributions with maximum degree of 50. Thus, we have fifty
decision variables {Ω1,Ω2, . . . ,Ω50} that take values in [0, 1]
such that

∑50
i=1 Ωi = 1. Later, we see that the optimum Ω(.)’s

have much smaller maximum degree than 50.
We need to take different approaches to find zγ,Ω(.) for

asymptotic and finite length setups. For asymptotic case,
the expression providing the rateless decoding error rate has
been previously obtained in [3], [10]–[12]. Let vl be the
probability that an input symbol is not recovered after l
decoding iterations. From [3], [10]–[12], we have

vl = δ(1− β(1 − vl−1)), l ≥ 1 (1)

in which v0 = 1, β(y) = Ω′(y)/Ω′(1), and δ(y) =
eΩ

′(1)γ(y−1). It can be shown that the sequence {vl}l is
convergent with respect to the number of decoding iterations,
l [11], [12]. Let Vγ,Ω(.) denote the corresponding fixed point.
This fixed point is the final error rate of a rateless decoding
with parameters Ω(.) and γ, hence zγ,Ω(.) = 1− Vγ,Ω(.).

On the other hand, the expression for the error rate of
rateless decoding for finite k has been analyzed in [13], [14].
However, the high complexity of these expressions makes
their application in genetic-algorithm implementation almost
impossible. Therefore, to find z for finite k we employ Monte-
Carlo method by averaging z for a large enough number of de-
coding simulation experiments for k ∈ {102, 103, 104}. Sim-
ilar to asymptotic case, our objective functions are z0.5,Ω(.),
z0.75,Ω(.), and z1,Ω(.), which in this case are found by numer-
ical simulations.

B. Optimized Rateless Codes for High ISRR

We employ NSGA-II multi-objective optimization algo-
rithm [15] to find the distributions that have optimal z at three
selected γ’s (interested readers are encouraged to refer to [8,
Section III.B] and [15] for more information on NSGA-II).
The results of our optimizations are four databases of degree
distributions optimized for k ∈ {102, 103, 104,∞}. Due to

TABLE I
OPTIMUM DEGREE DISTRIBUTIONS FOR DIFFERENT WEIGHTS

W = (W0.5,W0.75,W1).

k W Optimum degree distribution Ω(y)

102

(1, 1, 1) 0.348y + 0.652y2

(0, 1, 0) 0.1911y + 0.8082y2 + 0.0003y4

(0, 0, 1) 0.116y + 0.467y2 + 0.417y3

(1, 4, 1) 0.346y + 0.652y2

(1, 1, 4) 0.1515y + 0.7903y2 + 0.0581y3

103

(1, 1, 1) 0.3131y + 0.6869y2

(0, 1, 0) 0.0139y + 0.9861y2

(0, 0, 1) 0.0624y + 0.5407y2 + 0.2232y4 + 0.1737y5

(1, 4, 1) 0.1448y + 0.8552y2

(1, 1, 4) 0.0624y + 0.9315y2

104

(1, 1, 1) 0.2474y + 0.7526y2

(0, 1, 0) 0.011y + 0.989y2

(0, 0, 1) 0.0312y + 0.4069y2 + 0.3716y3 + 0.0024y6

+0.0264y7 + 0.1519y10 + 0.0096y14

(1, 4, 1) 0.1452y + 0.8548y2

(1, 1, 4) 0.16y + 0.3524y2 + 0.1318y3 + 0.3553y5

+0.0001y7 + 0.0003y10 + 0.0001y14

∞

(1, 1, 1) 0.29599y + 0.70401y2

(0, 1, 0) 0.00003y + 0.99997y2

(0, 0, 1) 0.00536y + 0.50088y2 + 0.12547y3

+0.17492y4 + 0.03797y5 + 0.00583y6

+0.00011y7 + 0.00013y8 + 0.00001y10

+0.00209y11 + 0.06425y13 + 0.08297y14

(1, 4, 1) 0.12469y + 0.87531y2

(1, 1, 4) 0.11003y + 0.24932y2 + 0.34144y3

+0.14488y4 + 0.02164y5 + 0.00123y6

+0.00014y11 + 0.05257y13 + 0.07862y14

+0.00012y17

All
(1, 0, 0)

y
(4, 1, 1)

huge size of the four databases they may not be reported in
the paper and are made available online at [16]. In the next
section, we investigate the performance of several designed
distributions.

C. Performance Evaluation of the Designed Codes

Based on the desired ISRR at each intermediate region
an appropriate Ω(.) needs to be selected among the many
optimum degree distributions in our databases. To facilitate
the distribution selection from our databases we propose a
weighted function F (Ω(.)) defined by

F (Ω(.)) =W0.5[Z0.5 − z0.5,Ω(.)] +W0.75[Z0.75 − z0.75,Ω(.)]

+W1[Z1 − z1,,Ω(.)],
(2)

where Zγ is the highest possible z (upper bound on z) at
γ for all rateless codes and Wγ is a tunable weight. From
[4], we have Z0.5 = 0.3934, Z0.75 = 0.5828 and Z1 = 1.
For future references, we define W = (W0.5,W0.75,W1). We
can find Ω(.) of interest by setting the appropriate weights
and selecting the Ω(.) that minimizes F (Ω(.)). However, we
emphasize that one may replace (2) with any desired linear
or non-linear weighted function. Table I shows the optimum
degree distributions for the selected arbitrary weights. Note
that the degree distributions reported in Table I are only
samples of many degree distributions we have made available
at [16].

One may choose an optimal distribution based the desired
weights from the databases provided at [16]. From Table I,

TALARI and RAHNAVARD: ON THE INTERMEDIATE SYMBOL RECOVERY RATE OF RATELESS CODES 1239

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

γ

z

Upper bound

W = (4, 1, 1)

W = (1, 4, 1)

W = (1, 1, 4)

W = (1, 1, 1)

Fig. 1. ISRR of selected designed codes and the ISRR upper bound for

asymptotic setup.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

γ

z

Upper bound

W = (1, 1, 1), k = 102

W = (1, 1, 1), k = 104

W = (0, 0, 1), k = 102

W = (0, 0, 1), k = 104

Fig. 2. ISRR of selected designed codes and the ISRR upper bound for

k = 102 and k = 104.

we can see that the optimal degree distributions for finite
length slightly differ from the distributions proposed in [4].
For instance for W = (0, 1, 0) the distribution is non-zero for
Ω1, which allows the rateless decoding to start. Moreover,
from our databases we observe that the maximum degree
of all designed degree distributions is 19, which is much
smaller than 50. Further, we can see that as k decreases, large
degrees are also eliminated. We compare the performance of
our designed degree distributions with the upper bound found
in [4] in Figs. 1 and 2.

The ISRR of the codes designed for W = (1, 1, 1) as are
shown in Figs. 1 and 2 are optimal at three selected γ’s. In
other words, there is no other degree distribution that can
go closer to the upper bound at one γ without decreasing
z for at least one other γ compared to our designed degree
distributions. Moreover, from Figs. 1 and 2 we can see that by
setting the desired weights the selected distribution performs
better at the region with the higher weight. Further, we can
see that as k increases the difference of ISRR with the
upper bound decreases because the upper bound is derived
for asymptotic setup. In the next section, we show how ISRR
of our designed codes may be increased even more.

IV. RCSS: RATELESS CODED SYMBOL SORTING

In practice an estimate of the channel erasure rate ε may be
available at S [17]. The value of ε may be exploited as a side
information to further improve the ISRR of rateless codes.

A. RCSS: Rateless Symbol Sorting Algorithm

When S has an estimate of ε, it is aware that in total m =
kγsucc

1−ε output symbols should be transmitted so that D receives
kγsucc output symbols. The main idea in designing RCSS is
that S can generate m output symbols ahead of transmission.
Therefore, it can rearrange the order of m output symbols
such that each delivered symbol has the highest probability of
decoding an input symbol at D. This results in a considerable
improvement of ISRR since fewer output symbols are buffered
for a later decoding at D. We should note that RCSS is merely
implemented in S and the decoder remains intact. Therefore,
in contrast to [5], [6] we assume D generates no feedback and
RCSS can only employ the information available at S.

The reordering of m output symbols in RCSS is per-
formed as follows. S maintains a probability vector ρ =
[ρ(1), ρ(2), . . . , ρ(k)], in which ρ(j) represents the probability
that xj is still not recovered at D. Clearly, S initializes ρ
to an all-one vector when the transmission has not started
yet. At each transmission S finds an output symbol ci that
has the highest probability of recovering an input symbol at
D based on ρ (as described later). Next, S transmits ci and
updates ρ(j), j ∈ N (ci), where N (ci) ⊂ {1, 2, . . . , k} is a set
containing index of input symbols that are neighboring to ci.
S continues until all m output symbols are transmitted.

From the rateless decoding procedure, we can see that an
output symbol ci with degree d, i.e., |N (ci)| = d, where |.|
represents the cardinality of a set, can recover an input symbol
xj iff all xw , w ∈ {N (ci)− j} have already been recovered.
Let pdec(i), i ∈ {1, 2, . . . ,m} denote the probability that ci
can recover an input symbol at D. We assume pdec(i) = 0
if ci has been previously transmitted. Since at the beginning
of transmission no input symbol is still recovered, we have
pdec(i) = 0 if |N (ci)| > 1, i.e., output symbols with degrees
larger than one cannot decode any input symbol at D. Besides,
for |N (ci)| = 1 we have pdec(i) = (1 − ε), i.e. only degree-
one output symbols that are not erased on the channel (with
probability 1− ε) can recover an input symbol. Therefore, at
the beginning of transmission degree-one output symbols have
the highest probability of decoding an input symbol at D.
Consequently, S transmits degree-one ci’s with N (ci) = {j}
and updates ρ(j) = ερold(j), where ρold(j) is the value of
ρ(j) before ci was transmitted.

Next, we consider a degree-two output symbol ci with
N (ci) = {j, l}. In this case, ci can recover xj with prob-
ability (1 − ε)(1 − ρ(l))ρ(j), which is the probability that
ci is not dropped on channel, xj has not been recovered
previously, and xl has already been recovered. Similarly,
ci can recover xl with probability (1 − ε)(1 − ρ(j))ρ(l).
Consequently, pdec(i) = (1−ε)[(1−ρ(l))ρ(j)+(1−ρ(j))ρ(l)].
Assume ∀w 	= i, pdec(i) > pdec(w), i.e. ci has the highest
probability of decoding an input symbol at D among the
remaining output symbols. Therefore, S transmits ci next

1240 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 5, MAY 2012

and sets ρ(j) = ρold(j)(1 − (1 − ε)(1 − ρold(l))) and
ρ(l) = ρold(l)(1 − (1− ε)(1− ρold(j))).

Further, we consider an output symbol ci with |N (ci)| = d.
Such a ci can decode an xj , j ∈ |N (ci)| with probability
(1 − ε)ρ(j)

∏

v∈N (ci),v �=j

(1 − ρ(v)). Therefore, pdec(i) = (1 −
ε)

∑

l∈N (ci)

[ρ(l)
∏

v∈N (ci),v �=l

(1 − ρ(v))]. If ∀w 	= i, pdec(i) >

pdec(w), S transmits ci and updates ρ(j) = ρold(j)[1 −
(1 − ε)

∏

v∈N (ci),v �=j

(1 − ρold(v))], j ∈ N (ci). We summarize

RCSS in Algorithm 1. The output of Algorithm 1 is a
suitable rearranged transmission order π of output symbols
that substantially improves ISRR.

Algorithm 1 RCSS: proposed output symbol sorting algorithm

Initialize: π = [], ρ = [1]1×k

for counter = 1 to m do
for j = 1 to m, j 	∈ π do
pdec(j) = (1− ε)

∑

l∈N (ci)

[ρ(l)
∏

v∈N (ci),v �=l

(1− ρ(v))]

end for
i∗ = argmax

i
(pdec(i))

π = [i∗,π]
for j ∈ N (ci∗) do
ρ(j) = ρold(j)[1− (1 − ε)

∏

v∈N (ci∗),v �=j

(1− ρold(v))]

end for
end for

Suppose two (or more) output symbols cj and cl have equal
probability of decoding of an input symbol, i.e., pdec(j) =
pdec(l). In addition, assume this probability is the largest
probability of decoding an input symbol compared to that of
other remaining output symbols. In this case, argmax

i
(pdec(i))

returns the index of cj or cl whichever has a lower degree.

B. RCSS Lower and Upper Performance Bounds

We investigate the upper and the lower bounds on the
performance of RCSS in the following lemmas.

Lemma 1: The performance of RCSS is upper bounded by
z = γ for ε → 0.

Proof: Clearly, we have

lim
ε→0

pdec(i) =

lim
ε→0

(1− ε)
∑

l∈N (ci)

[ρ(l)
∏

v∈N (ci),v �=l

(1− ρ(v))] ∈ {0, 1}, ∀i. (3)

This means that since each packet is delivered with high
probability the recovery of input symbols is no longer proba-
bilistic. Therefore, we have

lim
ε→0

ρ(j) =

lim
ε→0

ρold(j)[1− (1− ε)
∏

v∈N (ci),v �=j

(1− ρold(v))] ∈ {0, 1}, ∀j,
(4)

showing that the recovery of each input symbol is similarly
deterministic and is exactly known to the encoder. Therefore,
the encoder can determine which output symbols can decode

an input symbol with probability 1 in the next step. Con-
sequently, as long as output symbol with pdec(.) = 1 are
available z = γ is obtained. However, since the codes that we
designed in Section III may not be capacity-achieving z = γ is
not necessarily realized. Therefore, the performance of RCSS
is indeed upper bounded by z = γ.

We note that if the employed distribution is capacity achiev-
ing, i.e., γsucc = 1, z = γ can be obtained.

Lemma 2: The performance of RCSS is lower bounded by
the performance of [6] (where symbols are only sorted based
on their degree) for ε → 1.

Proof: We have limε→1 pdec(i) = 0, ∀i. Further, since
initially we set ρ = [1]1×k then limε→1 ρ(j) = 1, ∀j. In
other words, S cannot make a meaningful estimate about the
recovery of input symbols at D. Since for pdec(i) = p, ∀i,
argmax

i
(pdec(i)) returns the index of output symbols with

the lowest degree, for ε → 1 Algorithm 1 boils down to an
algorithm that only sorts output symbols based on their degree
similar to [6]. Therefore, the performance of RCSS is lower
bounded by the performance of the scheme proposed in [6].

C. Complexity and Delay Incurred by RCSS

It is worth noting that in RCSS all output symbols need
to be generated and sorted before the transmission can start
in contrast to the conventional rateless coding where each
ci can be independently transmitted upon generation. This
would result in some delays in transmission when RCSS is
employed. However, this delay can be easily eliminated with
the following procedure.

Clearly, the order of sorted output symbols is indepen-
dent of the contents of input symbols and only depends on
N (ci), i ∈ {1, 2, . . . ,m}. Therefore, before the transmission
starts, S generates ci’s from a dummy x and obtains and saves
an off-line version of πoff-line and Noff-line(ci). When the actual
encoding starts, x of interest replaces the dummy x, and S gen-
erates ci, i ∈ πoff-line by XORing xj , j ∈ Noff-line(ci). In this
way, each ci can be transmitted upon generation and no delay
occurs. However, we need to note that the described procedure
to eliminate the delay increases the memory requirements and
necessitates data storage in contrast to conventional setup.

In addition, when RCSS is employed the overall complexity
of rateless coding increases from O(k) [2] in conventional
rateless coding to O(k2) since Algorithm 1 has the complexity
of O(m2) = O(k2).

D. Performance Evaluation of RCSS

We implement RCSS for the rateless codes we designed
for W = (0, 0, 1) with k = 102 with the distribution Ω1(y) =
0.116y+ 0.467y2 + 0.417y3 and plot its ISRR along with its
upper and lower bounds (for ε → 1 and ε = 0, respectively)
in Fig. 3. Fig. 3 shows that when an estimate of ε is available
at S, RCSS can substantially improve the ISRR of the codes
designed in the Section III. For instance at γ = 0.5 for ε =
0.1, we can see that z has increased from 0.1131 to 0.4003.

TALARI and RAHNAVARD: ON THE INTERMEDIATE SYMBOL RECOVERY RATE OF RATELESS CODES 1241

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

γ

z

Conventional
RCSS, ε = 0

RCSS, ε = 0.1

RCSS, ε = 0.7

RCSS, ε → 1

Fig. 3. ISRR of codes designed for k = 102 with degree distribution Ω1(.).

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

γ

z

Conventional
RCSS, ε = 0

RCSS, ε = 0.1

RCSS, ε = 0.7

RCSS, ε → 1

Fig. 4. ISRR of LT codes [1] employing RCSS, and the respective upper
and lower bounds.

E. Employing RCSS With Capacity-Achieving Codes

Since RCSS only reorders the transmission of output sym-
bols, it can be employed along with capacity-achieving rateless
codes such as LT codes [1] while preserving their capacity-
achieving property. We choose an LT code with parameters
c = 0.05, δ = 0.01, and k = 103 (c and δ are LT
codes’ distribution parameters [1]) and evaluate its ISRR
improvement by RCSS in Fig. 4. Fig. 4 confirms that the
ISRR of the employed LT code has considerably improved
while its performance at γsucc = 1.4 has remained intact.

F. RCSS for Varying ε

Assume that S has generated m output symbols considering
ε and has sorted them employing RCSS. Further, assume that
the erasure rate of the channel changes to εnew when kγc

1−ε

symbols have already been transmitted and k(γsucc−γc)
1−ε output

symbols are still remaining to be transmitted. If εnew > ε,
less than kγsucc output symbols would be collected by D,
making the full decoding impossible. In this case, S generates
t = (1

1−εnew
− 1

1−ε)k(γsucc − γc) new output symbols and
adds them to the queue of output symbols to be transmitted to
ensure the delivery of kγsucc output symbols to D. Next, S
rearranges all output symbols employing RCSS and continues
the transmission. On the other hand, if εnew < ε then S
randomly drops 1 − 1−ε

1−εnew
fraction of remaining output

symbols from the transmission queue. Further, if ε varies

0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

γ

z

RCSS, ε = 0.3

RCSS, ε = 0.5

RCSS, varying ε

Fig. 5. The resulting ISRR employing RCSS for the case where ε increases
from 0.3 to 0.5 at γc = 0.5.

multiple times the same procedures are followed after each
change.

Assume that S has generated m output symbols employing
distribution Ω1(.) given in Section IV-D for γsucc = 1, ε =
0.3, and k = 102. Further, assume that ε increases to εnew =
0.5 at γc = 0.5. Therefore, S adds t = �0.5714k(γsucc−γc)�
new output symbols and runs RCSS again. The ISRR of this
code has been shown in Fig. 5 where the jump in εnew occurs
at γ = γc = 0.5. Fig. 5 shows that a large jump of 66.6% in
the ε is well compensated by RCSS and the same z is achieved
at γsucc = 1. However, due to disturbance in the ordering
caused by the newly added symbols a slight performance loss
is observed.

V. CONCLUSION

Previously, it has been shown that the intermediate range
of rateless codes is comprised of three regions and for each
region a rateless coding distribution that achieves optimal in-
termediate symbol recovery rate (ISRR) has been designed. In
this paper, we selected a point from each region and designed
degree distributions that have optimal performance at all three
selected points employing multi-objective genetic algorithms.
Next, we assumed that an estimate of the channel erasure rate
ε is available at encoder and proposed RCSS that exploits ε
and rearranges the transmission order of output symbols to
further improve the ISRR of rateless codes. To extend RCSS
in our future work, we will consider the probability that output
symbols are buffered upon reception and incorporate their
effect on rearranging output symbols to be transmitted.

REFERENCES

[1] M. Luby, “LT codes,” in Proc. 2002 IEEE Symp. Foundations Computer
Science, pp. 271–280.

[2] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, June 2006.

[3] P. Maymounkov, “Online codes,” NYU Technical Report TR2003-883,
2002.

[4] S. Sanghavi, “Intermediate performance of rateless codes,” in Proc. 2007
IEEE Inf. Theory Workshop, pp. 478–482.

[5] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes:
maximizing sensor network data persistence,” in Proc. 2006 Conf. Ap-
plications, Technologies, Architectures, Protocols Computer Commun.,
vol. 36, no. 4, pp. 255–266.

[6] S. Kim and S. Lee, “Improved intermediate performance of rateless
codes,” in Proc. 2009 Int. Conf. Advanced Commun. Technol., ICACT,
vol. 3, pp. 1682–1686.

1242 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 5, MAY 2012

[7] A. Beimel, S. Dolev, and N. Singer, “RT oblivious erasure correcting,”
IEEE/ACM Trans. Netw., vol. 15, no. 6, pp. 1321–1332, 2007.

[8] A. Talari and N. Rahnavard, “Rateless codes with optimum intermediate
performance,” in Proc. 2009 IEEE Global Telecommun. Conf., pp. 1–6.

[9] A. Talari, B. Shahrasbi, and N. Rahnavard, “Efficient symbol sorting for
high intermediate recovery rate of LT codes,” in Proc. 2010 IEEE Int.
Symp. Inf. Theory, pp. 2443–2447.

[10] M. G. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of
random processes via and-or tree evaluation,” in Proc. 1998 ACM-SIAM
Symp. Discrete Algorithms, pp. 364–373.

[11] N. Rahnavard, B. Vellambi, and F. Fekri, “Rateless codes with unequal
error protection property,” IEEE Trans. Inf. Theory, vol. 53, no. 4, pp.
1521–1532, Apr. 2007.

[12] N. Rahnavard and F. Fekri, “Generalization of rateless codes for unequal
error protection and recovery time: Asymptotic analysis,” in Proc. 2006
IEEE Int. Symp. Inf. Theory, pp. 523–527.

[13] R. Karp, M. Luby, and A. Shokrollahi, “Finite length analysis of LT
codes,” in Proc. 2004 Int. Symp. Inf. Theory, p. 39.

[14] E. Maneva and A. Shokrollahi, “New model for rigorous analysis of
LT-codes,” in Proc. 2006 Int. Symp. Inf. Theory, pp. 2677–2679.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Com-
put., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[16] Available: http://cwnlab.ece.okstate.edu/
[17] R. Gummadi and R. Sreenivas, “Relaying a fountain code across

multiple nodes,” in Proc. 2008 IEEE Inf. Theory Workshop, pp. 149–
153.

Ali Talari received his B.S. degree in electrical
engineering from Kashan University, Kashan, Iran,
in 2003 and his M.S. degree in electrical engineering
from Sharif University of Technology, Tehran, Iran,
in 2006. Ali joined the School of Electrical and
Computer Engineering at Oklahoma State University
as a Ph.D. student in January 2008. His research
interests are novel error control coding techniques,
communications theory, signal processing in wire-
less sensor networks, and compressive sensing tech-
niques.

Nazanin Rahnavard (S’97-M’10) received her B.S.
and M.S. degrees in electrical engineering from the
Sharif University of Technology, Tehran, Iran, in
1999 and 2001, respectively. She then joined the
Georgia Institute of Technology, Atlanta, GA, in
2002, where she received her Ph.D. degree in the
School of Electrical and Computer Engineering in
2007. Dr. Rahnavard joined the School of Electrical
and Computer Engineering at Oklahoma State Uni-
versity as an Assistant Professor in August 2007.
She has interest and expertise in a variety of research

topics in the communications and networking areas. She is particularly
interested in modern error-control coding techniques and their applications,
compressive sensing, cognitive radio networks, and ad-hoc/sensor networks.

Dr. Rahnavard received an NSF CAREER Award in 2011. She is also the
recipient of the 2007 Outstanding Research Award from the Center of Signal
and Image Processing at Georgia Tech. She serves on the editorial boards of
the Elsevier Journal on Computer Networks (COMNET) and on the Technical
Program Committee of several prestigious international conferences.

