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Distributed Unequal Error Protection
Rateless Codes over Erasure Channels:

A Two-Source Scenario
Ali Talari, Student Member, IEEE, and Nazanin Rahnavard, Member, IEEE

Abstract—In distributed rateless coding, multiple disjoint
sources need to deliver their rateless coded symbols (where a
symbol may contain a single bit or thousands of bits) to a common
destination via a single relay. In this paper, we propose and design
novel distributed rateless codes called DU-rateless codes that can
provide Unequal Error Protection (UEP) for disjoint sources with
unequal data lengths on erasure channels. To design DU-rateless
codes, we tune the coding parameters at each source and propose
to smartly combine the encoded symbols at the relay.

We analyze DU-rateless codes employing And-Or tree analysis
technique and leverage our analysis to design several sets of codes
for various setups employing the-state-of-the-art multi-objective
genetic algorithms. We evaluate the performance of the designed
codes using numerical simulations and discuss their advantages.

Index Terms—Distributed rateless codes, genetic algorithms
optimization, unequal error protection, erasure channels.

I. INTRODUCTION

LT CODES [1] are the first practical implementation of
a class of modern forward error correction (FEC) codes

referred to by rateless codes. The properties of an LT code
is fully determined by its degree distribution called Robust-
Soliton distribution [1]. The Robust-Soliton distribution is
carefully designed to achieve a capacity-approaching perfor-
mance on erasure channels [1].

However, LT codes did not target distributed data collection;
hence they may suboptimally perform in distributed data
collection [2]. In distributed data collection r data sources
need to transmit their rateless encoded symbols to a common
destination through a single relay. For instance, r nodes within
a cluster in a wireless sensor network (WSN) that transmit
their rateless coded data to a base station via a cluster-head
form such a distributed data collection. It is worth noting that
r sources may have different data block lengths and different
data importance levels. Consequently, we are interested in
designing flexible distributed rateless codes that in general can
provide Unequal Error Protection (UEP) for data of various
lengths.

In this paper, as a first step we consider r = 2 and propose
distributed UEP rateless codes (DU-rateless codes), which
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are a realization of such codes on erasure channels. In DU-
rateless codes input symbol length can be arbitrary from one-
bit (binary) symbol to hundreds or thousands of bits similar
to LT codes. The problem in DU-rateless codes is to tune
a degree distribution for each source and to design relaying
parameters to achieve (almost) minimal decoding error rates
with a certain ratio referred to by UEP gain. Similar to
LT codes, DU-rateless codes are also universal [1] meaning
that they are simultaneously near optimal for every erasure
channel.

We employ And-Or tree analysis technique to study DU-
rateless codes and utilize our analytical results to design
several close to optimal DU-rateless codes for various setups
employing a multi-objective genetic algorithm called NSGA-II
[3]. Finally, we report the designed codes and evaluate their
performance. This paper extends our initial results on DU-
rateless codes that appeared in [4].

The paper is organized as follows. In Section II, we review
related work. In Section III, we propose and analyze DU-
rateless codes. In Section IV, we employ NSGA-II to design
DU-rateless codes. Further, in Section V we evaluate the per-
formance of several ensembles of DU-rateless codes. Finally,
Section VI reports the future work and concludes the paper.

II. RELATED WORK

Authors in [2] have designed distributed LT (DLT) codes.
In DLT coding, Robust-Soliton distribution is decomposed
into r identical distributions to encode input symbols at r
sources. Next, the encoded symbols are selectively combined
or forwarded with certain probabilities to the destination such
that the delivered coded symbols follow Robust-Soliton degree
distribution (which is known to be capacity-achieving).

Authors in [5], considered rateless coding at r sources
with an identical degree distribution. In [5], the number
of combined encoded symbols (regardless of their degree)
at the relay is determined by a second independent degree
distribution. Authors have analyzed their codes and designed
a few distributed rateless codes. In [6] authors considered
a network with two sources r = 2 and designed a simple
forwarding from the relay such that the degree distribution
of the delivered symbols to destination follows a Soliton-like
distribution (SLRC). Authors have shown that SLRC codes
outperform DLT codes. Further, SLRC codes reduce to LT
codes when a source leaves.

Authors in [7] propose an online encoding ensemble of LT
codes such that the ith output symbol is strictly comprised
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of the first i input symbols. They design their encoding and
relaying scheme such that delivered symbols to destination
maintain Robust-Soliton distribution. The scheme proposed
in [7] may not be distributively implemented in contrast to
DU-rateless codes. Authors in [8], [9], proposed UEP rateless
codes. Although codes designed in [8], [9] are capable of
providing UEP, they may not be distributively implemented.

Therefore, we propose DU-rateless codes that are inspired
by UEP rateless codes [8], [9], which are able to provide UEP
for disjoint data blocks of unequal lengths. Further, we jointly
optimize DU-rateless codes parameters to obtain an optimal
coding performance. The comparable scheme to DU-rateless
codes is employing an independent LT codes at each source.

III. DISTRIBUTED UNEQUAL ERROR PROTECTION

RATELESS CODES

In this section, we describe DU-rateless coding/decoding.

A. Proposed Coding and Decoding

Consider a distributed data collection with two sources s1
and s2 with data block of lengths ρk and k input symbols,
respectively, where 0 < ρ ≤ 1. Let S1 and S2 denote the set of
s1 and s2 input symbols, respectively. Note that without loss
of generality and for simplicity we assume that the symbols
are binary symbols.

To generate a rateless coded output (encoded) symbol
from k input symbols, first its degree is randomly chosen
to be d with probability Ωd using a degree distribution
{Ω1,Ω2, . . . ,Ωk} (also shown by its generator polynomial
Ω(x) =

∑k
i=1 Ωix

i). Next, d input symbols are selected
uniformly at random and are bitwise XORed to form the output
symbol. We call the d contributing input symbols in forming
an output symbol as its neighbors. Ω(x) is carefully optimized
so that k input symbols can be recovered from kγsucc output
symbols with a high probability, where γsucc is called the
coding overhead and asymptotically (k → ∞) approaches 1.
However, for practical finite values of k, γsucc may be much
larger than 1.

In DU-rateless coding, s1 employs Ω(x) to encode its data
block S1 (in the same way that input symbols are encoded
by Robust-Soliton distribution in LT coding). Similarly, s2
employs ϕ(x) to encode S2. Next, s1 and s2 transmit their
output symbols to a common relay R, which based on the
following two rules generates three types of output symbols
and forwards them to a destination D.

1) With probabilities p1 and p2 it directly forwards s1 and
s2’s output symbols to D, respectively.

2) With probability p3 = 1− p1 − p2 it forwards the XOR
of two incoming coded symbols to D.

The decoding process of LT and DU-rateless codes are
identical and is performed iteratively as follows. Find an
output symbol such that the value of all but one neigh-
boring input symbol is known. Recover the value of the
unknown input symbol by bitwise XOR operations. Repeat
this process until no such an output symbol exists. As we
later show, iterative decoding of rateless codes is a form
of belief propagation decoding. The DU-rateless decoding
succeeds with a high probability when (1 + ρ)γsucck output
symbols are received at D. For a received coding overhead of

0 ≤ γ ≤ γsucc, the proposed DU-rateless code ensemble is
specified by parameters (ρk, k,Ω(x), ϕ(x), p1, p2, p3, γ).

Let ε1, ε2, and ε3 denote the erasure rates of s1 − R,
s2 − R, and R − D channels, respectively. Further, assume
packet transmission at s1 and s2 is not synchronized. With
this setup, we need to set the symbol transmission rates of
s1 and s2 such that no huge symbol buffering or dropping is
required at R. It is not hard to show that s2 needs to generate
(1−p1)(1−ε2)
(1−p2)(1−ε1)

output symbols per one output symbol generated
at s1 so that in expectation no symbols are buffered. We should
note that due to random losses of s1 and s2 symbols and
their asynchronous transmissions, R may need to buffer only
a few symbols for a short period time. For example, assume
R decides to combine s1 and s2 symbols. However, due to
random losses on the channel several symbols from s1 arrive
while no symbols from s2 arrives. In such a case, R needs to
buffer a few symbols from s1 until symbols from s2 arrive.
Therefore, the transmission rate of (1−p1)(1−ε2)

(1−p2)(1−ε1)
symbol at s2

guarantees that R may have to buffer only a few symbols for
a short period of time.

B. And-Or Tree Analysis of the Proposed Codes

To investigate the recovery probability of an input symbol in
DU-rateless decoding on erasure channels, we extend the And-
Or tree analysis [10], [11] technique to fit the decoding process
of DU-rateless codes. The input and output symbols of a DU-
rateless code can be viewed as vertices of a bipartite graph
G, where the input symbols are the variable nodes and the
output symbols are the check nodes [12], [13]. In DU-rateless
coding, the corresponding bipartite graph at the receiver has
two types of variable nodes (mapped to S1 and S2), and three
types of check nodes generated by R. Let C1 and C2 denote
the set of output symbols directly forwarded from R, and C3

denote the set of combined output symbols (see [4, Fig. 2]).
Clearly, C1 symbols are generated based on Ω(x) and are

only connected to S1. Similarly, C2 symbols are generated
based on ϕ(x) and are only connected to S2. Finally, input
symbols of C3 are generated using both S1 and S2 with a
degree distribution equal to Ω(x)×ϕ(x) [2]. It is worth noting
that the ratio of the number of symbols in C1, C2, and C3 is
equal to p1, p2, and p3, respectively.

Let us choose Tl,1 a subgraph of G as following. Choose an
edge (v, w) uniformly at random from all edges in G with one
end among S1 symbols. Call the input symbol v connected to
edge (v, w) the root of Tl,1, which is assumed to be at depth
0. Tl,1 is a graph induced by v and all neighbors of v within
distance 2l after removing the edge (v, w). It can be shown
that Tl,1 is a tree asymptotically [8]–[10]. Similarly, we define
Tl,2 such that the root of Tl,2 resides in S2 symbols.

In addition, in the iterative belief propagation LT decoding
process on binary erasure channels (BEC) we can assume
that messages (0 or 1) are sent along the edges from output
symbols to input symbols, and then vice-versa [8], [9], [11],
[14]. An input symbol sends 0 to an adjacent output symbol
if and only if its value is not recovered yet. Similarly, an
output symbol sends 0 to an adjacent input symbol if and
only if it is not able to recover the value of the input symbol.
In other words, an input symbol sends 1 to a neighboring
output symbol if and only if it has received at least one
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message with value 1 from other neighboring output symbol,
hence it is performing the logical OR operation. Also an input
symbol sends 0 to a neighboring output symbol if only if
it has received at least one message with value 0 from its
other neighboring input symbols, which is a logical AND
operation. Therefore, Tl,1 and Tl,2 are And-Or trees with OR
and AND nodes on even and odd depths, respectively (for
pictorial illustration see [4, Fig. 3 and Fig. 4]). Note that we
denote the symbols at depth i+ 1 as the children of symbols
at depth i.

Let δi,1, i ∈ {0, . . . , A1} be the probability that an input
symbol in S1 has i children in C1 or C3. Further, let δi,2 be
the probability that a S2 symbol has i ∈ {0, . . . , A2} children
in C2 or C3. Moreover, let C1 symbols choose to have i ∈
{0, . . . , B1 − 1} children from S1 with probability βi,1, and
C2 choose to have i ∈ {0, . . . , B2− 1} children from S2 with
probability βi,2.

Moreover, in Tl,1 C3 symbols choose i ∈ {0, . . . , B1 − 1}
and j ∈ {1, . . . , B2} children from S1 and S2 symbols with
probabilities βi,1 and βj,3, respectively. Further, in Tl,2, C3

symbols can choose i ∈ {0, . . . , B2− 1} and j ∈ {1, . . . , B1}
children from S2 and S1 symbols with probabilities βi,2 and
βj,4, respectively. The probabilities that the root input symbol
of And-Or trees Tl,1 and Tl,2 evaluate to 0 is given in the
following Theorem.

Theorem 1: Let yl,1 and yl,2 be the probabilities that the
roots of the And-Or trees Tl,1 and Tl,2 evaluate to 0, respec-
tively. Then we have

yl,1 = δ1
(
1− p′1β1(1− yl−1,1)

− p′3

B1+B2−1∑
i=1

i−1∑
j=0

[
βj,1(1− yl−1,1)

jβi−j,3(1− yl−1,2)
i−j]),

(1)
yl,2 = δ2

(
1− p′2β2(1− yl−1,2)

− p′4

B1+B2−1∑
i=1

i−1∑
j=0

[
βj,2(1− yl−1,2)

jβi−j,4(1− yl−1,1)
i−j]),

(2)

with y0,1 = y0,2 = 0, δ1(x) =
A1∑
i=0

δi,1x
i, δ2(x) =

A2∑
i=0

δi,2x
i,

β1(x) =
B1−1∑
i=0

βi,1x
i, β2(x) =

B2−1∑
i=0

βi,2x
i, p′1 = p1

1−p2
, p′3 =

1−p1−p2

1−p2
= p3

1−p2
, p′2 = p2

1−p1
and p′4 = 1−p1−p2

1−p1
= p3

1−p1
.

Proof: Consider output symbols of depth 1 in Tl,1 (which
are of type C1 and C3). A C1 symbol has children in S1

symbols of depth 2∗ and evaluates to 1 with probability∑B1−1
i=0 βi,1(1 − yl−1,1)

i. A C3 symbol may have between
0 to B1 − 1 children from S1 symbols and between 1 to B2

children from S2 symbols. Hence, the probability that such
an input symbol evaluates to 0 is

∑B1+B2−1
i=1

∑i−1
j=0[βj,1(1−

yl−1,1)
jβi−j,3(1− yl−1,2)

i−j ].
From the children of the root of Tl,1 at depth 0, p′1 fraction

are C1 symbols and the rest p′3 fraction are C3 symbols.
Hence, the probability that an output symbol that is a child
of Tl,1’s root evaluates to 0 is

(
1 − p′1

∑B1−1
i=0 βi,1(1 −

yl−1,1)
i − p′3

∑B1+B2−1
i=1

∑i−1
j=0

[
βj,1(1 − yl−1,1)

jβi−j,3(1 −
∗Note that S1 and S2 symbols at depth 2 in Tl,1 (as well as in Tl,2) are

the roots for independent And-Or tree Tl−1,1 and Tl−1,2, respectively.

yl−1,2)
i−j

])
.

Therefore, the probability that the root of Tl,1 evaluates to 0,
yl,1, is given by (1). Note that yl,2 can be analyzed in a similar
way to obtain (2).

To complete DU-rateless codes analysis, we only need to
compute the probabilities βi,1, βi,2, βi,3, βi,4, and functions
δ1(x) =

∑
i δi,1x

i and δ2(x) =
∑

i δi,2x
i. First, we need

to investigate the degree distribution of input symbols in S1

and S2. In the following lemma, we show that the degree
(the number of edges connected to) of each input symbol in
the proposed ensemble of DU-rateless code with parameters
(ρk, k,Ω(x), ϕ(x), p1, p2, p3, γ) is Poisson-distributed asymp-
totically.

Lemma 1: Consider two sources s1 and s2 employing a
(ρk, k,Ω(x), ϕ(x), p1, p2, p3, γ) DU-rateless code. Asymptot-
ically, for a total received overhead of γ the degree of S1

and S2 input symbols in the corresponding bipartite graph G
follow Poisson distributions with means λ1 = Ω′(1)γ(1 −
p2)

(1+ρ)
ρ and λ2 = ϕ′(1)γ(1− p1)(1 + ρ), respectively.

Proof: The average degrees of Ω(x) and ϕ(x) are given
by

∑
i

iΩi = Ω′(1) and
∑
i

iϕi = ϕ′(1), respectively. S1

symbols are chosen based on Ω(x) and are included in a
fraction (1−p2) of (1+ρ)γk total output symbols. Therefore,
Ω′(1)(1 + ρ)γk(1 − p2) edges are connected uniformly at
random to S1 symbols. Consequently, a S1 symbols has degree
d with probability

τd,1 =

(
(1− p2)Ω

′(1)γk(1 + ρ)

d

)

×
(

1

ρk

)d (
1− 1

ρk

)(1−p2)Ω
′(1)γk(1+ρ)−d

.

(3)

Similarly, (1 − p1)ϕ
′(1)k(1 + ρ)γ edges are connected uni-

formly at random to S2 symbols. As a result, a S2 symbol has
degree d with probability

τd,2 =

(
(1− p1)ϕ

′(1)γk(1 + ρ)

d

)

×
(
1

k

)d (
1− 1

k

)(1−p1)ϕ
′(1)γk(1+ρ)−d

.

(4)

Asymptotically, (3) and (4) approach to

τd,1 =
e−(1−p2)Ω

′(1)γ (1+ρ)
ρ

[
Ω′(1)γ(1− p2)

(1+ρ)
ρ

]d
d!

, (5)

and

τd,2 =
e−(1−p1)ϕ

′(1)γ(1+ρ) [ϕ′(1)γ(1− p1)(1 + ρ)]
d

d!
, (6)

respectively, which are Poisson distributions with the means
λ1 = Ω′(1)γ(1− p2)

(1+ρ)
ρ and λ2 = ϕ′(1)γ(1− p1)(1 + ρ).

Next, employing Lemma 1 we find βi,1, βi,2, βi,3, βi,4,
δ1(x) =

∑
i δi,1x

i, and δ2(x) =
∑

i δi,2x
i as a function of a

DU-rateless code parameters in the following lemma.
Lemma 2: The probabilities βi,1, βi,2, βi,3, βi,4, and func-

tions δ1(x) and δ2(x) for a
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(ρk, k,Ω(x), ϕ(x), p1, p2, p3, γ) DU-rateless code are given as

δ1(x) = e(1−p2)Ω
′(1)γ (1+ρ)

ρ
(x−1), δ2(x) = e(1−p1)ϕ

′(1)γ(1+ρ)(x−1),

βi,1 =
(i+ 1)Ωi+1

Ω′(1)
, hence β1(x) =

Ω′(x)
Ω′(1)

,

βi,2 =
(i+ 1)ϕi+1

ϕ′(1)
, hence β2(x) =

ϕ′(x)
ϕ′(1)

,

βi,3 = ϕi, and βi,4 = Ωi.

Proof: We have βi,1 is the probability that a randomly
chosen edge with one end in S1 is connected to a C1 or C3

symbol with i children in S1. Therefore, βi,1 is the probability
that a randomly selected edge with one end connected to a S1

symbol has the other end connected to an output symbol in
C1 or C3 with (i + 1) children in S1. Therefore, we have
βi,1 = (i+1)Ωi+1

Ω′(1) or equivalently β1(x) = Ω′(x)
Ω′(1) , which is

edge degree distribution from C1 perspective. Similarly, we
have βi,2 = (i+1)ϕi+1

ϕ′(1) , which gives β2(x) =
ϕ′(x)
ϕ′(1) , which is

edge degree distribution from C2 perspective.
Moreover, βi,3 is the probability that a randomly chosen

edge with one end in S1 is connected to a C3 symbol with
i children in S2. Therefore, βi,3 is the probability that a
randomly selected edge connected to a S1 symbol in the graph
G is connected to a C3 output symbol with i children in S2.
This simply gives βi,3 = ϕi. In the same way, βi,4 = Ωi.

Further, we have δi,1 is the probability that the input
symbol connected to a randomly selected edge has degree
i + 1 given that the input symbol belongs to S1. Therefore,
δi,1 =

(i+1)λi+1,1∑
i iλi,1

, where λi,1 is given in Lemma 1. Using
Lemma 1, we have

δi,1 =
(i+ 1)λi+1,1

Ω′(1)γ(1− p2)
(1+ρ)

ρ

,

=
(i+ 1)e−(1−p2)Ω

′(1)γ (1+ρ)
ρ

[
Ω′(1)γ(1− p2)

(1+ρ)
ρ

]i+1

Ω′(1)γ(1− p2)
(1+ρ)

ρ
(i+ 1)!

,

=
e−(1−p2)Ω

′(1)γ (1+ρ)
ρ

[
Ω′(1)γ(1− p2)

(1+ρ)
ρ

]i
i!

.

After substitution, we have

δ1(x) =
∑
i

δi,1x
i,

=
∑
i

e
−(1−p2)Ω

′(1)γ (1+ρ)
ρ

[
Ω′(1)γ(1− p2)

(1+ρ)
ρ

x
]i

i!
,

= e
(1−p2)Ω

′(1)γ (1+ρ)
ρ

(x−1)
.

Similarly, we have δ2(x) = e(1−p1)ϕ
′(1)γ(1+ρ)(x−1).

Similar to [8, Lemma 4], we can show that the sequences
{yl,1}l and {yl,2}l are monotone decreasing and are bounded
in [0, 1], and they converge to fixed points. Let BER1 and
BER2 denote the corresponding fixed points. These fixed
points are the probabilities that S1 and S2 symbols are
not recovered after l decoding iterations. In other words,
these fixed points are the final decoding error rates of a
(ρk, k,Ω(x), ϕ(x), p1, p2, p3, γ) DU-rateless code. To realize
almost minimal BER1 and BER2, we will design DU-rateless
codes with parameters that are jointly optimized for a given
γsucc in the next section.

IV. DISTRIBUTED UNEQUAL ERROR PROTECTION

RATELESS CODES DESIGN

For an ensemble of DU-rateless code with parameters
(ρk, k,Ω(x), ϕ(x), p1, p2, p3, γ), we define the UEP gain η �
BER2

BER1
, where BER1 and BER2 can be computed from (1) and

(2), respectively, for a large enough l. A larger η shows a
higher recovery rate of S1 input symbols at D or equivalently
a higher level of protection compared to S2. It is worth noting
that η = 1 corresponds to equal error protection (EEP) case
where S1 and S2 are equally protected. The question that
arises is that what are the appropriate parameters Ω(x), ϕ(x),
p1, p2, and p3 that would result in a desired η and minimal
BER1 and BER2. It is not hard to show that BER1 and BER2

are two conflicting objective functions by investigating (1) and
(2) (improving one may deteriorate the other one). Therefore,
we have a multi-objective optimization problem.

A. Multi-Objective Optimization Genetic Algorithms

Let U and u denote the decision space and a deci-
sion vector, respectively, of an optimization problem. Let
F1(u), F2(u), . . . , Fn(u) denote the conflicting objective func-
tions. The problem is to find decision vectors u that concur-
rently minimize/maximize all objective functions. In a simple
case with a single objective function, the problem boils down
to a conventional minimization/maximization problem.

For a minimization problem, u1 ∈ U is said to be dominated
by u2 ∈ U , or u1 ≺ u2, if ∀ i ∈ {1, . . . , n}, Fi(u1) ≥ Fi(u2)
and for at least one i, Fi(u1) > Fi(u2). A non-dominated
pareto front vector, u∗, is a decision vector that no other de-
cision vector can dominate. In other words, in a minimization
problem no other decision vector exists such that it would
decrease some objective functions without deteriorating at
least one other objective function compared to u∗.

The set of all dominant solution vectors form pareto optimal
set. The plot of objective functions of pareto optimal members
in the objective space builds the pareto front. For a pictorial
illustration of pareto front see [4, Fig. 5]

Multi-objective optimization methods search to find deci-
sion variables that result in pareto front members that are
well spread and equally spaced to cover the whole pareto
front. NSGA-II [3] is one of the many such algorithms with an
outstanding performance that we employ in our design. Note
that although genetic-algorithms have very high complexity,
the optimization can be performed in an off-line mode and
stored and the appropriate codes can be later selected based
on the system requirements.

B. Proposed Codes Design Employing NSGA-II

We fix γsucc = 1.05 and employ NSGA-II [3] to find
the optimum Ω(x), ϕ(x), p1, p2, and p3 that concurrently
minimize BER1 and BER2 for various values of η = BER2

BER1

and ρ ∈ {0.3, 0.5, 1}. In other words, we have a problem
including two objective functions given by (1) and (2) (BER1

and BER2), with 202 independent decision variables, i.e.
u = {Ω1,Ω2, . . . ,Ω102 , ϕ1, ϕ2, . . . , ϕ102 , p1, p2}.

The output of our optimization are 3 databases of close to
optimal degree distributions for ρ ∈ {0.3, 0.5, 1}, each em-
bracing a large number of DU-rateless codes parameters that
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Fig. 1. The resulting pareto fronts for various DU-rateless codes setups

realize various η’s made available online at [15]. We emphasis
that our results are close to optimal since genetic algorithms
are known to find solutions that are not necessarily global-
optimal but are rather very close to global-optimal solutions. In
addition, confining the largest degree to B1 = B2 = 102 limits
the degree distribution search space and results in the design
of the codes that are suboptimal. Therefore, the performance
of our designed DU-rateless codes is close to optimal. We plot
the pareto fronts obtained from our optimizations in Fig. 1(a).
Similarly, we set γsucc = 1.02 and ρ = 1 and find the set of
optimal DU-rateless codes for this setup with the pareto front
illustrated in Fig. 1(b).

In Fig. 1 each point corresponds to two degree distributions
and three relaying parameters Ω(x), ϕ(x), p1, p2, and p3.
Fig. 1(a) shows that our designed DU-rateless codes are well
spread with respect to η. One should choose an appropriate
point according to a desired η and employ the correspond-
ing DU-rateless code. From Fig. 1(b) we can see that due
to much smaller γsucc the minimum achievable error rates
have increased, which shows an interesting trade-off between
the achievable error-floor and the decoding overhead γsucc.
However, the UEP gain can be obtained for a wide range of
η’s.

V. PERFORMANCE EVALUATION OF THE DESIGNED CODES

This section report the performance evaluation of our de-
signed codes.
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Fig. 2. Asymptotic performance evaluation of the designed DU-rateless
codes

A. Asymptotic Performance Evaluation of the Designed Codes

From the sets of our optimized DU-rateless codes available
at [15], we choose two DU-rateless codes for η ∈ {10, 102}
, ρ = 1, and γsucc = 1.05 and evaluate their performance in
Fig. 2(a) for k → ∞ given by (1) and (2). For comparison,
we have also plotted the BER1 and BER2 for EEP case (η =
1). Similarly, we choose an optimal DU-rateless codes with
parameters γsucc = 1.02 and ρ = 1 for η = 10 and evaluate
its performance as shown in Fig. 2(b).

Fig. 2(a) shows that the expected UEP gain is fulfilled for
γsucc = 1.05 with the minimal values of BER1 and BER2. In
addition, Fig. 2(b) shows that the expected UEP gain η = 10
is achieved although the error floors are higher due to smaller
γsucc. The parameters of a DU-rateless code for ρ = 1, η =
10, and γsucc = 1.05 with performance illustrated in Fig. 2(a)
is given as follows.

Ω(x) =0.039x1 + 0.492x2 + 0.094x3 + 0.09x4 + 0.096x5 + 0.002x6

+ 0.055x7 + 0.019x8 + 0.033x9 + 0.014x10 + 0.004x20

+ 0.005x27 + 0.001x28 + 0.004x31 + 0.001x39 + 0.005x43

+ 0.004x78 + 0.001x79 + 0.005x86 + 0.01x95 + 0.004x96

+ 0.001x99 + 0.006x100,
(7)
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(a) BER’s for DU-rateless codes optimized for γsucc = 1.05.
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(b) BER’s for DU-rateless codes optimized for γsucc = 1.02.

Fig. 3. The resulting BERs for asymptotic case and finite length case (k =
104) for DU-rateless codes optimized for γsucc = 1.05 and γsucc = 1.02
with parameters η = 10 and ρ = 1.

ϕ(x) =0.072x1 + 0.48x2 + 0.055x3 + 0.051x4 + 0.063x5 + 0.059x6

+ 0.037x7 + 0.026x8 + 0.025x9 + 0.036x10 + 0.005x15

+ 0.001x25 + 0.002x28 + 0.005x37 + 0.002x44 + 0.001x67

+ 0.001x70 + 0.001x76 + 0.001x77 + 0.002x83 + 0.001x84

+ 0.001x88 + 0.003x93 + 0.052x95 + 0.002x97,
(8)

with p1 = 0.4822, and p2 = 0.1173, which gives p3 = 0.4005.
We can see that to achieve an optimum distributed coding
40.05% of the generated output symbols at s1 and s2 should
be combined at the relay.

B. Performance Evaluation for Finite-length

Our designed DU-rateless codes are optimized based on
our analytical results derived in Section III for asymptotic
case, i.e., k → ∞. However, in practice k is finite. Therefore,
we set the parameters ρ = 1 and η = 10 for two cases of
γsucc = 1.05 and γsucc = 1.02 and evaluate the performance
of DU-rateless code for k = 104 using numerical encoding
and decoding versus anosmatic setup as shown in Fig. 3. To
find BER1 and BER2 in the finite length case, we take average
over decoding error rates of 105 numerical decoding iterations.
Fig. 3 shows that the expected UEP gain (η = 10) and minimal
error rates are realized at slightly larger γsucc’s. Therefore, our
designed DU-rateless codes can indeed be employed for finite
k cases as well for a larger γsucc.

C. Performance Comparison with LT and DLT Codes

In this section, we compare the performance of DU-rateless
codes with the case where s1 and s2 independently employ

1 1.05 1.1 1.15 1.2 1.25 1.3

10
−6

10
−4

10
−2

10
0

Received coding overhead, γ

D
ec

od
in

g
er

ro
r

ra
te

,
B

E
R

 

 

DU-rateless, BER1

DU-rateless, BER2

C1, BERC1

C2, BERC2

Fig. 4. Performance comparison of the employed DU-rateless code and the
equivalent optimal separate LT codes. As shown, the overhead for achieving
BER1 = 5 × 10−7 reduces from 1.25 to 1.15 if we employ a DU-rateless
code instead of two separate LT codes.

two LT codes C1 and C2 to generate C1 and C2, and R
directly and intermittently forwards them to D. To perform
the comparison, we set the parameters k = 104, ρ = 1, and
η = 10. The DU-rateless code optimized for this setup has
degree distributions given by (7) and (8) with p1 = 0.4822,
p2 = 0.1173, and p3 = 0.4005, which achieves BER1 ≈
5 × 10−7 and BER2 ≈ 5 × 10−6 at γ = 1.15. This DU-
rateless code results in output symbols with average degree of
μDU ≈ 11.38.

To perform a fair comparison, we need to have equivalent
decoding complexities in both setups. Since the decoding
complexity of LT decoding is determined by the average
output symbols degree [1], we need to maintain the same
average coded degree when two LT codes replace this DU-
rateless code. Let C1(c1, ν1) and C2(c2, ν2) denote the desired
LT codes, where c1, ν1, c2, and ν2 are the respective Robust-
Soliton degree distributions parameters [1]. Further, assume
that C1(c1, ν1) and C2(c2, ν2) have average output symbol de-
grees of μC1 and μC2 and realize the desired BER’s at γC1 and
γC2 in rateless decoding, respectively. Consequently, to have
equal decoding complexities in both setups we need to find
C1(c1, ν1) and C2(c2, ν2) such that

γC1μC1+γC2μC1

γC1+γC2
= μDU .

On the other hand, we should select c1, ν1, c2, and ν2 such
that C1(c1, ν1) and C2(c2, ν2) can realize the desired BER’s at
minimum possible total overhead γC1 +γC2 . Therefore, to find
C1(c1, ν1) and C2(c2, ν2) we solve the following minimization
problem:

argmin
c1,ν1,c2,ν2

(γC1 + γC2) = [c∗1, ν
∗
1 , c

∗
2 , ν

∗
2 ],

s.t.
γC1μC1 + γC2μC2

γC1 + γC2

= μDU ,

BER1 ≤ 5× 10−7, and BER2 ≤ 5× 10−6.

(9)

We search the whole decision space of c1, ν1, c2, and
ν2 to find the global minimum of γC1 + γC2 . The opti-
mal C1 has parameters c1 = 0.1, ν1 = 40, γC1 = 1.15,
and μC1 = 10.74. Further, the optimal C2 has parameters
c1 = 0.1, ν1 = 15, γC1 = 1.25, and μC1 = 11.98. We have
compared the performance of the setup with two separate LT
codes C1(c1, ν1) and C2(c2, ν2) along with the equivalent DU-
rateless code in Fig. 4.

Fig. 4 shows that the total amount of required overhead has
decreased from γC1 + γC2 = 2.4 in separate coding setup to
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Fig. 5. Performance comparison of the DU-rateless codes for designed for
ρ = 1, η = 1, γ = 1.05 and the DLT codes with average output degree of
11.03 for k = 104.

(1+ρ)γsucc = 2.3 in the setup employing DU-rateless codes.
This shows that when DU-rateless codes are employed 103

fewer symbols need to be delivered to receiver. Therefore,
in our example DU-rateless codes can make 25% reduction
in the number of required redundant received output symbol
for successful decoding compared to two separate LT codes.
This improvement is realized by increasing data block length,
which is obtained by combining output symbols at the relay.

To compare DU-rateless codes with DLT codes [2], we have
to select a DU-rateless code with ρ = 1 and η = 1 since DLT
codes can only encode data blocks of equal size and may only
provide EEP. This DU-rateless code results in the generation
of output symbols with average degree of 11.03. Similar to
comparison with regular LT codes, we find a Robust-Soliton
distribution for DLT coding with average degree 11.03 and
compare its performance to the selected DU-rateless code in
Fig. 5 for k = 104. Fig. 5 interestingly shows that for ρ = 1
and η = 1 DLT and DU-rateless codes have almost the same
performance and achieve the same error floor. However, we
should note that DU-rateless codes are capable of providing
UEP and also support sources with unequal block sizes.

VI. CONCLUSION

In this paper, we proposed DU-rateless codes, which are
distributed rateless codes with Unequal Error Protection
(UEP) property for two data sources with unequal data block
lengths over erasure channels. First, we analyzed DU-rateless
codes employing And-Or tree analysis technique, and then
we designed several close to optimum sets of DU-rateless
codes using multi-objective genetic algorithms. Performance
comparison of the designed DU-rateless codes showed that
they fulfilled the expected UEP property with almost minimal
error rates. We also showed that although DU-rateless codes
are designed for large message lengths, they can be employed
for finite message lengths as well. Finally, we showed that
DU-rateless codes surpass the performance of exiting codes
for distributed rateless coding.

DU-rateless codes can be extended to networks with more
than two sources (r > 2). In this case, there would be 2r − 1
relaying parameters to tune and our analysis can be extended
for r sources, which is trivial but cumbersome; hence it is
left for our future work. Further, DU-rateless codes can be

designed for non-erasure channels such as AWGN channels

employing multi-objective genetic algorithms, which is also
left to future work.
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